Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(15): 10581-10590, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38580459

RESUMEN

Positron emission tomography is a widely used imaging platform for studying physiological processes. Despite the proliferation of modern synthetic methodologies for radiolabeling, the optimization of these reactions still primarily relies on inefficient one-factor-at-a-time approaches. High-throughput experimentation (HTE) has proven to be a powerful approach for optimizing reactions in many areas of chemical synthesis. However, to date, HTE has rarely been applied to radiochemistry. This is largely because of the short lifetime of common radioisotopes, which presents major challenges for efficient parallel reaction setup and analysis using standard equipment and workflows. Herein, we demonstrate an effective HTE workflow and apply it to the optimization of copper-mediated radiofluorination of pharmaceutically relevant boronate ester substrates. The workflow utilizes commercial equipment and allows for rapid analysis of reactions for optimizing reactions, exploring chemical space using pharmaceutically relevant aryl boronates for radiofluorinations, and constructing large radiochemistry data sets.


Asunto(s)
Cobre , Tomografía de Emisión de Positrones , Radioquímica , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Radioisótopos de Flúor
2.
SLAS Technol ; 29(2): 100126, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423211

RESUMEN

High-throughput experimentation (HTE) has become more widely utilized in drug discovery for rapid reaction optimization and generation of large synthetic compound arrays. While this has accelerated medicinal chemistry design, make, test (DMT) iterations, the bottleneck of purification persists, consuming time and resources. Herein we describe a general parallel purification approach based on solid phase extraction (SPE) that provides a more efficient and sustainable workflow producing compound libraries with significantly upgraded purity. This robust, user-friendly workflow is fully automated and integrated with HTE library synthesis, as demonstrated by its application to a diverse parallel library compound array generated via amide-bond coupling in HTE microscale format.


Asunto(s)
Amidas , Descubrimiento de Drogas
3.
Acc Chem Res ; 56(24): 3604-3615, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38051914

RESUMEN

ConspectusCross-coupling methods are the most widely used synthetic methods in medicinal chemistry. Existing reactions are dominated by methods such as amide coupling and arylation reactions that form bonds to sp2-hybridized carbon atoms and contribute to the formation of "flat" molecules. Evidence that three-dimensional structures often have improved physicochemical properties for pharmaceutical applications has contributed to growing demand for cross-coupling methods with sp3-hybridized reaction partners. Substituents attached to sp3 carbon atoms are intrinsically displayed in three dimensions. These considerations have led to efforts to establish reactions with sp3 cross-coupling partners, including alkyl halides, amines, alcohols, and carboxylic acids. As C(sp3)-H bonds are much more abundant that these more conventional coupling partners, we have been pursuing C(sp3)-H cross-coupling reactions that achieve site-selectivity, synthetic utility, and scope competitive with conventional coupling reactions.In this Account, we outline Cu-catalyzed oxidative cross-coupling reactions of benzylic C(sp3)-H bonds with diverse nucleophilic partners. These reactions commonly use N-fluorobenzenesulfonimide (NFSI) as the oxidant. The scope of reactivity is greatly improved by using a "redox buffer" that ensures that the Cu catalyst is available in the proper redox state to promote the reaction. Early precedents of catalytic Cu/NFSI oxidative coupling reactions, including C-H cyanation and arylation, did not require a redox buffer, but reactions with other nucleophiles, such as alcohols and azoles, were much less effective under similar conditions. Mechanistic studies show that some nucleophiles, such as cyanide and arylboronic acids, promote in situ reduction of CuII to CuI, contributing to successful catalytic turnover. Poor reactivity was observed with nucleophiles, such as alcohols, that do not promote CuII reduction in the same manner. This insight led to the identification of sacrificial reductants, termed "redox buffers", that support controlled generation of CuI during the reactions and enable successful benzylic C(sp3)-H cross-coupling with diverse nucleophiles. Successful reactions include those that feature direct coupling of (hetero)benzylic C-H substrates with coupling partners (alcohols, azoles) and sequential C(sp3)-H functionalization/coupling reactions. The latter methods feature generation of a synthetic linchpin that can undergo subsequent reaction with a broad array of nucleophiles. For example, halogenation/substitution cascades afford benzylic amines, (thio)ethers, and heterodiarylmethane derivatives, and an isocyanation/amine-addition sequence generates diverse benzylic ureas.Collectively, these Cu-catalyzed (hetero)benzylic C(sp3)-H cross-coupling reactions rapidly access diverse molecules. Analysis of their physicochemical and topological properties highlights the "drug-likeness" and enhanced three-dimensionality of these products relative to existing bioactive molecules. This consideration, together with the high benzylic C-H site-selectivity and the broad scope of reactivity enabled by the redox buffering strategy, makes these C(sp3)-H cross-coupling methods ideally suited for implementation in high-throughput experimentation platforms to explore novel chemical space for drug discovery and related applications.

