Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ChemMedChem ; : e202400543, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39308157

RESUMEN

The Frontiers in Medicinal Chemistry (FiMC) is the largest international Medicinal Chemistry conference in Germany and took place from March 17th to 20th 2024 in Munich. Co-organized by the Division of Medicinal Chemistry of the German Chemical Society (Gesellschaft Deutscher Chemiker; GDCh) and the Division of Pharmaceutical and Medicinal Chemistry of the German Pharmaceutical Society (Deutsche Pharmazeutische Gesellschaft; DPhG), and supported by a local organizing committee from the Ludwigs-Maximilians-University Munich headed by Daniel Merk, the meeting brought together approximately 225 participants from 20 countries. The outstanding program of the four-day conference included 40 lectures by leading scientists from industry and academia as well as early career investigators. Moreover, 100 posters were presented in two highly interactive poster sessions.

2.
Nat Commun ; 15(1): 7963, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261453

RESUMEN

Coagulation factor XII (FXII) conveys various functions as an active protease that promotes thrombosis and inflammation, and as a zymogen via surface receptors like urokinase-type plasminogen activator receptor (uPAR). While plasma levels of FXII are increased in diabetes mellitus and diabetic kidney disease (DKD), a pathogenic role of FXII in DKD remains unknown. Here we show that FXII is locally expressed in kidney tubular cells and that urinary FXII correlates with kidney dysfunction in DKD patients. F12-deficient mice (F12-/-) are protected from hyperglycemia-induced kidney injury. Mechanistically, FXII interacts with uPAR on tubular cells promoting integrin ß1-dependent signaling. This signaling axis induces oxidative stress, persistent DNA damage and senescence. Blocking uPAR or integrin ß1 ameliorates FXII-induced tubular cell injury. Our findings demonstrate that FXII-uPAR-integrin ß1 signaling on tubular cells drives senescence. These findings imply previously undescribed diagnostic and therapeutic approaches to detect or treat DKD and possibly other senescence-associated diseases.


Asunto(s)
Senescencia Celular , Nefropatías Diabéticas , Factor XII , Integrina beta1 , Receptores del Activador de Plasminógeno Tipo Uroquinasa , Animales , Femenino , Humanos , Masculino , Ratones , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/genética , Factor XII/metabolismo , Factor XII/genética , Integrina beta1/metabolismo , Integrina beta1/genética , Túbulos Renales/metabolismo , Túbulos Renales/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Oxidativo , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Receptores del Activador de Plasminógeno Tipo Uroquinasa/genética , Transducción de Señal
3.
Kidney Int ; 105(1): 65-83, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37774921

RESUMEN

Glomerular-tubular crosstalk within the kidney has been proposed, but the paracrine signals enabling this remain largely unknown. The cold-shock protein Y-box binding protein 1 (YBX1) is known to regulate inflammation and kidney diseases but its role in podocytes remains undetermined. Therefore, we analyzed mice with podocyte specific Ybx1 deletion (Ybx1ΔPod). Albuminuria was increased in unchallenged Ybx1ΔPod mice, which surprisingly was associated with reduced glomerular, but enhanced tubular damage. Tubular toll-like receptor 4 (TLR4) expression, node-like receptor protein 3 (NLRP3) inflammasome activation and kidney inflammatory cell infiltrates were all increased in Ybx1ΔPod mice. In vitro, extracellular YBX1 inhibited NLRP3 inflammasome activation in tubular cells. Co-immunoprecipitation, immunohistochemical analyses, microscale cell-free thermophoresis assays, and blunting of the YBX1-mediated TLR4-inhibition by a unique YBX1-derived decapeptide suggests a direct interaction of YBX1 and TLR4. Since YBX1 can be secreted upon post-translational acetylation, we hypothesized that YBX1 secreted from podocytes can inhibit TLR4 signaling in tubular cells. Indeed, mice expressing a non-secreted YBX1 variant specifically in podocytes (Ybx1PodK2A mice) phenocopied Ybx1ΔPod mice, demonstrating a tubular-protective effect of YBX1 secreted from podocytes. Lipopolysaccharide-induced tubular injury was aggravated in Ybx1ΔPod and Ybx1PodK2A mice, indicating a pathophysiological relevance of this glomerular-tubular crosstalk. Thus, our data show that YBX1 is physiologically secreted from podocytes, thereby negatively modulating sterile inflammation in the tubular compartment, apparently by binding to and inhibiting tubular TLR4 signaling. Hence, we have uncovered an YBX1-dependent molecular mechanism of glomerular-tubular crosstalk.


