Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Food ; 4(12): 1037-1046, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37945784

RESUMEN

The industrialization of agriculture has led to an increasing dependence on non-locally sourced agricultural inputs. Hence, shocks in the availability of agricultural inputs can be devastating to food crop production. There is also a pressure to decrease the use of synthetic fertilizers and pesticides in many areas. However, the combined impact of the agricultural input shocks on crop yields has not yet been systematically assessed globally. Here we modelled the effects of agricultural input shocks using a random forest machine learning algorithm. We show that shocks in fertilizers cause the most drastic yield losses. Under the scenario of 50% shock in all studied agricultural inputs, global maize production could decrease up to 26%, and global wheat production up to 21%, impacting particularly the high-yielding 'breadbasket' areas of the world. Our study provides insights into global food system resilience and can be useful for preparing for potential future shocks or agricultural input availability decreases at local and global scales.


Asunto(s)
Fertilizantes , Plaguicidas , Productos Agrícolas , Agricultura , Producción de Cultivos
2.
Nat Hum Behav ; 7(11): 2023-2037, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37679443

RESUMEN

Despite being a topical issue in public debate and on the political agenda for many countries, a global-scale, high-resolution quantification of migration and its major drivers for the recent decades remained missing. We created a global dataset of annual net migration between 2000 and 2019 (~10 km grid, covering the areas of 216 countries or sovereign states), based on reported and downscaled subnational birth (2,555 administrative units) and death (2,067 administrative units) rates. We show that, globally, around 50% of the world's urban population lived in areas where migration accelerated urban population growth, while a third of the global population lived in provinces where rural areas experienced positive net migration. Finally, we show that, globally, socioeconomic factors are more strongly associated with migration patterns than climatic factors. While our method is dependent on census data, incurring notable uncertainties in regions where census data coverage or quality is low, we were able to capture migration patterns not only between but also within countries, as well as by socioeconomic and geophysical zonings. Our results highlight the importance of subnational analysis of migration-a necessity for policy design, international cooperation and shared responsibility for managing internal and international migration.


Asunto(s)
Emigración e Inmigración , Migración Humana , Humanos , Dinámica Poblacional , Factores Socioeconómicos , Población Urbana
3.
Sci Adv ; 9(37): eadh2458, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37703365

RESUMEN

This planetary boundaries framework update finds that six of the nine boundaries are transgressed, suggesting that Earth is now well outside of the safe operating space for humanity. Ocean acidification is close to being breached, while aerosol loading regionally exceeds the boundary. Stratospheric ozone levels have slightly recovered. The transgression level has increased for all boundaries earlier identified as overstepped. As primary production drives Earth system biosphere functions, human appropriation of net primary production is proposed as a control variable for functional biosphere integrity. This boundary is also transgressed. Earth system modeling of different levels of the transgression of the climate and land system change boundaries illustrates that these anthropogenic impacts on Earth system must be considered in a systemic context.

4.
New Phytol ; 240(2): 502-514, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37227127

RESUMEN

The distribution of roots throughout the soil drives depth-dependent plant-soil interactions and ecosystem processes, particularly in arctic tundra where plant biomass, is predominantly belowground. Vegetation is usually classified from aboveground, but it is unclear whether such classifications are suitable to estimate belowground attributes and their consequences, such as rooting depth distribution and its influence on carbon cycling. We performed a meta-analysis of 55 published arctic rooting depth profiles, testing for differences both between distributions based on aboveground vegetation types (Graminoid, Wetland, Erect-shrub, and Prostrate-shrub tundra) and between 'Root Profile Types' for which we defined three representative and contrasting clusters. We further analyzed potential impacts of these different rooting depth distributions on rhizosphere priming-induced carbon losses from tundra soils. Rooting depth distribution hardly differed between aboveground vegetation types but varied between Root Profile Types. Accordingly, modelled priming-induced carbon emissions were similar between aboveground vegetation types when they were applied to the entire tundra, but ranged from 7.2 to 17.6 Pg C cumulative emissions until 2100 between individual Root Profile Types. Variations in rooting depth distribution are important for the circumpolar tundra carbon-climate feedback but can currently not be inferred adequately from aboveground vegetation type classifications.