4.
J Am Chem Soc ; 145(36): 19832-19839, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37642292

RESUMEN

Site-selective radical reactions of benzylic C-H bonds are now highly effective methods for C(sp3-H) functionalization and cross-coupling. The existing methods, however, are often ineffective with heterobenzylic C-H bonds in alkyl-substituted pyridines and related aromatic heterocycles that are prominently featured in pharmaceuticals and agrochemicals. Here, we report new synthetic methods that leverage polar, rather than radical, reaction pathways to enable the selective heterobenzylic C-H chlorination of 2- and 4-alkyl-substituted pyridines and other heterocycles. Catalytic activation of the substrate with trifluoromethanesulfonyl chloride promotes the formation of enamine tautomers that react readily with electrophilic chlorination reagents. The resulting heterobenzyl chlorides can be used without isolation or purification in nucleophilic coupling reactions. This chlorination-diversification sequence provides an efficient strategy to achieve heterobenzylic C-H cross-coupling with aliphatic amines and a diverse collection of azoles, among other coupling partners.

5.
Proc Natl Acad Sci U S A ; 120(29): e2300315120, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37428920

RESUMEN

An emerging trend in small-molecule pharmaceuticals, generally composed of nitrogen heterocycles (N-heterocycles), is the incorporation of aliphatic fragments. Derivatization of the aliphatic fragments to improve drug properties or identify metabolites often requires lengthy de novo syntheses. Cytochrome P450 (CYP450) enzymes are capable of direct site- and chemo-selective oxidation of a broad range of substrates but are not preparative. A chemoinformatic analysis underscored limited structural diversity of N-heterocyclic substrates oxidized using chemical methods relative to pharmaceutical chemical space. Here, we describe a preparative chemical method for direct aliphatic oxidation that tolerates a wide range of nitrogen functionality (chemoselective) and matches the site of oxidation (site-selective) of liver CYP450 enzymes. Commercial small-molecule catalyst Mn(CF3-PDP) selectively effects direct methylene oxidation in compounds bearing 25 distinct heterocycles including 14 out of 27 of the most frequent N-heterocycles found in U.S. Food and Drug Administration (FDA)-approved drugs. Mn(CF3-PDP) oxidations of carbocyclic bioisostere drug candidates (for example, HCV NS5B and COX-2 inhibitors including valdecoxib and celecoxib derivatives) and precursors of antipsychotic drugs blonanserin, buspirone, and tiospirone and the fungicide penconazole are demonstrated to match the major site of aliphatic metabolism obtained with liver microsomes. Oxidations are demonstrated at low Mn(CF3-PDP) loadings (2.5 to 5 mol%) on gram scales of substrate to furnish preparative amounts of oxidized products. A chemoinformatic analysis supports that Mn(CF3-PDP) significantly expands the pharmaceutical chemical space accessible to small-molecule C-H oxidation catalysis.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Hígado , Oxidación-Reducción , Sistema Enzimático del Citocromo P-450/química , Preparaciones Farmacéuticas/química , Catálisis , Microsomas Hepáticos , Nitrógeno
6.
Bioconjug Chem ; 34(3): 510-517, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36787347

RESUMEN

Cysteines are routinely used as site-specific handles to synthesize antibody-drug conjugates for targeted immunotherapy applications. Michael additions between thiols and maleimides are some of the most common methods for modifying cysteines, but these functional groups can be difficult to prepare on scale, and the resulting linkages have been shown to be reversible under some physiological conditions. Here, we show that the enzyme tyrosinase, which oxidizes conveniently accessed phenols to afford reactive ortho-quinone intermediates, can be used to attach phenolic cargo to cysteines engineered on antibody surfaces. The resulting linkages between the thiols and ortho-quinones are shown to be more resistant than maleimides to reversion under physiological conditions. Using this approach, we construct antibody conjugates bearing cytotoxic payloads, which exhibit targeted cell killing, and further demonstrate this method for the attachment of a variety of cargo to antibodies, including fluorophores and oligonucleotides.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Cisteína , Acoplamiento Oxidativo , Compuestos de Sulfhidrilo , Quinonas , Maleimidas
7.
Nat Synth ; 2(10): 998-1008, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38463240