Asunto(s)
Enfermedades Renales , Podocitos , Ratones , Animales , Inflamasomas/metabolismo , Receptor Toll-Like 4/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Respuesta al Choque por Frío , Riñón/metabolismo , Podocitos/metabolismo , Enfermedades Renales/metabolismo , Inflamación/metabolismo
4.
Front Immunol ; 14: 1226832, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37771595

RESUMEN

Background: Haemostasis is a crucial process by which the body stops bleeding. It is achieved by the formation of a platelet plug, which is strengthened by formation of a fibrin mesh mediated by the coagulation cascade. In proinflammatory and prothrombotic conditions, multiple interactions of the complement system and the coagulation cascade are known to aggravate thromboinflammatory processes and increase the risk of arterial and venous thrombosis. Whether those interactions also play a relevant role during the physiological process of haemostasis is not yet completely understood. The aim of this study was to investigate the potential role of complement components and activation during the haemostatic response to mechanical vessel injury. Methods: We used a microvascular bleeding model that simulates a blood vessel, featuring human endothelial cells, perfusion with fresh human whole blood, and an inducible mechanical injury to the vessel. We studied the effects of complement inhibitors against components of the lectin (MASP-1, MASP-2), classical (C1s), alternative (FD) and common pathways (C3, C5), as well as a novel triple fusion inhibitor of all three complement pathways (TriFu). Effects on clot formation were analysed by recording of fibrin deposition and the platelet activation marker CD62P at the injury site in real time using a confocal microscope. Results: With the inhibitors targeting MASP-2 or C1s, no significant reduction of fibrin formation was observed, while platelet activation was significantly reduced in the presence of the FD inhibitor. Both common pathway inhibitors targeting C3 or C5, respectively, were associated with a substantial reduction of fibrin formation, and platelet activation was also reduced in the presence of the C3 inhibitor. Triple inhibition of all three activation pathways at the C3-convertase level by TriFu reduced both fibrin formation and platelet activation. When several complement inhibitors were directly compared in two individual donors, TriFu and the inhibitors of MASP-1 and C3 had the strongest effects on clot formation. Conclusion: The observed impact of complement inhibition on reducing fibrin clot formation and platelet activation suggests a role of the complement system in haemostasis, with modulators of complement initiation, amplification or effector functions showing distinct profiles. While the interactions between complement and coagulation might have evolved to support haemostasis and protect against bleeding in case of vessel injury, they can turn harmful in pathological conditions when aggravating thromboinflammation and promoting thrombosis.

5.
Am J Hematol ; 98 Suppl 4: S82-S89, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36755352

RESUMEN

Within a short few years, the number of complement inhibitors that are either approved for therapeutic application or evaluated in late-stage clinical trials has expanded remarkably. The sudden emergence of this target area in the pipelines of many biotech start-ups and even large pharmaceutical companies appears even more surprising when considering that the involvement of the complement system in various clinical conditions had long been recognized. In many aspects, however, the complement system is far from being a traditional drug target, which may explain the delayed breakthrough of this therapeutic strategy. While complement modulation is now considered an attractive "platform technology" with applications in a wide spectrum of disorders, the broad yet heterogeneous disease involvement of the complement system has long restricted its placement in traditional drug discovery programs. Concerns about the safety of complement-targeted interventions, the large number and high plasma concentrations of target proteins, and the complexity of the complement system's engagement in biological processes are among other factors that kept complement off the drug discovery radar for decades. Alongside technical advances and financial incentives, the innovation and persistence of academic and clinical researchers have been the critical driving force to navigate complement therapeutics out of the shadow into the spotlight. In this commentary, we document this remarkable development using select examples and aim to venture some predictions where this promising field may be headed to.


