Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Arthritis Rheumatol ; 76(2): 181-191, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37610274

RESUMEN

OBJECTIVE: Anti-citrullinated protein antibodies (ACPAs) are highly specific for rheumatoid arthritis (RA) and have long been regarded as pathogenic. Despite substantial in vitro evidence supporting this claim, reports investigating the proinflammatory effects of ACPAs in animal models of arthritis are rare and include mixed results. Here, we sequenced the plasmablast antibody repertoire of a patient with RA and functionally characterized the encoded ACPAs. METHODS: We expressed ACPAs from the antibody repertoire of a patient with RA and characterized their autoantigen specificities on antigen arrays and enzyme-linked immunosorbent assays. Binding affinities were estimated by bio-layer interferometry. Select ACPAs (n = 9) were tested in the collagen antibody-induced arthritis (CAIA) mouse model to evaluate their effects on joint inflammation. RESULTS: Recombinant ACPAs bound preferentially and with high affinity (nanomolar range) to citrullinated (cit) autoantigens (primarily histones and fibrinogen) and to auto-cit peptidylarginine deiminase 4 (PAD4). ACPAs were grouped for in vivo testing based on their predominant cit-antigen specificities. Unexpectedly, injections of recombinant ACPAs significantly reduced paw thickness and arthritis severity in CAIA mice as compared with isotype-matched control antibodies (P ≤ 0.001). Bone erosion, synovitis, and cartilage damage were also significantly reduced (P ≤ 0.01). This amelioration of CAIA was observed for all the ACPAs tested and was independent of cit-PAD4 and cit-fibrinogen specificities. Furthermore, disease amelioration was more prominent when ACPAs were injected at earlier stages of CAIA than at later phases of the model. CONCLUSION: Recombinant patient-derived ACPAs ameliorated CAIA. Their antiinflammatory effects were more preventive than therapeutic. This study highlights a potential protective role for ACPAs in arthritis.


Asunto(s)
Ácidos Aminosalicílicos , Artritis Experimental , Artritis Reumatoide , Humanos , Animales , Ratones , Anticuerpos Antiproteína Citrulinada , Autoanticuerpos , Desiminasas de la Arginina Proteica , Fibrinógeno/metabolismo , Colágeno
2.
Clin Transl Immunology ; 12(2): e1438, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36815946

RESUMEN

Here, we offer a roadmap for what might be studied next in understanding how EBV triggers MS. We focus on two areas: The first area concerns the molecular mechanisms underlying how clonal antibody in the CSF emanates in widespread molecular mimicry to key antigens in the nervous system including GlialCAM, a protein associated with chloride channels. A second and equally high priority in the roadmap concerns various therapeutic approaches that are related to blocking the mechanisms whereby EBV triggers MS. Therapies deserving of attention include clinical trials with antivirals and the development of 'inverse' vaccines based on nucleic acid technologies to control or to eradicate the consequences of EBV infection. High enthusiasm is given to continuation of ongoing clinical trials of cellular adoptive therapy to attack EBV-infected cells. Clinical trials of vaccines to EBV are another area deserving attention. These suggested topics involving research on mechanism, and the design, implementation and performance of well-designed trials are not intended to be an exhaustive list. We have splendid tools available to our community of medical scientists to tackle how EBV triggers MS and then to perhaps change the world with new therapies to potentially eradicate MS, as we have done with nearly complete success for poliomyelitis.