RESUMEN

Pharmaceutical and agrochemical discovery efforts rely on robust methods for chemical synthesis that rapidly access diverse molecules1,2. Cross-coupling reactions are the most widely used synthetic methods3, but these methods typically form bonds to C(sp2)-hybridized carbon atoms (e.g., amide coupling, biaryl coupling) and lead to a prevalence of "flat" molecular structures with suboptimal physicochemical and topological properties4. Benzylic C(sp3)-H cross-coupling methods offer an appealing strategy to address this limitation by directly forming bonds to C(sp3)-hybridized carbon atoms, and emerging methods exhibit synthetic versatility that rivals conventional cross-coupling methods to access products with drug-like properties. Here, we use a virtual library of >350,000 benzylic ethers and ureas derived from benzylic C-H cross-coupling to test the widely held view that coupling at C(sp3)-hybridized carbon atoms affords products with improved three-dimensionality. The results show that the conformational rigidity of the benzylic scaffold strongly influences the product dimensionality. Products derived from flexible scaffolds often exhibit little or no improvement in three-dimensionality, unless they adopt higher energy conformations. This outcome introduces an important consideration when designing routes to topologically diverse molecular libraries. The concepts elaborated herein are validated experimentally through an informatics-guided synthesis of selected targets and the use of high-throughput experimentation to prepare a library of three-dimensional products that are broadly distributed across drug-like chemical space.

8.
Science ; 376(6592): 532-539, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35482871

RESUMEN

Reaction generality is crucial in determining the overall impact and usefulness of synthetic methods. Typical generalization protocols require a priori mechanistic understanding and suffer when applied to complex, less understood systems. We developed an additive mapping approach that rapidly expands the utility of synthetic methods while generating concurrent mechanistic insight. Validation of this approach on the metallaphotoredox decarboxylative arylation resulted in the discovery of a phthalimide ligand additive that overcomes many lingering limitations of this reaction and has important mechanistic implications for nickel-catalyzed cross-couplings.

9.
Org Lett ; 23(20): 7927-7932, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34613744

RESUMEN

The utilization of isolated Palladium Oxidative Addition Complexes (OACs) has had a significant impact on Pd-catalyzed and Pd-mediated cross-coupling reactions. Despite their importance, widespread utility of OACs has been limited by the instability of their precursor complexes. Herein, we report the use of Cámpora's palladacycle as a new, more stable precursor to Pd OACs. Using this palladacycle, a series of biarylphosphine ligated OACs, including those with pharmaceutical-derived aryl halides and relevance to bioconjugation, were prepared.


Asunto(s)
Metalocenos/química , Paladio/química , Catálisis , Estructura Molecular , Oxidación-Reducción
10.
Chem Sci ; 12(30): 10380-10387, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34377424

RESUMEN

C(sp3)-H functionalization methods provide an ideal synthetic platform for medicinal chemistry; however, such methods are often constrained by practical limitations. The present study outlines a C(sp3)-H isocyanation protocol that enables the synthesis of diverse, pharmaceutically relevant benzylic ureas in high-throughput format. The operationally simple C-H isocyanation method shows high site selectivity and good functional group tolerance, and uses commercially available catalyst components and reagents [CuOAc, 2,2'-bis(oxazoline) ligand, (trimethylsilyl)isocyanate, and N-fluorobenzenesulfonimide]. The isocyanate products may be used without isolation or purification in a subsequent coupling step with primary and secondary amines to afford hundreds of diverse ureas. These results provide a template for implementation of C-H functionalization/cross-coupling in drug discovery.

11.
J Am Chem Soc ; 143(36): 14438-14444, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34464528

RESUMEN

Azoles are important motifs in medicinal chemistry, and elaboration of their structures via direct N-H/C-H coupling could have broad utility in drug discovery. The ambident reactivity of many azoles, however, presents significant selectivity challenges. Here, we report a copper-catalyzed method that achieves site-selective cross-coupling of pyrazoles and other N-H heterocycles with substrates bearing (hetero)benzylic C-H bonds. Excellent N-site selectivity is achieved, with the preferred site controlled by the identity of co-catalytic additives. This cross-coupling strategy features broad scope for both the N-H heterocycle and benzylic C-H coupling partners, enabling application of this method to complex molecule synthesis and medicinal chemistry.