Asunto(s)
Activación de Complemento , Proteínas del Sistema Complemento , Humanos , Descubrimiento de Drogas , Inactivadores del Complemento/farmacología , Inactivadores del Complemento/uso terapéutico
6.
Acta Biomater ; 155: 123-138, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36328123

RESUMEN

The use of biomaterials in modern medicine has enabled advanced drug delivery strategies and led to reduced morbidity and mortality in a variety of interventions such as transplantation or hemodialysis. However, immune-mediated reactions still present a serious complication of these applications. One of the drivers of such reactions is the complement system, a central part of humoral innate immunity that acts as a first-in-line defense system in its own right but also coordinates other host defense responses. A major regulator of the complement system is the abundant plasma protein factor H (FH), which impairs the amplification of complement responses. Previously, we could show that it is possible to recruit FH to biomedical surfaces using the phage display-derived cyclic peptide 5C6 and, consequently, reduce deposition of C3b, an activation product of the complement system. However, the optimal orientation of 5C6 on surfaces, structural determinants within the peptide for the binding, and the exact binding region on FH remained unknown. Here, we show that the cyclic core and C-terminal region of 5C6 are essential for its interaction with FH and that coating through its N-terminus strongly increases FH recruitment and reduces C3-mediated opsonization in a microparticle-based assay. Furthermore, we could demonstrate that 5C6 selectively binds to FH but not to related proteins. The observation that 5C6 also binds murine FH raises the potential for translational evaluation in animal models. This work provides important insight for the future development of 5C6 as a probe or therapeutic entity to reduce complement activation on biomaterials. STATEMENT OF SIGNIFICANCE: Biomaterials have evolved into core technologies critical to biomedical and drug delivery applications alike, yet their safe and efficient use may be adversely impacted by immune responses to the foreign materials. Taking inspiration from microbial immune evasion strategies, our group developed a peptide-based surface coating that recruits factor H (FH), a host regulator of the complement system, from plasma to the material surface and prevents unwanted activation of this innate immunity pathway. In this study, we identified the molecular determinants that define the interaction between FH and the coated peptide, developed tethering strategies with largely enhanced binding capacity and provided important insight into the target selectivity and species specificity of the FH-binding peptide, thereby paving the way for preclinical development steps.


Asunto(s)
Complemento C3b , Factor H de Complemento , Animales , Ratones , Factor H de Complemento/química , Factor H de Complemento/metabolismo , Complemento C3b/química , Complemento C3b/metabolismo , Materiales Biocompatibles/farmacología , Unión Proteica , Péptidos/farmacología , Péptidos/metabolismo
7.
Nat Commun ; 13(1): 5519, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36127336

RESUMEN

With the addition of the compstatin-based complement C3 inhibitor pegcetacoplan, another class of complement targeted therapeutics have recently been approved. Moreover, compstatin derivatives with enhanced pharmacodynamic and pharmacokinetic profiles are in clinical development (e.g., Cp40/AMY-101). Despite this progress, the target binding and inhibitory modes of the compstatin family remain incompletely described. Here, we present the crystal structure of Cp40 complexed with its target C3b at 2.0-Å resolution. Structure-activity-relationship studies rationalize the picomolar affinity and long target residence achieved by lead optimization, and reveal a role for structural water in inhibitor binding. We provide explanations for the narrow species specificity of this drug class and demonstrate distinct target selection modes between clinical compstatin derivatives. Functional studies provide further insight into physiological complement activation and corroborate the mechanism of its compstatin-mediated inhibition. Our study may thereby guide the application of existing and development of next-generation compstatin analogs.


Asunto(s)
Complemento C3 , Inactivadores del Complemento , Inactivadores del Complemento/farmacología , Péptidos Cíclicos , Agua/química
8.
Trends Pharmacol Sci ; 43(8): 629-640, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35090732

RESUMEN

Despite the growing recognition of the complement system as a major contributor to a variety of clinical conditions, the therapeutic arsenal has remained scarce. The introduction of an anti-C5 antibody in 2007 raised confidence in complement-targeted therapy. However, it became apparent that inhibition of late-stage effector generation might not be sufficient in multifactorial complement disorders. Upstream intervention at the level of C3 activation has therefore been considered promising. The approval of pegcetacoplan, a C3 inhibitor of the compstatin family, in 2021 served as critical validation of C3-targeted treatment. This review delineates the evolution of the compstatin family from its academic origins to the clinic and highlights current and potential future applications of this promising drug class in complement diseases.