3.
Sci Transl Med ; 15(684): eabq8476, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36812347

RESUMEN

Periodontal disease is more common in individuals with rheumatoid arthritis (RA) who have detectable anti-citrullinated protein antibodies (ACPAs), implicating oral mucosal inflammation in RA pathogenesis. Here, we performed paired analysis of human and bacterial transcriptomics in longitudinal blood samples from RA patients. We found that patients with RA and periodontal disease experienced repeated oral bacteremias associated with transcriptional signatures of ISG15+HLADRhi and CD48highS100A2pos monocytes, recently identified in inflamed RA synovia and blood of those with RA flares. The oral bacteria observed transiently in blood were broadly citrullinated in the mouth, and their in situ citrullinated epitopes were targeted by extensively somatically hypermutated ACPAs encoded by RA blood plasmablasts. Together, these results suggest that (i) periodontal disease results in repeated breaches of the oral mucosa that release citrullinated oral bacteria into circulation, which (ii) activate inflammatory monocyte subsets that are observed in inflamed RA synovia and blood of RA patients with flares and (iii) activate ACPA B cells, thereby promoting affinity maturation and epitope spreading to citrullinated human antigens.


Asunto(s)
Artritis Reumatoide , Enfermedades Periodontales , Humanos , Autoanticuerpos , Mucosa Bucal , Formación de Anticuerpos , Epítopos , Bacterias
5.
Res Sq ; 2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35441169

RESUMEN

Since early December 2021, the omicron variant has posed additional challenges to the world-wide management of the SARS-CoV-2 pandemic. Immune evasion is a key factor for its increased transmissibility. While serological studies have measured levels of neutralizing antibodies in response to vaccines, our understanding of the humoral immune response to omicron on a single-antibody level is limited. Here, we characterize a set of BNT162b2 vaccine-derived antibodies for neutralization of omicron pseudovirus. We show that approximately 50% of neutralizing anti-RBD antibodies cross-neutralize omicron, albeit with lower potency than the original Wuhan-Hu1 strain. All investigated neutralizing anti-S2 antibodies cross-neutralize omicron, however all of them are less potent than anti-RBD antibodies. While additional booster immunizations of the current vaccine generate increased antibody levels and better protection, we anticipate that the second generation of vaccines will yield more high-affinity antibodies against omicron.

6.
Proc Natl Acad Sci U S A ; 119(10): e2117034119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35235454

RESUMEN

Multiple sclerosis (MS) is a neuroinflammatory demyelinating disease of the central nervous system (CNS) with a high socioeconomic relevance. The pathophysiology of MS, which is both complex and incompletely understood, is believed to be influenced by various environmental determinants, including diet. Since the 1990s, a correlation between the consumption of bovine milk products and MS prevalence has been debated. Here, we show that C57BL/6 mice immunized with bovine casein developed severe spinal cord pathology, in particular, demyelination, which was associated with the deposition of immunoglobulin G. Furthermore, we observed binding of serum from casein-immunized mice to mouse oligodendrocytes in CNS tissue sections and in culture where casein-specific antibodies induced complement-dependent pathology. We subsequently identified myelin-associated glycoprotein (MAG) as a cross-reactive antigenic target. The results obtained from the mouse model were complemented by clinical data showing that serum samples from patients with MS contained significantly higher B cell and antibody reactivity to bovine casein than those from patients with other neurologic diseases. This reactivity correlated with the B cell response to a mixture of CNS antigens and could again be attributed to MAG reactivity. While we acknowledge disease heterogeneity among individuals with MS, we believe that consumption of cow's milk in a subset of patients with MS who have experienced a previous loss of tolerance to bovine casein may aggravate the disease. Our data suggest that patients with antibodies to bovine casein might benefit from restricting dairy products from their diet.


Asunto(s)
Anticuerpos/inmunología , Caseínas/inmunología , Reacciones Cruzadas , Enfermedades Desmielinizantes/inmunología , Esclerosis Múltiple/inmunología , Glicoproteína Asociada a Mielina/inmunología , Animales , Especificidad de Anticuerpos , Humanos , Ratones , Ratones Endogámicos C57BL , Leche/inmunología
7.
Nature ; 603(7900): 321-327, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35073561