Asunto(s)
Azoles/síntesis química , Compuestos de Bencilo/química , Catálisis , Cobre/química , Indanos/química , Estructura Molecular , Oxidantes/química , Oxidación-Reducción , Sulfonamidas/química
12.
Org Lett ; 23(15): 6030-6034, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34319123

RESUMEN

Palladium oxidative addition complexes (OACs) have recently emerged as useful tools to enable challenging bond connections. However, each OAC can only be formed with one dative ligand at a time. As no one ligand is optimal for every cross-coupling reaction, we herein disclose a ligand exchange protocol for the preparation of a series of OACs bearing a variety of ancillary ligands from one common complex. These complexes were further applied to cross-coupling transformations.


Asunto(s)
Oxidación-Reducción , Paladio/química , Catálisis , Ligandos , Estructura Molecular
13.
Science ; 372(6540): 398-403, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33888639

RESUMEN

The "magic methyl" effect describes the change in potency, selectivity, and/or metabolic stability of a drug candidate associated with addition of a single methyl group. We report a synthetic method that enables direct methylation of C(sp3)-H bonds in diverse drug-like molecules and pharmaceutical building blocks. Visible light-initiated triplet energy transfer promotes homolysis of the O-O bond in di-tert-butyl or dicumyl peroxide under mild conditions. The resulting alkoxyl radicals undergo divergent reactivity, either hydrogen-atom transfer from a substrate C-H bond or generation of a methyl radical via ß-methyl scission. The relative rates of these steps may be tuned by varying the reaction conditions or peroxide substituents to optimize the yield of methylated product arising from nickel-mediated cross-coupling of substrate and methyl radicals.


Asunto(s)
Compuestos de Bencilo/química , Carbono/química , Radicales Libres/química , Hidrógeno/química , Níquel/química , Peróxidos/química , Transferencia de Energía , Enlace de Hidrógeno , Luz , Metilación , Oxígeno/química
14.
Acc Chem Res ; 54(7): 1586-1596, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33723992

RESUMEN

The synthetic chemistry literature traditionally reports the scope of new methods using simple, nonstandardized test molecules that have uncertain relevance in applied synthesis. In addition, published examples heavily favor positive reaction outcomes, and failure is rarely documented. In this environment, synthetic practitioners have inadequate information to know whether any given method is suitable for the task at hand. Moreover, the incomplete nature of published data makes it poorly suited for the creation of predictive reactivity models via machine learning approaches. In 2016, we reported the concept of chemistry informer libraries as standardized sets of medium- to high-complexity substrates with relevance to pharmaceutical synthesis as demonstrated using a multidimensional principle component analysis (PCA) comparison to the physicochemical properties of marketed drugs. We showed how informer libraries could be used to evaluate leading synthetic methods with the complete capture of success and failure and how this knowledge could lead to improved reaction conditions with a broader scope with respect to relevant applications. In this Account, we describe the progress made and lessons learned in subsequent studies using informer libraries to profile eight additional reaction classes. Examining broad trends across multiple types of bond disconnections against a standardized chemistry "measuring stick" has enabled comparisons of the relative potential of different methods for applications in complex synthesis and has identified opportunities for further development. Furthermore, the powerful combination of informer libraries and 1536-well-plate nanoscale reaction screening has allowed the parallel evaluation of scores of synthetic methods in the same experiment and as such illuminated an important role for informers as part of a larger data generation workflow for predictive reactivity modeling. Using informer libraries as problem-dense, strong filters has allowed broad sets of reaction conditions to be narrowed down to those that display the highest tolerance to complex substrates. These best conditions can then be used to survey broad swaths of substrate space using nanoscale chemistry approaches. Our experiences and those of our collaborators from several academic laboratories applying informer libraries in these contexts have helped us identify several areas for potential improvements to the approach that would increase their ease of use, utility in generating interpretable results, and resulting uptake by the broader community. As we continue to evolve the informer library concept, we believe it will play an ever-increasing role in the future of the democratization of high-throughput experimentation and data science-driven synthetic method development.

15.
ACS Med Chem Lett ; 12(3): 337-342, 2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33738059

RESUMEN

An integrated workflow has been established that enables the synthesis, purification, and subsequent biological testing of compound libraries on a microgram scale. This approach utilizes mass directed preparative HPLC in conjunction with charged aerosol detection (CAD) to generate solutions of investigational compounds at high purity and standardized concentrations, facilitating high fidelity biological testing. This new workflow successfully delivered libraries of histone deacetylase (HDAC) inhibitors that afforded biological data consistent with that obtained from standard scale parallel medicinal chemistry techniques. The advantages of this new approach to library synthesis include greatly reduced material requirements and amenability to high-throughput experimentation.