Asunto(s)
Complemento C3 , Hemoglobinuria Paroxística , Anticuerpos Monoclonales Humanizados/farmacología , Complemento C3/uso terapéutico , Proteínas del Sistema Complemento , Hemoglobinuria Paroxística/tratamiento farmacológico , Hemólisis , Humanos , Péptidos Cíclicos
9.
RSC Med Chem ; 12(8): 1325-1351, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34447937

RESUMEN

Peptides are a growing therapeutic class due to their unique spatial characteristics that can target traditionally "undruggable" protein-protein interactions and surfaces. Despite their advantages, peptides must overcome several key shortcomings to be considered as drug leads, including their high conformational flexibility and susceptibility to proteolytic cleavage. As a general approach for overcoming these challenges, macrocyclization of a linear peptide can usually improve these characteristics. Their synthetic accessibility makes peptide macrocycles very attractive, though traditional synthetic methods for macrocyclization can be challenging for peptides, especially for head-to-tail cyclization. This review provides an updated summary of the available macrocyclization chemistries, such as traditional lactam formation, azide-alkyne cycloadditions, ring-closing metathesis as well as unconventional cyclization reactions, and it is structured according to the obtained functional groups. Keeping peptide chemistry and screening in mind, the focus is given to reactions applicable in solution, on solid supports, and compatible with contemporary screening methods.

10.
Chimia (Aarau) ; 75(6): 495-499, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34233811

RESUMEN

Among the many molecular entities suitable for therapeutic use, peptides have emerged as a particularly attractive option for academic drug discovery and development. Their modular structure and extendibility, the availability of powerful and affordable screening platforms, and the relative ease-of-synthesis render therapeutic peptides highly approachable for teaching and research alike. With a strong focus on the therapeutic modulation of host defence pathways, including the complement and renin-angiotensin systems, the Molecular Pharmacy group at the University of Basel strongly relies on peptides to introduce students to practical aspects of modern drug design, to discover novel therapeutics for immune and inflammatory diseases, and to expand on options for the preclinical development of a promising drug class. Current projects reach from student-driven iterative design of peptidic angiotensin-converting enzyme inhibitors and the use of phage display technology to discover novel immune modulators to the development of protective peptide coatings for biomaterials and transplants and the structure-activity-relationship-guided optimization of therapeutic peptide drug candidates in late-stage clinical trials. Even at the current stage, peptides allow for a perfect circle between pharmaceutical research and education, and the recent spark of clinical applications for peptide-based drugs may only increase the value and relevance of this versatile drug class.


Asunto(s)
Diseño de Fármacos , Péptidos , Descubrimiento de Drogas , Homeostasis , Humanos
11.
Front Immunol ; 12: 662164, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995387

RESUMEN

The ß2-integrin receptor family has a broad spectrum of physiological functions ranging from leukocyte adhesion, cell migration, activation, and communication to the phagocytic uptake of cells and particles. Among the members of this family, complement receptor 3 (CR3; CD11b/CD18, Mac-1, αMß2) is particularly promiscuous in its functional profile and ligand selectivity. There are close to 100 reported structurally unrelated ligands for CR3, and while many ligands appear to cluster at the αMI domain, molecular details about binding modes remain largely elusive. The versatility of CR3 is reflected in its functional portfolio, which includes prominent roles in the removal of invaders and cell debris, induction of tolerance and synaptic pruning, and involvement in the pathogenesis of numerous autoimmune and chronic inflammatory pathologies. While CR3 is an interesting therapeutic target for immune modulation due to these known pathophysiological associations, drug development efforts are limited by concerns of potential interference with host defense functions and, most importantly, an insufficient molecular understanding of the interplay between ligand binding and functional impact. Here, we provide a systematic summary of the various interaction partners of CR3 with a focus on binding mechanisms and functional implications. We also discuss the roles of CR3 as an immune receptor in health and disease, as an activation marker in research and diagnostics, and as a therapeutic target.