RESUMEN

Multiple sclerosis (MS) is a heterogenous autoimmune disease in which autoreactive lymphocytes attack the myelin sheath of the central nervous system. B lymphocytes in the cerebrospinal fluid (CSF) of patients with MS contribute to inflammation and secrete oligoclonal immunoglobulins1,2. Epstein-Barr virus (EBV) infection has been epidemiologically linked to MS, but its pathological role remains unclear3. Here we demonstrate high-affinity molecular mimicry between the EBV transcription factor EBV nuclear antigen 1 (EBNA1) and the central nervous system protein glial cell adhesion molecule (GlialCAM) and provide structural and in vivo functional evidence for its relevance. A cross-reactive CSF-derived antibody was initially identified by single-cell sequencing of the paired-chain B cell repertoire of MS blood and CSF, followed by protein microarray-based testing of recombinantly expressed CSF-derived antibodies against MS-associated viruses. Sequence analysis, affinity measurements and the crystal structure of the EBNA1-peptide epitope in complex with the autoreactive Fab fragment enabled tracking of the development of the naive EBNA1-restricted antibody to a mature EBNA1-GlialCAM cross-reactive antibody. Molecular mimicry is facilitated by a post-translational modification of GlialCAM. EBNA1 immunization exacerbates disease in a mouse model of MS, and anti-EBNA1 and anti-GlialCAM antibodies are prevalent in patients with MS. Our results provide a mechanistic link for the association between MS and EBV and could guide the development of new MS therapies.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Esclerosis Múltiple , Animales , Linfocitos B , Moléculas de Adhesión Celular Neurona-Glia , Antígenos Nucleares del Virus de Epstein-Barr , Herpesvirus Humano 4 , Humanos , Ratones , Proteínas del Tejido Nervioso
8.
J Allergy Clin Immunol ; 149(1): 358-368, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33974929

RESUMEN

BACKGROUND: IgG4-related disease (IgG4-RD) is a fibroinflammatory condition involving loss of B-cell tolerance and production of autoantibodies. However, the relevant targets and role of these aberrant humoral immune responses are not defined. OBJECTIVE: Our aim was to identify novel autoantibodies and autoantigen targets that promote pathogenic responses in IgG4-RD. METHODS: We sequenced plasmablast antibody repertoires in patients with IgG4-RD. Representative mAbs were expressed and their specificities characterized by using cytokine microarrays. The role of anti-IL-1 receptor antagonist (IL-1RA) autoantibodies was investigated by using in vitro assays. RESULTS: We identified strong reactivity against human IL-1RA by using a clonally expanded plasmablast-derived mAb from a patient with IgG4-RD. Plasma from patients with IgG4-RD exhibited elevated levels of reactivity against IL-1RA compared with plasma from the controls and neutralized IL-1RA activity, resulting in inflammatory and fibrotic mediator production in vitro. IL-1RA was detected in lesional tissues from patients with IgG4-RD. Patients with anti-IL-1RA autoantibodies of the IgG4 subclass had greater numbers of organs affected than did those without anti-IL-1RA autoantibodies. Peptide analyses identified IL-1RA epitopes targeted by anti-IL-1RA antibodies at sites near the IL-1RA/IL-1R interface. Serum from patients with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) also had elevated levels of anti-IL-1RA autoantibodies compared with those of the controls. CONCLUSION: A subset of patients with IgG4-RD have anti-IL-1RA autoantibodies, which promote proinflammatory and profibrotic meditator production via IL-1RA neutralization. These findings support a novel immunologic mechanism underlying the pathogenesis of IgG4-RD. Anti-IL-1RA autoantibodies are also present in a subset of patients with SLE and RA, suggesting a potential common pathway in multiple autoimmune diseases.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Autoanticuerpos/sangre , Fibrosis/inmunología , Inmunoglobulina G/inmunología , Receptores de Interleucina-1/antagonistas & inhibidores , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Artritis Reumatoide/sangre , Artritis Reumatoide/inmunología , Autoantígenos , Niño , Preescolar , Femenino , Fibrosis/sangre , Humanos , Inmunoglobulina G/sangre , Lupus Eritematoso Sistémico/sangre , Lupus Eritematoso Sistémico/inmunología , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/sangre , Esclerosis Múltiple/inmunología , Receptores de Interleucina-1/inmunología , Adulto Joven
9.
Nat Immunol ; 23(1): 33-39, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34848871