16.
J Org Chem ; 85(14): 9424-9433, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32614587

RESUMEN

Herein we report a Cu-catalyzed, site-selective functionalization of peptides that employs an aspartic acid (Asp) as a native directing motif, which directs the site of O-arylation at a proximal tyrosine (Tyr) residue. Through a series of competition studies conducted in high-throughput reaction arrays, effective conditions were identified that gave high selectivity for the proximal Tyr in Asp-directed Tyr modification. Good levels of site-selectivity were achieved in the O-arylation at a proximal Tyr residue in a number of cases, including a peptide-small molecule hybrid.


Asunto(s)
Ácido Aspártico , Tirosina , Secuencia de Aminoácidos , Péptidos
17.
Nat Catal ; 3(4): 358-367, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32368720

RESUMEN

Cross-coupling reactions enable rapid, convergent synthesis of diverse molecules and provide the foundation for modern chemical synthesis. The most widely used methods employ sp2-hybridized coupling partners, such as aryl halides or related pre-functionalized substrates. Here, we demonstrate copper-catalysed oxidative cross coupling of benzylic C-H bonds with alcohols to afford benzyl ethers, enabled by a redox-buffering strategy that maintains the activity of the copper catalyst throughout the reaction. The reactions employ the C-H substrate as the limiting reagent and exhibit broad scope with respect to both coupling partners. This approach to direct site-selective functionalization of C(sp3)-H bonds provides the basis for efficient three-dimensional diversification of organic molecules and should find widespread utility in organic synthesis, particularly for medicinal chemistry applications.

18.
Org Biomol Chem ; 18(10): 1881-1885, 2020 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-32100807

RESUMEN

A convenient two-step method is reported for the ligation of alkoxyamine- or hydrazine-bearing cargo to proline N-termini. Using this approach, bifunctional proline N-terminal bioconjugates are constructed and proline N-terminal proteins are immobilized.


Asunto(s)
Aminas/química , Hidrazinas/química , Prolina/química , Proteínas/síntesis química , Hidrazonas/síntesis química , Cetonas/síntesis química , Oxidación-Reducción , Oximas/síntesis química , Pyrococcus furiosus/química , Virus del Mosaico del Tabaco/química
19.
Bioconjug Chem ; 30(4): 1127-1132, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30946565

RESUMEN

A synthetic method to access novel azido-insulin analogs directly from recombinant human insulin (RHI) was developed via diazo-transfer chemistry using imidazole-1-sulfonyl azide. Systematic optimization of reaction conditions led to site-selective azidation of amino acids B1-phenylalanine and B29-lysine present in RHI. Subsequently, the azido-insulin analogs were used in azide-alkyne [3 + 2] cycloaddition reactions to synthesize a diverse array of triazole-based RHI bioconjugates that were found to be potent human insulin receptor binders. The utility of this method was further demonstrated by the concise and controlled synthesis of a heterotrisubstituted insulin conjugate.


Asunto(s)
Azidas/síntesis química , Insulina/química , Secuencia de Aminoácidos , Aminoácidos/química , Azidas/química , Reacción de Cicloadición , Humanos , Proteínas Recombinantes/química , Triazoles/química
20.
J Am Chem Soc ; 141(9): 3885-3892, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30726077

RESUMEN

A convenient enzymatic strategy is reported for the modification of proline residues in the N-terminal positions of proteins. Using a tyrosinase enzyme isolated from Agaricus bisporus (abTYR), phenols and catechols are oxidized to highly reactive o-quinone intermediates that then couple to N-terminal proline residues in high yield. Key advantages of this bioconjugation method include (1) the use of air-stable precursors that can be prepared on large scale if needed, (2) mild reaction conditions, including low temperatures, (3) the targeting of native functional groups that can be introduced readily on most proteins, and (4) the use of molecular oxygen as the sole oxidant. This coupling strategy was successfully demonstrated for the attachment of a variety of phenol-derivatized cargo molecules to a series of protein substrates, including self-assembled viral capsids, enzymes, and a chitin binding domain (CBD). The ability of the CBD to bind to the surfaces of yeast cells was found to be unperturbed by this modification reaction.


Asunto(s)
Monofenol Monooxigenasa/metabolismo , Fenoles/metabolismo , Prolina/metabolismo , Quinonas/metabolismo , Agaricus/enzimología , Modelos Moleculares , Estructura Molecular , Monofenol Monooxigenasa/química , Monofenol Monooxigenasa/aislamiento & purificación , Fenoles/química , Prolina/química , Quinonas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...