Asunto(s)
Receptores de Complemento/inmunología , Receptores de Complemento/metabolismo , Animales , Movimiento Celular , Desarrollo de Medicamentos , Humanos , Integrinas/inmunología , Leucocitos/metabolismo , Ligandos , Ratones , Neutrófilos/inmunología , Receptores de Complemento/clasificación
12.
J Med Chem ; 64(10): 6802-6813, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33974422

RESUMEN

Coagulation factor XI (FXI) has emerged as a promising target for the development of safer anticoagulation drugs that limit the risk of severe and life-threatening bleeding. Herein, we report the first cyclic peptide-based FXI inhibitor that selectively and potently inhibits activated FXI (FXIa) in human and animal blood. The cyclic peptide inhibitor (Ki = 2.8 ± 0.5 nM) achieved anticoagulation effects that are comparable to that of the gold standard heparin applied at a therapeutic dose (0.3-0.7 IU/mL in plasma) but with a substantially broader estimated therapeutic range. We extended the plasma half-life of the peptide via PEGylation and demonstrated effective FXIa inhibition over extended periods in vivo. We validated the anticoagulant effects of the PEGylated inhibitor in an ex vivo hemodialysis model with human blood. Our work shows that FXI can be selectively targeted with peptides and provides a promising candidate for the development of a safe anticoagulation therapy.


Asunto(s)
Anticoagulantes/química , Factor XIa/antagonistas & inhibidores , Péptidos Cíclicos/química , Secuencia de Aminoácidos , Animales , Anticoagulantes/metabolismo , Anticoagulantes/farmacología , Coagulación Sanguínea/efectos de los fármacos , Factor XIa/metabolismo , Semivida , Humanos , Isomerismo , Modelos Biológicos , Tiempo de Tromboplastina Parcial , Biblioteca de Péptidos , Péptidos Cíclicos/metabolismo , Péptidos Cíclicos/farmacología , Polietilenglicoles/química , Conejos , Diálisis Renal
13.
Nat Commun ; 11(1): 3890, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32753636

RESUMEN

Inhibiting thrombosis without generating bleeding risks is a major challenge in medicine. A promising solution may be the inhibition of coagulation factor XII (FXII), because its knock-out or inhibition in animals reduced thrombosis without causing abnormal bleeding. Herein, we have engineered a macrocyclic peptide inhibitor of activated FXII (FXIIa) with sub-nanomolar activity (Ki = 370 ± 40 pM) and a high stability (t1/2 > 5 days in plasma), allowing for the preclinical evaluation of a first synthetic FXIIa inhibitor. This 1899 Da molecule, termed FXII900, efficiently blocks FXIIa in mice, rabbits, and pigs. We found that it reduces ferric-chloride-induced experimental thrombosis in mice and suppresses blood coagulation in an extracorporeal membrane oxygenation (ECMO) setting in rabbits, all without increasing the bleeding risk. This shows that FXIIa activity is controllable in vivo with a synthetic inhibitor, and that the inhibitor FXII900 is a promising candidate for safe thromboprotection in acute medical conditions.


Asunto(s)
Anticoagulantes/farmacología , Coagulación Sanguínea/efectos de los fármacos , Factor XIIa/antagonistas & inhibidores , Péptidos Cíclicos/efectos de los fármacos , Trombosis/prevención & control , Animales , Cloruros/efectos adversos , Clonación Molecular , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Oxigenación por Membrana Extracorpórea/métodos , Factor XII/antagonistas & inhibidores , Femenino , Compuestos Férricos/efectos adversos , Humanos , Pulmón , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Conejos , Proteínas Recombinantes/farmacología , Porcinos
14.
Nat Commun ; 10(1): 2915, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31266946

RESUMEN

The bile acid-sensing transcription factor farnesoid X receptor (FXR) regulates multiple metabolic processes. Modulation of FXR is desired to overcome several metabolic pathologies but pharmacological administration of full FXR agonists has been plagued by mechanism-based side effects. We have developed a modulator that partially activates FXR in vitro and in mice. Here we report the elucidation of the molecular mechanism that drives partial FXR activation by crystallography- and NMR-based structural biology. Natural and synthetic FXR agonists stabilize formation of an extended helix α11 and the α11-α12 loop upon binding. This strengthens a network of hydrogen bonds, repositions helix α12 and enables co-activator recruitment. Partial agonism in contrast is conferred by a kink in helix α11 that destabilizes the α11-α12 loop, a critical determinant for helix α12 orientation. Thereby, the synthetic partial agonist induces conformational states, capable of recruiting both co-repressors and co-activators leading to an equilibrium of co-activator and co-repressor binding.