Asunto(s)
Carbono , Ecosistema , Tundra , Regiones Árticas , Suelo
5.
Nat Food ; 4(4): 279, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37117547
6.
Sci Rep ; 13(1): 3583, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869041

RESUMEN

Although extreme weather events recur periodically everywhere, the impacts of their simultaneous occurrence on crop yields are globally unknown. In this study, we estimate the impacts of combined hot and dry extremes as well as cold and wet extremes on maize, rice, soybean, and wheat yields using gridded weather data and reported crop yield data at the global scale for 1980-2009. Our results show that co-occurring extremely hot and dry events have globally consistent negative effects on the yields of all inspected crop types. Extremely cold and wet conditions were observed to reduce crop yields globally too, although to a lesser extent and the impacts being more uncertain and inconsistent. Critically, we found that over the study period, the probability of co-occurring extreme hot and dry events during the growing season increased across all inspected crop types; wheat showing the largest, up to a six-fold, increase. Hence, our study highlights the potentially detrimental impacts that increasing climate variability can have on global food production.


Asunto(s)
Clima , Tiempo (Meteorología) , Estaciones del Año , Probabilidad , Frío , Triticum
7.
Earths Future ; 10(9): e2021EF002420, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36583138

RESUMEN

High crop yield variation between years-caused by extreme shocks on the food production system such as extreme weather-can have substantial effects on food production. This in turn introduces vulnerabilities into the global food system. To mitigate the effects of these shocks, there is a clear need to understand how different adaptive capacity measures link to crop yield variability. While existing literature provides many local-scale studies on this linkage, no comprehensive global assessment yet exists. We assessed reported crop yield variation for wheat, maize, soybean, and rice for the time period 1981-2009 by measuring both yield loss risk (variation in negative yield anomalies considering all years) and changes in yields during "dry" shock and "hot" shock years. We used the machine learning algorithm XGBoost to assess the explanatory power of selected gridded indicators of anthropogenic factors globally (i.e., adaptive capacity measures such as the human development index, irrigation infrastructure, and fertilizer use) on yield variation at a 0.5° resolution within climatically similar regions (to rule out the role of average climate conditions). We found that the anthropogenic factors explained 40%-60% of yield loss risk variation across the whole time period, whereas the factors provided noticeably lower (5%-20%) explanatory power during shock years. On a continental scale, especially in Europe and Africa, the factors explained a high proportion of the yield loss risk variation (up to around 80%). Assessing crop production vulnerabilities on global scale provides supporting knowledge to target specific adaptation measures, thus contributing to global food security.

8.
Glob Chang Biol ; 28(12): 3902-3919, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35320616

RESUMEN

Although the role of livestock in future food systems is debated, animal proteins are unlikely to completely disappear from our diet. Grasslands are a key source of primary productivity for livestock, and feed-food competition is often limited on such land. Previous research on the potential for sustainable grazing has focused on restricted geographical areas or does not consider inter-annual changes in grazing opportunities. Here, we developed a robust method to estimate trends and interannual variability (IV) in global livestock carrying capacity (number of grazing animals a piece of land can support) over 2001-2015, as well as relative stocking density (the reported livestock distribution relative to the estimated carrying capacity [CC]) in 2010. We first estimated the aboveground biomass that is available for grazers on global grasslands based on the MODIS Net Primary Production product. This was then used to calculate livestock carrying capacities using slopes, forest cover, and animal forage requirements as restrictions. We found that globally, CC decreased on 27% of total grasslands area, mostly in Europe and southeastern Brazil, while it increased on 15% of grasslands, particularly in Sudano-Sahel and some parts of South America. In 2010, livestock forage requirements exceeded forage availability in northwestern Europe, and southern and eastern Asia. Although our findings imply some opportunities to increase grazing pressures in cold regions, Central Africa, and Australia, the high IV or low biomass supply might prevent considerable increases in stocking densities. The approach and derived open access data sets can feed into global food system modelling, support conservation efforts to reduce land degradation associated with overgrazing, and help identify undergrazed areas for targeted sustainable intensification efforts or rewilding purposes.


Asunto(s)
Conservación de los Recursos Naturales , Ganado , Animales , Biomasa , Brasil , Pradera
9.
Nat Commun ; 13(1): 439, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35064140

RESUMEN

Humans and ecosystems are deeply connected to, and through, the hydrological cycle. However, impacts of hydrological change on social and ecological systems are infrequently evaluated together at the global scale. Here, we focus on the potential for social and ecological impacts from freshwater stress and storage loss. We find basins with existing freshwater stress are drying (losing storage) disproportionately, exacerbating the challenges facing the water stressed versus non-stressed basins of the world. We map the global gradient in social-ecological vulnerability to freshwater stress and storage loss and identify hotspot basins for prioritization (n = 168). These most-vulnerable basins encompass over 1.5 billion people, 17% of global food crop production, 13% of global gross domestic product, and hundreds of significant wetlands. There are thus substantial social and ecological benefits to reducing vulnerability in hotspot basins, which can be achieved through hydro-diplomacy, social adaptive capacity building, and integrated water resources management practices.