RESUMEN

The first ever US Food and Drug Administration-approved messenger RNA vaccines are highly protective against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1-3. However, the contribution of each dose to the generation of antibodies against SARS-CoV-2 spike (S) protein and the degree of protection against novel variants warrant further study. Here, we investigated the B cell response to the BNT162b2 vaccine by integrating B cell repertoire analysis with single-cell transcriptomics pre- and post-vaccination. The first vaccine dose elicits a recall response of IgA+ plasmablasts targeting the S subunit S2. Three weeks after the first dose, we observed an influx of minimally mutated IgG+ memory B cells that targeted the receptor binding domain on the S subunit S1 and likely developed from the naive B cell pool. This response was strongly boosted by the second dose and delivers potently neutralizing antibodies against SARS-CoV-2 and several of its variants.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Vacuna BNT162/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/inmunología , COVID-19/prevención & control , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina A/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Células T de Memoria/inmunología , Dominios Proteicos/inmunología , Eficacia de las Vacunas
10.
Front Immunol ; 12: 590532, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679737

RESUMEN

The liver is the central hub for processing and maintaining homeostatic levels of dietary nutrients especially essential amino acids such as tryptophan (Trp). Trp is required not only to sustain protein synthesis but also as a precursor for the production of NAD, neurotransmitters and immunosuppressive metabolites. In light of these roles of Trp and its metabolic products, maintaining homeostatic levels of Trp is essential for health and well-being. The liver regulates global Trp supply by the immunosuppressive enzyme tryptophan-2,3-dioxygenase (TDO2), which degrades Trp down the kynurenine pathway (KP). In the current study, we show that isolated primary hepatocytes when exposed to hypoxic environments, extensively rewire their Trp metabolism by reducing constitutive Tdo2 expression and differentially regulating other Trp pathway enzymes and transporters. Mathematical modelling of Trp metabolism in liver cells under hypoxia predicted decreased flux through the KP while metabolic flux through the tryptamine branch significantly increased. In line, the model also revealed an increased accumulation of tryptamines under hypoxia, at the expense of kynurenines. Metabolic measurements in hypoxic hepatocytes confirmed the predicted reduction in KP metabolites as well as accumulation of tryptamine. Tdo2 expression in cultured primary hepatocytes was reduced upon hypoxia inducible factor (HIF) stabilisation by dimethyloxalylglycine (DMOG), demonstrating that HIFs are involved in the hypoxic downregulation of hepatic Tdo2. DMOG abrogated hepatic luciferase signals in Tdo2 reporter mice, indicating that HIF stability also recapitulates hypoxic rewiring of Trp metabolism in vivo. Also in WT mice HIF stabilization drove homeostatic Trp metabolism away from the KP towards enhanced tryptamine production, leading to enhanced levels of tryptamine in liver, serum and brain. As tryptamines are the most potent hallucinogens known, the observed upregulation of tryptamine in response to hypoxic exposure of hepatocytes may be involved in the generation of hallucinations occurring at high altitude. KP metabolites are known to activate the aryl hydrocarbon receptor (AHR). The AHR-activating properties of tryptamines may explain why immunosuppressive AHR activity is maintained under hypoxia despite downregulation of the KP. In summary our results identify hypoxia as an important factor controlling Trp metabolism in the liver with possible implications for immunosuppressive AHR activation and mental disturbances.