Asunto(s)
Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/química , Animales , Línea Celular , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Humanos , Enlace de Hidrógeno , Ligandos , Hígado/metabolismo , Espectroscopía de Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Conformación Proteica en Hélice alfa , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo
15.
J Med Chem ; 60(16): 7199-7205, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28749691

RESUMEN

As a cellular bile acid sensor, farnesoid X receptor (FXR) participates in regulation of bile acid, lipid and glucose homeostasis, and liver protection. Clinical results have validated FXR as therapeutic target in hepatic and metabolic diseases. To date, potent FXR agonists share a negatively ionizable function that might compromise their pharmacokinetic distribution and behavior. Here we report the development and characterization of a high-affinity FXR modulator not comprising an acidic residue.


Asunto(s)
Imidazoles/farmacología , Piridinas/farmacología , Receptores Citoplasmáticos y Nucleares/metabolismo , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP , Transportadoras de Casetes de Unión a ATP/genética , Animales , Colesterol 7-alfa-Hidroxilasa/genética , Estabilidad de Medicamentos , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Imidazoles/síntesis química , Imidazoles/química , Imidazoles/metabolismo , Masculino , Proteínas de Transporte de Membrana/genética , Simulación del Acoplamiento Molecular , PPAR alfa/genética , Piridinas/síntesis química , Piridinas/química , Piridinas/metabolismo , Ratas Sprague-Dawley , Receptores Citoplasmáticos y Nucleares/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Relación Estructura-Actividad , Zolpidem
16.
Future Med Chem ; 8(2): 133-48, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26824277

RESUMEN

BACKGROUND: Bile acids can serve as signaling molecules by activating the nuclear receptor FXR and the G-protein-coupled receptor TGR5 and both bile acid receptors are prominent experimental drug targets. Results/methodology: In this study we optimized the fatty acid mimetic compound pirinixic acid to a new scaffold with the aim to develop novel FXR modulatory compounds. After a multistep structure-activity optimization process, we discovered FXR agonistic compounds and the first dual FXR antagonistic and TGR5 agonistic compound 79a. CONCLUSION: With this novel dual activity profile on both bile acid receptors 79a might be a valuable pharmalogical tool to further study the bile acid signaling network.


Asunto(s)
Ácidos y Sales Biliares/química , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/agonistas , Ácido Benzoico/química , Ácido Benzoico/farmacología , Ácidos y Sales Biliares/farmacología , Línea Celular Tumoral , Células HeLa , Humanos , Unión Proteica , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Relación Estructura-Actividad , Activación Transcripcional/efectos de los fármacos
17.
J Med Chem ; 59(1): 61-81, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26595749

RESUMEN

Metabolic syndrome (MetS) is a multifactorial disease cluster that consists of dyslipidemia, cardiovascular disease, type 2 diabetes mellitus, and obesity. MetS patients are strongly exposed to polypharmacy; however, the number of pharmacological compounds required for MetS treatment can be reduced by the application of multitarget compounds. This study describes the design of dual-target ligands that target soluble epoxide hydrolase (sEH) and the peroxisome proliferator-activated receptor type γ (PPARγ). Simultaneous modulation of sEH and PPARγ can improve diabetic conditions and hypertension at once. N-Benzylbenzamide derivatives were determined to fit a merged sEH/PPARγ pharmacophore, and structure-activity relationship studies were performed on both targets, resulting in a submicromolar (sEH IC50 = 0.3 µM/PPARγ EC50 = 0.3 µM) modulator 14c. In vitro and in vivo evaluations revealed good ADME properties qualifying 14c as a pharmacological tool compound for long-term animal models of MetS.