10.
Nat Food ; 3(9): 729-740, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-37118146

RESUMEN

Many livestock and aquaculture feeds compete for resources with food production. Increasing the use of food system by-products and residues as feed could reduce this competition. We gathered data on global food system material flows for crop, livestock and aquaculture production, focusing on feed use and the availability of by-products and residues. We then analysed the potential of replacing food-competing feedstuff-here cereals, whole fish, vegetable oils and pulses that account for 15% of total feed use-with food system by-products and residues. Considering the nutritional requirements of food-producing animals, including farmed aquatic species, this replacement could increase the current global food supply by up to 13% (10-16%) in terms of kcal and 15% (12-19%) in terms of protein content. Increasing the use of food system by-products as feed has considerable potential, particularly when combined with other measures, in the much-needed transition towards circular food systems.

11.
One Earth ; 4(5): 720-729, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34056573

RESUMEN

Food production on our planet is dominantly based on agricultural practices developed during stable Holocene climatic conditions. Although it is widely accepted that climate change perturbs these conditions, no systematic understanding exists on where and how the major risks for entering unprecedented conditions may occur. Here, we address this gap by introducing the concept of safe climatic space (SCS), which incorporates the decisive climatic factors of agricultural production: precipitation, temperature, and aridity. We show that a rapid and unhalted growth of greenhouse gas emissions (SSP5-8.5) could force 31% of the global food crop and 34% of livestock production beyond the SCS by 2081-2100. The most vulnerable areas are South and Southeast Asia and Africa's Sudano-Sahelian Zone, which have low resilience to cope with these changes. Our results underpin the importance of committing to a low-emissions scenario (SSP1-2.6), whereupon the extent of food production facing unprecedented conditions would be a fraction.

12.
Earth Space Sci ; 8(12): e2021EA001873, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35864915

RESUMEN

Throughout Indonesia ecological degradation, agricultural expansion, and the digging of drainage canals has compromised the integrity and functioning of peatland forests. Fragmented landscapes of scrubland, cultivation, degraded forest, and newly established plantations are then susceptible to extensive fires that recur each year. However, a comprehensive understanding of all the drivers of fire distribution and the conditions of initiation is still absent. Here we show the first analysis in the region that encompasses a wide range of driving factors within a single model that captures the inter-annual variation, as well as the spatial distribution of peatland fires. We developed a fire susceptibility model using machine learning (XGBoost random forest) that characterizes the relationships between key predictor variables and the distribution of historic fire locations. We then determined the relative importance of each predictor variable in controlling the initiation and spread of fires. The model included land-cover classifications, a forest clearance index, vegetation indices, drought indices, distances to infrastructure, topography, and peat depth, as well as the Oceanic Niño Index (ONI). The model performance consistently scores highly in both accuracy and precision across all years (>75% and >67.5% respectively), though recall metrics are much lower (>25%). Our results confirm the anthropogenic dependence of extreme fires in the region, with distance to settlements and distance to canals consistently weighted the most important driving factors within the model structure. Our results may help target the root causes of fire initiation and propagation to better construct regulation and rehabilitation efforts to mitigate future fires.

13.
Nat Food ; 2(1): 11-14, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37117657

RESUMEN

Global food security is threatened by the effects of COVID-19 on international agricultural supply chains and locusts destroying crops and livelihoods in the Horn of Africa and South Asia. We quantify the possible impacts on global supplies and prices of wheat, rice and maize. We show that local production declines have moderate impacts on global prices and supply-but trade restrictions and precautionary purchases by a few key actors could create global food price spikes and severe local food shortages.

14.
Sci Total Environ ; 742: 140596, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33167297

RESUMEN

The annual flood pulse of the Mekong River is crucial to sustain agriculture production, nutrition, and the livelihood of millions of people living in the Vietnamese part of the Mekong Delta (VMD). However, climate change impacts on precipitation, temperature and sea-level combined with land subsidence, upstream hydropower development, and water infrastructures (i.e. high-dykes construction) are altering the hydrological regime of the VMD. This study investigates future changes in flood hazard and agricultural production caused by these different scales of human-induced stresses. A quasi- two-dimensional (quasi-2D) hydrodynamic model was used to simulate eight scenarios representing the individual and compound impacts of these drivers for a baseline (1971-2000) and future (2036-2065) period. The scenarios map the most likely future pathway of climate change (RCP 4.5) combined with the best available Mekong upstream hydropower development, and land subsidence scenarios as well as the current delta development plan. We found that sea-level rise and land subsidence would cause the highest changes in flood hazard and damage to rice crop, followed by hydropower and climate change impacts. Expansion of high-dyke areas in two northernmost delta provinces (An Giang and Dong Thap) would have the smallest impact. The combination of all modelled drivers is projected to increase delta inundation extent by 20%, accompanied with prolonging submergence of 1-2 months, and 2-3 times increase in annual flood damage to rice crops in the flood-prone areas of the VMD. These findings of likely increasing risk of tidal induced flood hazard and damage call for well-planned adaptation and mitigation measures, both structural and non-structural.

15.
Earths Future ; 8(7): e2019EF001321, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32728594

RESUMEN

Various transboundary river basins are facing increased pressure on water resources in near future. However, little is known ab out the future drivers globally, namely, changes in natural local runoff and natural inflows from upstream parts of a basin, as well as local and upstream water consumption. Here we use an ensemble of four global hydrological models forced by five global climate models and the latest greenhouse-gas concentration (RCP) and socioeconomic pathway (SSP) scenarios to assess the impact of these drivers on transboundary water stress in the past and future. Our results show that population under water stress is expected to increase by 50% under a low population growth and emissions scenario (SSP1-RCP2.6) and double under a high population growth and emission scenario (SSP3-RCP6.0), compared to the year 2010. As changes in water availability have a smaller effect when water is not yet scarce, changes in water stress globally are dominated by local water consumption-managing local demand is thus necessary in order to avoid future stress. Focusing then on the role of upstream changes, we identified upstream availability (i.e., less natural runoff or increased water consumption) as the dominant driver of changes in net water availability in most downstream areas. Moreover, an increased number of people will be living in areas dependent on upstream originating water in 2050. International water treaties and management will therefore have an increasingly crucial role in these hot spot regions to ensure fair management of transboundary water resources.

16.
Earths Future ; 8(2): e2019EF001377, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32715010

RESUMEN

The planetary boundaries framework defines the "safe operating space for humanity" represented by nine global processes that can destabilize the Earth System if perturbed. The water planetary boundary attempts to provide a global limit to anthropogenic water cycle modifications, but it has been challenging to translate and apply it to the regional and local scales at which water problems and management typically occur. We develop a cross-scale approach by which the water planetary boundary could guide sustainable water management and governance at subglobal contexts defined by physical features (e.g., watershed or aquifer), political borders (e.g., city, nation, or group of nations), or commercial entities (e.g., corporation, trade group, or financial institution). The application of the water planetary boundary at these subglobal contexts occurs via two approaches: (i) calculating fair shares, in which local water cycle modifications are compared to that context's allocation of the global safe operating space, taking into account biophysical, socioeconomic, and ethical considerations; and (ii) defining a local safe operating space, in which interactions between water stores and Earth System components are used to define local boundaries required for sustaining the local water system in stable conditions, which we demonstrate with a case study of the Cienaga Grande de Santa Marta wetlands in Colombia. By harmonizing these two approaches, the water planetary boundary can ensure that water cycle modifications remain within both local and global boundaries and complement existing water management and governance approaches.

17.
Sci Total Environ ; 730: 139096, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32388110

RESUMEN

Various environmental challenges are rapidly threatening ecosystems and societies globally. Major interventions and a strategic approach are required to minimize harm and to avoid reaching catastrophic tipping points. Setting evidence-based priorities aids maximizing the impact of the limited resources available for environmental interventions. Focusing on protecting both food security and biodiversity, international experts prioritized major environmental challenges for intervention based on three comprehensive criteria - importance, neglect, and tractability. The top priorities differ between food security and biodiversity. For food security, the top priorities are pollinator loss, soil compaction, and nutrient depletion, and for biodiversity conservation, ocean acidification and land and sea use (especially habitat degradation) are the main concerns. While climate change might be the most pressing environmental challenge and mitigation is clearly off-track, other issues rank higher because of climate change's high attention in research. Research and policy agendas do not yet consistently cover these priorities. Thus, a shift in attention towards the high-priority environmental challenges, identified here, is needed to increase the effectiveness of global environmental protection.