Asunto(s)
Homeostasis , Hipoxia/metabolismo , Triptaminas/metabolismo , Triptófano/metabolismo , Animales , Biología Computacional/métodos , Metabolismo Energético , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Hipoxia/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Hígado/metabolismo , Ratones , Modelos Biológicos , Oxígeno/metabolismo
11.
PLoS Pathog ; 16(10): e1008973, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33045014

RESUMEN

The liver is a central regulator of metabolic homeostasis and serum metabolite levels. Hepatocytes are the functional units of the liver parenchyma and not only responsible for turnover of biomolecules but also act as central immune signaling platforms. Hepatotropic viruses infect liver tissue, resulting in inflammatory responses, tissue damage and hepatitis. Combining well-established in vitro and in vivo model systems with transcriptomic analyses, we show that type I interferon signaling initiates a robust antiviral immune response in hepatocytes. Strikingly, we also identify IFN-I as both, sufficient and necessary, to induce wide-spread metabolic reprogramming in hepatocytes. IFN-I specifically rewired tryptophan metabolism and induced hepatic tryptophan oxidation to kynurenine via Tdo2, correlating with altered concentrations of serum metabolites upon viral infection. Infected Tdo2-deficient animals displayed elevated serum levels of tryptophan and, unexpectedly, also vast increases in the downstream immune-suppressive metabolite kynurenine. Thus, Tdo2-deficiency did not result in altered serum homeostasis of the tryptophan to kynurenine ratio during infection, which seemed to be independent of hepatocyte-intrinsic compensation via the IDO-axis. These data highlight that inflammation-induced reprogramming of systemic tryptophan metabolism is tightly regulated in viral hepatitis.


Asunto(s)
Antivirales/metabolismo , Hepatitis Viral Animal/inmunología , Hepatocitos/inmunología , Inflamación/inmunología , Quinurenina/metabolismo , Receptor de Interferón alfa y beta/fisiología , Triptófano/metabolismo , Animales , Femenino , Virus de Hepatitis/aislamiento & purificación , Hepatitis Viral Animal/metabolismo , Hepatitis Viral Animal/virología , Hepatocitos/metabolismo , Hepatocitos/virología , Humanos , Inmunidad Innata/inmunología , Inflamación/metabolismo , Inflamación/patología , Inflamación/virología , Factor 7 Regulador del Interferón/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Transcripción STAT1/fisiología , Triptófano Oxigenasa/fisiología
12.
Proc Natl Acad Sci U S A ; 117(35): 21512-21518, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32817492

RESUMEN

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS), with characteristic inflammatory lesions and demyelination. The clinical benefit of cell-depleting therapies targeting CD20 has emphasized the role of B cells and autoantibodies in MS pathogenesis. We previously introduced an enzyme-linked immunospot spot (ELISpot)-based assay to measure CNS antigen-specific B cells in the blood of MS patients and demonstrated its usefulness as a predictive biomarker for disease activity in measuring the successful outcome of disease-modifying therapies (DMTs). Here we used a planar protein array to investigate CNS-reactive antibodies in the serum of MS patients as well as in B cell culture supernatants after polyclonal stimulation. Anti-CNS antibody reactivity was evident in the sera of the MS cohort, and the antibodies bound a heterogeneous set of molecules, including myelin, axonal cytoskeleton, and ion channel antigens, in individual patients. Immunoglobulin reactivity in supernatants of stimulated B cells was directed against a broad range of CNS antigens. A group of MS patients with a highly active B cell component was identified by the ELISpot assay. Those antibody reactivities remained stable over time. These assays with protein arrays identify MS patients with a highly active B cell population with antibodies directed against a swathe of CNS proteins.


Asunto(s)
Autoanticuerpos/inmunología , Linfocitos B/inmunología , Esclerosis Múltiple/inmunología , Adulto , Antígenos , Enfermedades Autoinmunes/patología , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/metabolismo , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vaina de Mielina/metabolismo
13.
Front Immunol ; 11: 626820, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33658999

RESUMEN

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by B cell dysregulation and breaks in tolerance that lead to the production of pathogenic autoantibodies. We performed single-cell RNA sequencing of B cells from healthy donors and individuals with SLE which revealed upregulated CD52 expression in SLE patients. We further demonstrate that SLE patients exhibit significantly increased levels of B cell surface CD52 expression and plasma soluble CD52, and levels of soluble CD52 positively correlate with measures of lupus disease activity. Using CD52-deficient JeKo-1 cells, we show that cells lacking surface CD52 expression are hyperresponsive to B cell receptor (BCR) signaling, suggesting an inhibitory role for the surface-bound protein. In healthy donor B cells, antigen-specific BCR-activation initiated CD52 cleavage in a phospholipase C dependent manner, significantly reducing cell surface levels. Experiments with recombinant CD52-Fc showed that soluble CD52 inhibits BCR signaling in a manner partially-dependent on Siglec-10. Moreover, incubation of unstimulated B cells with CD52-Fc resulted in the reduction of surface immunoglobulin and CXCR5. Prolonged incubation of B cells with CD52 resulted in the expansion of IgD+IgMlo anergic B cells. In summary, our findings suggest that CD52 functions as a homeostatic protein on B cells, by inhibiting responses to BCR signaling. Further, our data demonstrate that CD52 is cleaved from the B cell surface upon antigen engagement, and can suppress B cell function in an autocrine and paracrine manner. We propose that increased expression of CD52 by B cells in SLE represents a homeostatic mechanism to suppress B cell hyperactivity.


Asunto(s)
Autoanticuerpos/sangre , Linfocitos B/inmunología , Antígeno CD52/inmunología , Lupus Eritematoso Sistémico/inmunología , Receptores de Antígenos de Linfocitos B/metabolismo , Linfocitos B/metabolismo , Antígeno CD52/sangre , Antígeno CD52/metabolismo , Quimiocina CXCL13/metabolismo , Regulación de la Expresión Génica/inmunología , Genes MHC Clase II/inmunología , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , Lupus Eritematoso Sistémico/metabolismo , Lupus Eritematoso Sistémico/fisiopatología , RNA-Seq , Receptores CXCR5/metabolismo , Índice de Severidad de la Enfermedad , Transducción de Señal/inmunología , Análisis de la Célula Individual , Fosfolipasas de Tipo C/metabolismo
14.
Clin Immunol ; 209: 108276, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31669582

RESUMEN

Inhibitory cell-surface receptors on lymphocytes, often called immune checkpoints, are powerful targets for cancer therapy. Despite their direct involvement in autoimmune pathology, they are currently not exploited therapeutically for autoimmune diseases. Understanding the expression pattern of these receptors in health and disease is essential for targeted drug design. Here, we designed three 23-colour flow cytometry panels for peripheral-blood T cells, including 15 lineage-defining markers and 21 immunomodulatory cell-surface receptors, and a 22-marker panel for B cells. Blood samples from healthy individuals, multiple sclerosis (MS), and lupus (SLE) patients were included in the study. Several receptors show differential expression on regulatory T cells (Treg) compared to T helper (Th) 1 and Th17 cells, and functional relevance of this difference could be shown for BTLA and CD5. Unbiased multiparametric analysis revealed a subset of activated CD8+ T cells and a subset of unswitched memory B cells that are diminished in MS and SLE, respectively.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Linfocitos B/inmunología , Factores Inmunológicos/inmunología , Subgrupos de Linfocitos T/inmunología , Adolescente , Adulto , Anciano , Femenino , Humanos , Persona de Mediana Edad , Adulto Joven
15.
Nat Commun ; 10(1): 4877, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31653831

RESUMEN

The interaction between the mammalian host and its resident gut microbiota is known to license adaptive immune responses. Nutritional constituents strongly influence composition and functional properties of the intestinal microbial communities. Here, we report that omission of a single essential amino acid - tryptophan - from the diet abrogates CNS autoimmunity in a mouse model of multiple sclerosis. Dietary tryptophan restriction results in impaired encephalitogenic T cell responses and is accompanied by a mild intestinal inflammatory response and a profound phenotypic shift of gut microbiota. Protective effects of dietary tryptophan restriction are abrogated in germ-free mice, but are independent of canonical host sensors of intracellular tryptophan metabolites. We conclude that dietary tryptophan restriction alters metabolic properties of gut microbiota, which in turn have an impact on encephalitogenic T cell responses. This link between gut microbiota, dietary tryptophan and adaptive immunity may help to develop therapeutic strategies for protection from autoimmune neuroinflammation.


Asunto(s)
Autoinmunidad/inmunología , Dieta , Encefalomielitis Autoinmune Experimental/inmunología , Microbioma Gastrointestinal/inmunología , Linfocitos T/inmunología , Triptófano , Animales , Proteínas en la Dieta , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/microbiología , Microbioma Gastrointestinal/genética , Ratones , Esclerosis Múltiple , ARN Ribosómico 16S/genética
16.
Front Immunol ; 10: 1302, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31244848

RESUMEN

High-throughput single-cell technologies have recently emerged as essential tools in biomedical research with great potential for clinical pathology when studying liquid and solid biopsies. We provide an update on current single-cell methods in cerebrospinal fluid research and diagnostics, focusing on high-throughput cell-type specific proteomic and genomic technologies. Proteomic methods comprising flow cytometry and mass cytometry as well as genomic approaches including immune cell repertoire and single-cell transcriptomic studies are critically reviewed and future directions discussed.


Asunto(s)
Líquido Cefalorraquídeo/citología , Líquido Cefalorraquídeo/inmunología , Ensayos Analíticos de Alto Rendimiento/métodos , Análisis de la Célula Individual/métodos , Citometría de Flujo , Genómica , Humanos , Linfocitos/clasificación , Linfocitos/citología , Linfocitos/inmunología , Proteómica , Transcriptoma
17.
Amino Acids ; 49(7): 1169-1175, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28421297

RESUMEN

Metabolism of the essential amino acid tryptophan (trp) is a key endogenous immunosuppressive pathway restricting inflammatory responses. Tryptophan metabolites promote regulatory T cell (Treg) differentiation and suppress proinflammatory T helper cell (Th)1 and Th17 phenotypes. It has been shown that treatment with natural and synthetic tryptophan metabolites can suppress autoimmune neuroinflammation in preclinical animal models. Here, we tested if oral intake of tryptophan would increase immunosuppressive tryptophan metabolites and ameliorate autoimmune neuroinflammation as a safe approach to treat autoimmune disorders like multiple sclerosis (MS). Without oral supplementation, systemic kynurenine levels decrease during the initiation phase of experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, indicating systemic activation of tryptophan metabolism. Daily oral gavage of up to 10 mg/mouse/day was safe and increased serum kynurenine levels by more than 20-fold for more than 3 h after the gavage. While this treatment resulted in suppression of myelin-specific Th1 responses, there was no relevant impact on clinical disease activity. These data show that oral trp supplementation at subtoxic concentrations suppresses antigen-specific Th1 responses, but suggest that the increase in trp metabolites is not sustained enough to impact neuroinflammation.


Asunto(s)
Suplementos Dietéticos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Tolerancia Inmunológica/efectos de los fármacos , Esclerosis Múltiple/tratamiento farmacológico , Células TH1/inmunología , Triptófano/farmacología , Animales , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Femenino , Ratones , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología
18.
Sci Rep ; 7: 41271, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28117398

RESUMEN

The catabolism of tryptophan to immunosuppressive and neuroactive kynurenines is a key metabolic pathway regulating immune responses and neurotoxicity. The rate-limiting step is controlled by indoleamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO). IDO is expressed in antigen presenting cells during immune reactions, hepatic TDO regulates blood homeostasis of tryptophan and neuronal TDO influences neurogenesis. While the role of IDO has been described in multiple immunological settings, little is known about TDO's effects on the immune system. TDO-deficiency is neuroprotective in C. elegans and Drosophila by increasing tryptophan and specific kynurenines. Here we have determined the role of TDO in autoimmunity and neurodegeneration in experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. We created reporter-TDO mice for in vivo imaging to show that hepatic but not CNS TDO expression is activated during EAE. TDO deficiency did not influence myelin-specific T cells, leukocyte infiltration into the CNS, demyelination and disease activity. TDO-deficiency protected from neuronal loss in the spinal cord but not in the optic nerves. While this protection did not translate to an improved overt clinical outcome, our data suggest that spatially distinct neuroprotection is conserved in mammals and support TDO as a potential target for treatment of diseases associated with neurodegeneration.


Asunto(s)
Esclerosis Múltiple/enzimología , Esclerosis Múltiple/prevención & control , Neuroprotección , Triptófano Oxigenasa/deficiencia , Animales , Diferenciación Celular , Supervivencia Celular , Clonación Molecular , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/enzimología , Encefalomielitis Autoinmune Experimental/patología , Genes Reporteros , Inflamación/patología , Hígado/enzimología , Hígado/patología , Activación de Linfocitos , Ratones Endogámicos C57BL , Ratones Transgénicos , Esclerosis Múltiple/patología , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/metabolismo , Neuronas/patología , Fenotipo , Linfocitos T/inmunología , Triptófano Oxigenasa/metabolismo
19.
J Neuroimmunol ; 297: 117-26, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27397084

RESUMEN

Relapsing-remitting multiple sclerosis (MS)(2) is characterized by phases of acute neuroinflammation followed by spontaneous remission. Termination of inflammation is accompanied by an influx of regulatory T cells (Tregs).(3) The molecular mechanisms responsible for directing Tregs into the inflamed CNS tissue, however, are incompletely understood. In an MS mouse model we show that the stress kinase general control non-derepressible 2 (GCN2),(4) expressed in T cells, contributes to the resolution of autoimmune neuroinflammation. Failure to recover from acute inflammation was associated with reduced frequencies of CNS-infiltrating Tregs. GCN2 deficient Tregs displayed impaired migration to a CCL2 gradient. These data suggest an important contribution of the T cell stress response to the resolution of autoimmune neuroinflammation.


Asunto(s)
Citocinas/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/fisiopatología , Proteínas Serina-Treonina Quinasas/metabolismo , Linfocitos T Reguladores/fisiología , Animales , Anexina A5/metabolismo , Astrocitos/metabolismo , Encéfalo/citología , Movimiento Celular/fisiología , Citocinas/farmacología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Endoteliales/fisiología , Femenino , Citometría de Flujo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Glicoproteína Mielina-Oligodendrócito/toxicidad , Fragmentos de Péptidos/toxicidad , Proteínas Serina-Treonina Quinasas/genética , Estadísticas no Paramétricas , Linfocitos T Reguladores/efectos de los fármacos , Factores de Tiempo
20.
Exp Dermatol ; 25(1): 62-3, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26443189

RESUMEN

The transcription factor aryl hydrocarbon receptor (AhR) acts as an immunomodulatory molecule in several immune cell lineages. Recently, it has been implicated in development and maintenance of immune cells in barrier tissues such as skin and mucosa. To investigate its role on mast cell development and maintenance in skin, peritoneal exudate cells (PECs) and lymph nodes, we studied in depth their phenotype in AhR-deficient mice. Our findings do not provide any evidence for a suspected role of the AhR in mast cell homeostasis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Mastocitos/citología , Mastocitos/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Linaje de la Célula , Femenino , Citometría de Flujo , Homeostasis , Sistema Inmunológico , Ganglios Linfáticos/patología , Ratones , Ratones Endogámicos C57BL , Membrana Mucosa/metabolismo , Peritoneo/metabolismo , Fenotipo , Piel/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...