Asunto(s)
Benzamidas/síntesis química , Benzamidas/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Epóxido Hidrolasas/antagonistas & inhibidores , Síndrome Metabólico/tratamiento farmacológico , PPAR gamma/efectos de los fármacos , Células 3T3 , Administración Oral , Animales , Benzamidas/farmacocinética , Células COS , Chlorocebus aethiops , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/farmacocinética , Humanos , Hipertensión/tratamiento farmacológico , Técnicas In Vitro , Ratones , Microsomas Hepáticos/metabolismo , Ratas , Relación Estructura-Actividad
18.
Bioorg Med Chem Lett ; 25(4): 841-6, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25575659

RESUMEN

We present the design, synthesis and biological evaluation of compounds containing a 2-(benzylidene)hexanoic acid scaffold as multi-target directed γ-secretase-modulators. Broad structural variations were undertaken to elucidate the structure-activity-relationships at the 5-position of the aromatic core. Compound 13 showed the most potent activity profile with IC50 values of 0.79µM (Aß42), 0.3µM (5-lipoxygenase) and an EC50 value of 4.64µM for PPARγ-activation. This derivative is the first compound exhibiting low micromolar to nanomolar activities for these three targets. Combining γ-secretase-modulation, PPARγ-agonism and inhibition of 5-lipoxygenase in one compound could be a novel disease-modifying multi-target-strategy for Alzheimer's disease to concurrently address the causative amyloid pathology and secondary pathologies like chronic brain inflammation.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Secretasas de la Proteína Precursora del Amiloide/efectos de los fármacos , Araquidonato 5-Lipooxigenasa/efectos de los fármacos , Caproatos/uso terapéutico , Inhibidores de la Lipooxigenasa/farmacología , PPAR gamma/agonistas , Caproatos/química , Caproatos/farmacología , Humanos , Inhibidores de la Lipooxigenasa/uso terapéutico , Relación Estructura-Actividad
19.
Bioorg Med Chem ; 23(3): 499-514, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25583100

RESUMEN

Nuclear receptors, especially the peroxisome proliferator activated receptors (PPARs) and the farnesoid X receptor (FXR) fulfill crucial roles in metabolic balance. Their activation offers valuable therapeutic potential which has high clinical relevance with the fibrates and glitazones as PPAR agonistic drugs. With growing knowledge about the various functions of nuclear receptors in many disorders, new selective or dual ligands of these pharmaceutical targets are however still required. Here we report the class of anthranilic acid derivatives as novel selective PPAR or dual FXR/PPAR ligands. We identified distinct molecular determinants that govern selectivity for each PPAR subtype or FXR as well as the amplitude of activation of the respective receptors. We thereby discovered several lead compounds for further optimization and developed a highly potent dual PPARα/FXR partial agonist that might have a beneficial synergistic effect on lipid homeostasis by simultaneous activation of two nuclear receptors involved in lipid metabolism.


Asunto(s)
Receptores Activados del Proliferador del Peroxisoma/agonistas , Receptores Citoplasmáticos y Nucleares/agonistas , ortoaminobenzoatos/farmacología , Animales , Células COS , Chlorocebus aethiops , Ligandos , Metabolismo de los Lípidos/efectos de los fármacos , Receptores Activados del Proliferador del Peroxisoma/química , Receptores Citoplasmáticos y Nucleares/química , Relación Estructura-Actividad , ortoaminobenzoatos/química
20.
Curr Top Med Chem ; 14(19): 2188-205, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25388533

RESUMEN

The nuclear bile acid sensor farnesoid X receptor (FXR) constitutes a rising target for the treatment of a variety of diseases including metabolic disorders, inflammation and certain forms of cancer. While the research on FXR agonists has yielded many compounds and first clinical candidates, only few FXR antagonists have been discovered so far and the knowledge about their in vivo effects is quite narrow. We have evaluated available in vitro and in vivo studies with FXR antagonists as well as FXR knockout models to elucidate a potential pharmacological use of FXR antagonism. To date, the in vitro and in vivo data suggests that FXR inhibition by knockout or the use of antagonists causes beneficial effects on cholesterol metabolism, ameliorates liver toxicity in cholestasis and can reduce the proliferation and migration of some cancer cell lines. Unfortunately, also many disadvantageous effects are connected with FXR antagonists.


Asunto(s)
Química Farmacéutica , Enfermedades Metabólicas/tratamiento farmacológico , Preparaciones Farmacéuticas/metabolismo , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Animales , Humanos , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA