Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 5225, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33067434

RESUMEN

Patients with type 2 diabetes (T2D) have a lower risk of Mycobacterium tuberculosis infection, progression from infection to tuberculosis (TB) disease, TB morality and TB recurrence, when being treated with metformin. However, a detailed mechanistic understanding of these protective effects is lacking. Here, we use mass cytometry to show that metformin treatment expands a population of memory-like antigen-inexperienced CD8+CXCR3+ T cells in naive mice, and in healthy individuals and patients with T2D. Metformin-educated CD8+ T cells have increased (i) mitochondrial mass, oxidative phosphorylation, and fatty acid oxidation; (ii) survival capacity; and (iii) anti-mycobacterial properties. CD8+ T cells from Cxcr3-/- mice do not exhibit this metformin-mediated metabolic programming. In BCG-vaccinated mice and guinea pigs, metformin enhances immunogenicity and protective efficacy against M. tuberculosis challenge. Collectively, these results demonstrate an important function of CD8+ T cells in metformin-derived host metabolic-fitness towards M. tuberculosis infection.


Asunto(s)
Linfocitos T CD8-positivos/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/administración & dosificación , Metformina/administración & dosificación , Animales , Vacuna BCG/administración & dosificación , Vacuna BCG/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/inmunología , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Cobayas , Humanos , Masculino , Ratones , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/fisiología , Tuberculosis/etiología , Tuberculosis/inmunología , Tuberculosis/microbiología , Tuberculosis/prevención & control
3.
J Mol Med (Berl) ; 98(6): 819-831, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32350546

RESUMEN

Stimulation of monocytes with microbial and non-microbial products, including oxidized low-density lipoprotein (oxLDL), induces a protracted pro-inflammatory, atherogenic phenotype sustained by metabolic and epigenetic reprogramming via a process called trained immunity. We investigated the intracellular metabolic mechanisms driving oxLDL-induced trained immunity in human primary monocytes and observed concomitant upregulation of glycolytic activity and oxygen consumption. In two separate cohorts of healthy volunteers, we assessed the impact of genetic variation in glycolytic genes on the training capacity of monocytes and found that variants mapped to glycolytic enzymes PFKFB3 and PFKP influenced trained immunity by oxLDL. Subsequent functional validation with inhibitors of glycolytic metabolism revealed dose-dependent inhibition of trained immunity in vitro. Furthermore, in vivo administration of the glucose metabolism modulator metformin abrogated the ability for human monocytes to mount a trained response to oxLDL. These findings underscore the importance of cellular metabolism for oxLDL-induced trained immunity and highlight potential immunomodulatory strategies for clinical management of atherosclerosis. KEY MESSAGES: Brief stimulation of monocytes to oxLDL induces a prolonged inflammatory phenotype. This is due to upregulation of glycolytic metabolism. Genetic variation in glycolytic genes modulates oxLDL-induced trained immunity. Pharmacological inhibition of glycolysis prevents trained immunity.


Asunto(s)
Inmunidad Adaptativa , Metabolismo Energético , Glucosa/metabolismo , Inmunomodulación , Lipoproteínas LDL/metabolismo , Inmunidad Adaptativa/efectos de los fármacos , Inmunidad Adaptativa/genética , Glucemia , Citocinas/metabolismo , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Regulación Enzimológica de la Expresión Génica , Variación Genética , Glucólisis/genética , Humanos , Mediadores de Inflamación/metabolismo , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Metformina/farmacología , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable
4.
J Infect Dis ; 220(1): 139-150, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-30753544

RESUMEN

BACKGROUND: Metformin, the most widely administered diabetes drug, has been proposed as a candidate adjunctive host-directed therapy for tuberculosis, but little is known about its effects on human host responses to Mycobacterium tuberculosis. METHODS: We investigated in vitro and in vivo effects of metformin in humans. RESULTS: Metformin added to peripheral blood mononuclear cells from healthy volunteers enhanced in vitro cellular metabolism while inhibiting the mammalian target of rapamycin targets p70S6K and 4EBP1, with decreased cytokine production and cellular proliferation and increased phagocytosis activity. Metformin administered to healthy human volunteers led to significant downregulation of genes involved in oxidative phosphorylation, mammalian target of rapamycin signaling, and type I interferon response pathways, particularly following stimulation with M. tuberculosis, and upregulation of genes involved in phagocytosis and reactive oxygen species production was increased. These in vivo effects were accompanied by a metformin-induced shift in myeloid cells from classical to nonclassical monocytes. At a functional level, metformin lowered ex vivo production of tumor necrosis factor α, interferon γ, and interleukin 1ß but increased phagocytosis activity and reactive oxygen species production. CONCLUSION: Metformin has a range of potentially beneficial effects on cellular metabolism, immune function, and gene transcription involved in innate host responses to M. tuberculosis.


Asunto(s)
Interacciones Huésped-Patógeno/efectos de los fármacos , Hipoglucemiantes/farmacología , Metformina/farmacología , Mycobacterium tuberculosis/patogenicidad , Tuberculosis/metabolismo , Tuberculosis/microbiología , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Voluntarios Sanos , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/microbiología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Células Mieloides/efectos de los fármacos , Células Mieloides/metabolismo , Fagocitosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
5.
J Infect Dis ; 219(10): 1662-1670, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-30541099

RESUMEN

BACKGROUND: Rewiring cellular metabolism is important for activation of immune cells during host defense against Mycobacterium tuberculosis. Glutamine has been implicated as an immunomodulatory nutrient, but its role in the response to M. tuberculosis is unknown. METHODS: We assessed expression of glutamine pathway genes in M. tuberculosis-infected macrophages and blood transcriptomic profiles of individuals with latent M. tuberculosis infection or tuberculosis. Subsequently, we studied the effect of blocking glutaminolysis on M. tuberculosis-induced cytokines. Finally, we examined whether polymorphisms in genes involved in the glutamine pathway influence M. tuberculosis-induced cytokines in a cohort of 500 individuals. RESULTS: Glutamine pathway genes were differentially expressed in infected macrophages and patients with tuberculosis. Human peripheral blood mononuclear cells stimulated with M. tuberculosis displayed decreased cytokine (ie, interleukin 1ß, interferon γ, and interleukin 17) responses when medium was devoid of glutamine. Specific inhibitors of the glutamine pathway led to decreased cytokine responses, especially T-cell cytokines (ie, interferon γ, interleukin 17, and interleukin 22). Finally, genetic polymorphisms in glutamine metabolism genes (including GLS2, SLC1A5, and SLC7A5) influenced ex vivo cytokine responses to M. tuberculosis, especially for T-cell cytokines. CONCLUSIONS: Cellular glutamine metabolism is implicated in effective host responses against M. tuberculosis. Targeting immunometabolism may represent new strategies for tuberculosis prevention and/or treatment.


Asunto(s)
Glutamina/metabolismo , Mycobacterium tuberculosis/fisiología , Tuberculosis/inmunología , Células Cultivadas , Citocinas/metabolismo , Perfilación de la Expresión Génica , Humanos , Tuberculosis Latente/inmunología , Tuberculosis Latente/metabolismo , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Macrófagos/metabolismo , Polimorfismo Genético , Tuberculosis/metabolismo
6.
J Infect Dis ; 218(1): 165-170, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29618104

RESUMEN

Cellular metabolism can influence host immune responses to Mycobacterium tuberculosis. Using a systems biology approach, differential expression of 292 metabolic genes involved in glycolysis, glutathione, pyrimidine, and inositol phosphate pathways was evident at the site of a human tuberculin skin test challenge in patients with active tuberculosis infection. For 28 metabolic genes, we identified single nucleotide polymorphisms that were trans-acting for in vitro cytokine responses to M. tuberculosis stimulation, including glutathione and pyrimidine metabolism genes that alter production of Th1 and Th17 cytokines. Our findings identify novel therapeutic targets in host metabolism that may shape protective immunity to tuberculosis.


Asunto(s)
Citocinas/metabolismo , Metabolismo/genética , Mycobacterium tuberculosis/inmunología , Células TH1/metabolismo , Células Th17/metabolismo , Tuberculosis/patología , Adulto , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Biología de Sistemas/métodos , Adulto Joven
7.
Proc Natl Acad Sci U S A ; 115(10): E2320-E2328, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29444855

RESUMEN

Pathogen-induced changes in host cell metabolism are known to be important for the immune response. In this study, we investigated how infection with the Lyme disease-causing bacterium Borrelia burgdorferi (Bb) affects host metabolic pathways and how these metabolic pathways may impact host defense. First, metabolome analysis was performed on human primary monocytes from healthy volunteers, stimulated for 24 h with Bb at low multiplicity of infection (MOI). Pathway analysis indicated that glutathione (GSH) metabolism was the pathway most significantly affected by Bb Specifically, intracellular levels of GSH increased on average 10-fold in response to Bb exposure. Furthermore, these changes were found to be specific, as they were not seen during stimulation with other pathogens. Next, metabolome analysis was performed on serum samples from patients with early-onset Lyme disease in comparison with patients with other infections. Supporting the in vitro analysis, we identified a cluster of GSH-related metabolites, the γ-glutamyl amino acids, specifically altered in patients with Lyme disease, and not in other infections. Lastly, we performed in vitro experiments to validate the role for GSH metabolism in host response against Bb. We found that the GSH pathway is essential for Bb-induced cytokine production and identified glutathionylation as a potential mediating mechanism. Taken together, these data indicate a central role for the GSH pathway in the host response to Bb GSH metabolism and glutathionylation may therefore be important factors in the pathogenesis of Lyme disease and potentially other inflammatory diseases as well.


Asunto(s)
Borrelia burgdorferi/fisiología , Glutatión/metabolismo , Enfermedad de Lyme/metabolismo , Citocinas/genética , Citocinas/metabolismo , Interacciones Huésped-Patógeno , Humanos , Enfermedad de Lyme/genética , Enfermedad de Lyme/microbiología , Monocitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
8.
PLoS Pathog ; 13(9): e1006632, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28922415

RESUMEN

Monocytes are innate immune cells that play a pivotal role in antifungal immunity, but little is known regarding the cellular metabolic events that regulate their function during infection. Using complementary transcriptomic and immunological studies in human primary monocytes, we show that activation of monocytes by Candida albicans yeast and hyphae was accompanied by metabolic rewiring induced through C-type lectin-signaling pathways. We describe that the innate immune responses against Candida yeast are energy-demanding processes that lead to the mobilization of intracellular metabolite pools and require induction of glucose metabolism, oxidative phosphorylation and glutaminolysis, while responses to hyphae primarily rely on glycolysis. Experimental models of systemic candidiasis models validated a central role for glucose metabolism in anti-Candida immunity, as the impairment of glycolysis led to increased susceptibility in mice. Collectively, these data highlight the importance of understanding the complex network of metabolic responses triggered during infections, and unveil new potential targets for therapeutic approaches against fungal diseases.


Asunto(s)
Candidiasis/metabolismo , Glucosa/metabolismo , Inmunidad Innata/inmunología , Lectinas Tipo C/metabolismo , Monocitos/metabolismo , Transducción de Señal , Animales , Glucólisis/efectos de los fármacos , Humanos , Ratones
9.
Cell Rep ; 17(10): 2562-2571, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27926861

RESUMEN

The protective effects of the tuberculosis vaccine Bacillus Calmette-Guerin (BCG) on unrelated infections are thought to be mediated by long-term metabolic changes and chromatin remodeling through histone modifications in innate immune cells such as monocytes, a process termed trained immunity. Here, we show that BCG induction of trained immunity in monocytes is accompanied by a strong increase in glycolysis and, to a lesser extent, glutamine metabolism, both in an in-vitro model and after vaccination of mice and humans. Pharmacological and genetic modulation of rate-limiting glycolysis enzymes inhibits trained immunity, changes that are reflected by the effects on the histone marks (H3K4me3 and H3K9me3) underlying BCG-induced trained immunity. These data demonstrate that a shift of the glucose metabolism toward glycolysis is crucial for the induction of the histone modifications and functional changes underlying BCG-induced trained immunity. The identification of these pathways may be a first step toward vaccines that combine immunological and metabolic stimulation.


Asunto(s)
Vacuna BCG/inmunología , Inmunidad Innata , Memoria Inmunológica/genética , Tuberculosis/inmunología , Animales , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/inmunología , Epigénesis Genética/inmunología , Glucólisis/inmunología , Código de Histonas/genética , Humanos , Ratones , Monocitos/inmunología , Tuberculosis/microbiología , Tuberculosis/prevención & control
10.
Nat Microbiol ; 2: 16246, 2016 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-27991883