Asunto(s)
Abastecimiento de Alimentos , Biodiversidad , Cambio Climático , Conservación de los Recursos Naturales , Concentración de Iones de Hidrógeno , Agua de Mar
18.
Earths Future ; 7(10): 1118-1135, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31894201

RESUMEN

Freshwater is one of the most critical elements for sustainable development of ecosystems and societies. River basins, concomitant with administrative zones, form a common unit for freshwater management. So far, no comprehensive, global analysis exists that would link the ecological challenges of the planet's river basins to the capacity of the societies to cope with them. We address this gap by performing a geospatial resilience analysis for a global set of 541 river basins. We use the social-ecological systems approach by relating three ecological vulnerability factors (human footprint, natural hazards, and water scarcity) with three adaptive capacity factors (governance, economy, and human development), based on temporal trajectories from 1990 to 2015. Additionally, we examine resilience by subtracting ecological vulnerability from adaptive capacity. The most striking result is the fundamentally different patterns of controlling factors of the resilience in different developing regions, particularly those of Africa and Asia. Their root causes are particularly low adaptive capacity in Africa and high ecological vulnerability in Asia. Alarmingly, the difference between those continents grew within the study period. Finally, this study highlights the rapid dynamics of adaptive capacity in comparison to ecological vulnerability, the latter having more inertia. Their fragile balance is of our interest; they can either support or counteract each other depending on the geographic location.

19.
Sci Total Environ ; 649: 601-609, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30176471

RESUMEN

The river flow regime and water resources are highly important for economic growths, flood security, and ecosystem dynamics in the Mekong basin - an important transboundary river basin in South East Asia. The river flow, although remains relatively unregulated, is expected to be increasingly perturbed by climate change and rapidly accelerating socioeconomic developments. Current understanding about hydrological changes under the combined impacts of these drivers, however, remains limited. This study presents projected hydrological changes caused by multiple drivers, namely climate change, large-scale hydropower developments, and irrigated land expansions by 2050s. We found that the future flow regime is highly susceptible to all considered drivers, shown by substantial changes in both annual and seasonal flow distribution. While hydropower developments exhibit limited impacts on annual total flows, climate change and irrigation expansions cause changes of +15% and -3% in annual flows, respectively. However, hydropower developments show the largest seasonal impacts characterized by higher dry season flows (up to +70%) and lower wet season flows (-15%). These strong seasonal impacts tend to outplay those of the other drivers, resulting in the overall hydrological change pattern of strong increases of the dry season flow (up to +160%); flow reduction in the first half of the wet season (up to -25%); and slight flow increase in the second half of the wet season (up to 40%). Furthermore, the cumulative impacts of all drivers cause substantial flow reductions during the early wet season (up to -25% in July), posing challenges for crop production and saltwater intrusion in the downstream Mekong Delta. Substantial flow changes and their consequences require careful considerations of future development activities, as well as timely adaptation to future changes.

20.
Sci Total Environ ; 633: 1591-1601, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-29758909

RESUMEN

Global food trade entails virtual flows of agricultural resources and pollution across countries. Here we performed a global-scale assessment of impacts of international food trade on blue water use, total water use, and nitrogen (N) inputs and on N losses in maize, rice, and wheat production. We simulated baseline conditions for the year 2000 and explored the impacts of an agricultural intensification scenario, in which low-input countries increase N and irrigation inputs to a greater extent than high-input countries. We combined a crop model with the Global Trade Analysis Project model. Results show that food exports generally occurred from regions with lower water and N use intensities, defined here as water and N uses in relation to crop yields, to regions with higher resources use intensities. Globally, food trade thus conserved a large amount of water resources and N applications, and also substantially reduced N losses. The trade-related conservation in blue water use reached 85km3y-1, accounting for more than half of total blue water use for producing the three crops. Food exported from the USA contributed the largest proportion of global water and N conservation as well as N loss reduction, but also led to substantial export-associated N losses in the country itself. Under the intensification scenario, the converging water and N use intensities across countries result in a more balanced world; crop trade will generally decrease, and global water resources conservation and N pollution reduction associated with the trade will reduce accordingly. The study provides useful information to understand the implications of agricultural intensification for international crop trade, crop water use and N pollution patterns in the world.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...