RESUMEN

Microbial stimuli such as lipopolysaccharide (LPS) induce robust metabolic rewiring in immune cells known as the Warburg effect. It is unknown whether this increase in glycolysis and decrease in oxidative phosphorylation (OXPHOS) is a general characteristic of monocytes that have encountered a pathogen. Using CD14+ monocytes from healthy donors, we demonstrated that most microbial stimuli increased glycolysis, but that only stimulation of Toll-like receptor (TLR) 4 with LPS led to a decrease in OXPHOS. Instead, activation of other TLRs, such as TLR2 activation by Pam3CysSK4 (P3C), increased oxygen consumption and mitochondrial enzyme activity. Transcriptome and metabolome analysis of monocytes stimulated with P3C versus LPS confirmed the divergent metabolic responses between both stimuli, and revealed significant differences in the tricarboxylic acid cycle, OXPHOS and lipid metabolism pathways following stimulation of monocytes with P3C versus LPS. At a functional level, pharmacological inhibition of complex I of the mitochondrial electron transport chain diminished cytokine production and phagocytosis in P3C- but not LPS-stimulated monocytes. Thus, unlike LPS, complex microbial stimuli and the TLR2 ligand P3C induce a specific pattern of metabolic rewiring that involves upregulation of both glycolysis and OXPHOS, which enables activation of host defence mechanisms such as cytokine production and phagocytosis.

11.
Cell Host Microbe ; 20(6): 822-833, 2016 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-27818078

RESUMEN

Despite the importance of immune variation for the symptoms and outcome of Lyme disease, the factors influencing cytokine production during infection with the causal pathogen Borrelia burgdorferi remain poorly understood. Borrelia infection-induced monocyte- and T cell-derived cytokines were profiled in peripheral blood from two healthy human cohorts of Western Europeans from the Human Functional Genomics Project. Both non-genetic and genetic host factors were found to influence Borrelia-induced cytokine responses. Age strongly impaired IL-22 responses, and genetic studies identified several independent QTLs that impact Borrelia-induced cytokine production. Genetic, transcriptomic, and functional validation studies revealed an important role for HIF-1α-mediated glycolysis in the cytokine response to Borrelia. HIF-1α pathway activation and increase in glycolysis-derived lactate was confirmed in Lyme disease patients. In conclusion, functional genomics approaches reveal the architecture of cytokine production induced by Borrelia infection of human primary leukocytes and suggest a connection between cellular glucose metabolism and Borrelia-induced cytokine production.


Asunto(s)
Borrelia burgdorferi/genética , Borrelia burgdorferi/inmunología , Citocinas/biosíntesis , Genómica , Enfermedad de Lyme/inmunología , Factores de Edad , Animales , Sangre , Borrelia burgdorferi/patogenicidad , Grupo Borrelia Burgdorferi/genética , Grupo Borrelia Burgdorferi/patogenicidad , Línea Celular , Supervivencia Celular , Mapeo Cromosómico , Citocinas/análisis , Citocinas/sangre , ADN Bacteriano , Genoma Bacteriano , Glucosa/metabolismo , Glucólisis , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Interferón gamma , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Interleucinas/metabolismo , Ácido Láctico/metabolismo , Leucocitos , Enfermedad de Lyme/microbiología , Ratones , Monocitos/inmunología , Linfocitos T/inmunología , Transcriptoma , Interleucina-22
12.
Cell Metab ; 24(6): 807-819, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27866838

RESUMEN

Induction of trained immunity (innate immune memory) is mediated by activation of immune and metabolic pathways that result in epigenetic rewiring of cellular functional programs. Through network-level integration of transcriptomics and metabolomics data, we identify glycolysis, glutaminolysis, and the cholesterol synthesis pathway as indispensable for the induction of trained immunity by ß-glucan in monocytes. Accumulation of fumarate, due to glutamine replenishment of the TCA cycle, integrates immune and metabolic circuits to induce monocyte epigenetic reprogramming by inhibiting KDM5 histone demethylases. Furthermore, fumarate itself induced an epigenetic program similar to ß-glucan-induced trained immunity. In line with this, inhibition of glutaminolysis and cholesterol synthesis in mice reduced the induction of trained immunity by ß-glucan. Identification of the metabolic pathways leading to induction of trained immunity contributes to our understanding of innate immune memory and opens new therapeutic avenues.


Asunto(s)
Epigénesis Genética , Fumaratos/metabolismo , Glutamina/metabolismo , Inmunidad Innata/genética , Colesterol/metabolismo , Glucosa/metabolismo , Glucólisis , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Tolerancia Inmunológica , Macrófagos/metabolismo , Modelos Biológicos , Vía de Pentosa Fosfato/genética , Proteolisis
13.
Eur J Immunol ; 46(11): 2574-2586, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27624090

RESUMEN

Cells in homeostasis metabolize glucose mainly through the tricarboxylic acid cycle and oxidative phosphorylation, while activated cells switch their basal metabolism to aerobic glycolysis. In this study, we examined whether metabolic reprogramming toward aerobic glycolysis is important for the host response to Mycobacterium tuberculosis (Mtb). Through transcriptional and metabolite analysis we show that Mtb induces a switch in host cellular metabolism toward aerobic glycolysis in human peripheral blood mononuclear cells (PBMCs). The metabolic switch is TLR2 dependent but NOD2 independent, and is mediated in part through activation of the AKT-mTOR (mammalian target of rapamycin) pathway. We show that pharmacological inhibition of the AKT/mTOR pathway inhibits cellular responses to Mtb both in vitro in human PBMCs, and in vivo in a model of murine tuberculosis. Our findings reveal a novel regulatory layer of host responses to Mtb that will aid understanding of host susceptibility to Mtb, and which may be exploited for host-directed therapy.


Asunto(s)
Glucólisis , Leucocitos Mononucleares/metabolismo , Mycobacterium tuberculosis/inmunología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Antibacterianos/farmacología , Perfilación de la Expresión Génica , Glucosa/metabolismo , Glucólisis/genética , Interacciones Huésped-Patógeno , Humanos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/microbiología , Ratones , Fosforilación Oxidativa , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/inmunología , Receptor Toll-Like 2/inmunología , Tuberculosis/inmunología , Tuberculosis/metabolismo , Tuberculosis/microbiología
14.
J Diabetes Res ; 2016: 6014631, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27057552

RESUMEN

Type 2 diabetes mellitus confers a threefold increased risk for tuberculosis, but the underlying immunological mechanisms are still largely unknown. Possible mediators of this increased susceptibility are short-chain fatty acids, levels of which have been shown to be altered in individuals with diabetes. We examined the influence of physiological concentrations of butyrate on cytokine responses to Mycobacterium tuberculosis (Mtb) in human peripheral blood mononuclear cells (PBMCs). Butyrate decreased Mtb-induced proinflammatory cytokine responses, while it increased production of IL-10. This anti-inflammatory effect was independent of butyrate's well-characterised inhibition of HDAC activity and was not accompanied by changes in Toll-like receptor signalling pathways, the eicosanoid pathway, or cellular metabolism. In contrast blocking IL-10 activity reversed the effects of butyrate on Mtb-induced inflammation. Alteration of the gut microbiota, thereby increasing butyrate concentrations, can reduce insulin resistance and obesity, but further studies are needed to determine how this affects susceptibility to tuberculosis.


Asunto(s)
Butiratos/farmacología , Complicaciones de la Diabetes/inmunología , Leucocitos Mononucleares/efectos de los fármacos , Mycobacterium tuberculosis/inmunología , Tuberculosis/inmunología , Células Cultivadas , Citocinas/inmunología , Complicaciones de la Diabetes/microbiología , Interacciones Huésped-Patógeno , Humanos , Mediadores de Inflamación/inmunología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/microbiología , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Tuberculosis/microbiología
15.
Nat Immunol ; 17(4): 406-13, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26950237

RESUMEN

The acute phase of sepsis is characterized by a strong inflammatory reaction. At later stages in some patients, immunoparalysis may be encountered, which is associated with a poor outcome. By transcriptional and metabolic profiling of human patients with sepsis, we found that a shift from oxidative phosphorylation to aerobic glycolysis was an important component of initial activation of host defense. Blocking metabolic pathways with metformin diminished cytokine production and increased mortality in systemic fungal infection in mice. In contrast, in leukocytes rendered tolerant by exposure to lipopolysaccharide or after isolation from patients with sepsis and immunoparalysis, a generalized metabolic defect at the level of both glycolysis and oxidative metabolism was apparent, which was restored after recovery of the patients. Finally, the immunometabolic defects in humans were partially restored by therapy with recombinant interferon-γ, which suggested that metabolic processes might represent a therapeutic target in sepsis.


Asunto(s)
Citocinas/inmunología , Endotoxemia/inmunología , Metabolismo Energético/inmunología , Tolerancia Inmunológica/inmunología , Inmunidad Innata/inmunología , Macrófagos/inmunología , Monocitos/inmunología , Sepsis/inmunología , Adenosina Trifosfato/metabolismo , Adulto , Animales , Antifúngicos/uso terapéutico , Aspergilosis/tratamiento farmacológico , Aspergilosis/inmunología , Aspergilosis/metabolismo , Candidiasis Invasiva/tratamiento farmacológico , Candidiasis Invasiva/inmunología , Candidiasis Invasiva/metabolismo , Endotoxemia/metabolismo , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/metabolismo , Femenino , Glucólisis , Humanos , Immunoblotting , Interferón gamma/uso terapéutico , Ácido Láctico/metabolismo , Leucocitos/inmunología , Leucocitos/metabolismo , Lipopolisacáridos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Monocitos/metabolismo , NAD/metabolismo , Fosforilación Oxidativa , Consumo de Oxígeno , Estudios Prospectivos , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Transcriptoma , Adulto Joven
16.
PLoS One ; 10(2): e0117941, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25664765

RESUMEN

Type 2 diabetes mellitus is an established risk factor for tuberculosis but the underlying mechanisms are largely unknown. We examined the effects of hyperglycaemia, a hallmark of diabetes, on the cytokine response to and macrophage infection with Mycobacterium tuberculosis. Increasing in vitro glucose concentrations from 5 to 25 mmol/L had marginal effects on cytokine production following stimulation of peripheral blood mononuclear cells (PBMCs) with M. tuberculosis lysate, LPS or Candida albicans, while 40 mmol/L glucose increased production of TNF-α, IL-1ß, IL-6 and IL-10, but not of IFN-γ, IL-17A and IL-22. Macrophage differentiation under hyperglycaemic conditions of 25 mmol/L glucose was also associated with increased cytokine production upon stimulation with M. tuberculosis lysate and LPS but in infection experiments no differences in M. tuberculosis killing or outgrowth was observed. The phagocytic capacity of these hyperglycaemic macrophages also remained unaltered. The fact that only very high glucose concentrations were able to significantly influence cytokine production by macrophages suggests that hyperglycaemia alone cannot fully explain the increased susceptibility of diabetes mellitus patients to tuberculosis.


Asunto(s)
Hiperglucemia/inmunología , Interferón gamma/inmunología , Interleucinas/inmunología , Macrófagos/inmunología , Mycobacterium tuberculosis/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Candida albicans/inmunología , Diferenciación Celular/inmunología , Diabetes Mellitus Tipo 2/inmunología , Diabetes Mellitus Tipo 2/microbiología , Humanos , Hiperglucemia/microbiología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/microbiología , Lipopolisacáridos/inmunología , Macrófagos/microbiología , Persona de Mediana Edad , Tuberculosis/inmunología , Tuberculosis/microbiología
17.
Infect Immun ; 81(10): 3750-6, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23897611

RESUMEN

One of the most widespread clades of Mycobacterium tuberculosis worldwide, the Beijing genotype family, consists of ancient (atypical) and modern (typical) strains. Modern Beijing strains outcompete ancient strains in terms of prevalence, while reserving a higher degree of genetic conservation. We hypothesize that their selective advantage lies in eliciting a different host immune response. Bead-disrupted lysates of a collection of different M. tuberculosis strains of the modern (n = 7) or ancient (n = 7) Beijing genotype, as well as the Euro-American lineage (n = 6), were used for induction of ex vivo cytokine production in peripheral blood mononuclear cells (PBMCs) from 10 healthy individuals. Hierarchical clustering and multivariate regression analyses were used to study possible differences in production of nine cytokines. Modern and ancient M. tuberculosis Beijing genotypes induced different cytokine signatures. Overall induction of interleukin-1ß (IL-1ß), gamma interferon (IFN-γ), and IL-22 was 38 to 40% lower after stimulation with modern Beijing strains (corrected P values of <0.0001, 0.0288, and 0.0002, respectively). Euro-American reactivation strains induced 2-fold more TNF-α production than both types of Beijing strains. The observed differences in cytokine induction point to a reduction in proinflammatory cytokine response as a possible contributing factor to the evolutionary success of modern Beijing strains.


Asunto(s)
Citocinas/metabolismo , Genotipo , Leucocitos Mononucleares/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/inmunología , Tuberculosis/epidemiología , Antituberculosos , Evolución Biológica , China/epidemiología , Regulación de la Expresión Génica/inmunología , Humanos , Leucocitos Mononucleares/inmunología , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...