Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Res Sq ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38765959

RESUMEN

Heightened muscle sympathetic nerve activity (MSNA) contributes to impaired vasodilatory capacity and vascular dysfunction associated with aging and cardiovascular disease. The contribution of elevated MSNA to the vasodilatory response during passive leg movement (PLM) has not been adequately addressed. This study sought to test the hypothesis that elevated MSNA diminishes the vasodilatory response to PLM in healthy young males (n = 11, 25 ± 2 year). Post exercise circulatory occlusion (PECO) following 2 min of isometric handgrip (HG) exercise performed at 25% (ExPECO 25%) and 40% (ExPECO 40%) of maximum voluntary contraction was used to incrementally engage the metaboreceptors and augment MSNA. Control trials were performed without PECO (ExCON 25% and ExCON 40%) to account for changes due to HG exercise. PLM was performed 2 min after the cessation of exercise and central and peripheral hemodynamics were assessed. MSNA was directly recorded by microneurography in the peroneal nerve (n = 8). Measures of MSNA (i.e., burst incidences) increased during ExPECO 25% (+ 15 ± 5 burst/100 bpm) and ExPECO 40% (+ 22 ± 4 burst/100 bpm) and returned to pre-HG levels during ExCON trials. Vasodilation, assessed by the change in leg vascular conductance during PLM, was reduced by 16% and 44% during ExPECO 25% and ExPECO 40%, respectively. These findings indicate that elevated MSNA attenuates the vasodilatory response to PLM and that the magnitude of reduction in vasodilation during PLM is graded in relation to the degree of sympathoexcitation.

2.
Am J Physiol Heart Circ Physiol ; 325(5): H1088-H1098, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37712922

RESUMEN

Cigarette smoke exposure is a well-known risk factor for developing numerous chronic health conditions, including pulmonary disease and cardiometabolic disorders. However, the cellular mechanisms mediating the toxicity of cigarette smoke in extrapulmonary tissues are still poorly understood. Therefore, the purpose of this study was to characterize the acute dose-dependent toxicity of cigarette smoke on mitochondrial metabolism by determining the susceptibility and sensitivity of mitochondrial respiration from murine skeletal (gastrocnemius and soleus) and cardiac muscles, as well as the aorta to cigarette smoke concentrate (CSC). In all tissues, exposure to CSC inhibited tissue-specific respiration capacity, measured by high-resolution respirometry, according to a biphasic pattern. With a break point of 451 ± 235 µg/mL, the aorta was the least susceptible to CSC-induced mitochondrial respiration inhibition compared with the gastrocnemius (151 ± 109 µg/mL; P = 0.008, d = 2.3), soleus (211 ± 107 µg/mL; P = 0.112; d = 1.7), and heart (94 ± 51 µg/mL; P < 0.001; d = 2.6) suggesting an intrinsic resistance of the vascular smooth muscle mitochondria to cigarette smoke toxicity. In contrast, the cardiac muscle was the most susceptible and sensitive to the effects of CSC, demonstrating the greatest decline in tissue-specific respiration with increasing CSC concentration (P < 0.001, except the soleus). However, when normalized to citrate synthase activity to account for differences in mitochondrial content, cardiac fibers' sensitivity to cigarette smoke inhibition was no longer significantly different from both fast-twitch gastrocnemius and slow-twitch soleus muscle fibers, thus suggesting similar mitochondrial phenotypes. Collectively, these findings established the acute dose-dependent toxicity of cigarette smoke on oxidative phosphorylation in permeabilized tissues involved in the development of smoke-related cardiometabolic diseases.NEW & NOTEWORTHY Despite numerous investigations into the mechanisms underlying cigarette smoke-induced mitochondrial dysfunction, no studies have investigated the tissue-specific mitochondrial toxicity to cigarette smoke. We demonstrate that, while aorta is least sensitive and susceptible to cigarette smoke-induced toxicity, the degree of cigarette smoke-induced toxicity in striated muscle depends on the tissue-specific mitochondrial content. We conclude that while the mitochondrial content influences cigarette smoke-induced toxicity in striated muscles, aorta is intrinsically protected against cigarette smoke-induced mitochondrial toxicity.


Asunto(s)
Enfermedades Cardiovasculares , Fumar Cigarrillos , Ratones , Humanos , Animales , Fosforilación Oxidativa , Músculo Esquelético/metabolismo , Respiración de la Célula/fisiología
3.
BMC Sports Sci Med Rehabil ; 15(1): 83, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37434243

RESUMEN

BACKGROUND: Heat stress during aerobic exercise training may offer an additional stimulus to improve cardiovascular function and performance in a cool-temperate environment. However, there is a paucity of information on the additive effects of high-intensity interval exercise (HIIE) and acute heat stress. We aimed to determine the effects of HIIE in combination with acute heat stress on cardiovascular function and exercise performance. METHODS: Twelve active (peak O2 consumption [VO2peak]: 47 ± 8 ml·O2/min/kg) young adults were counterbalanced to six sessions of HIIE in hot (HIIE-H, 30 ± 1 °C, 50 ± 5% relative humidity [RH]) or temperate conditions (HIIE-T, 20 ± 2 °C, 15 ± 10% RH). Resting heart rate (HR), HR variability (HRV), central (cBP) and peripheral blood pressure (pBP), peripheral mean arterial pressure (pMAP), pulse wave velocity (PWV), VO2peak, and 5-km treadmill time-trial were measured pre- and post-training. RESULTS: Resting HR and HRV were not significantly different between groups. However, expressed as percent change from baseline, cSBP (HIIE-T: + 0.9 ± 3.6 and HIIE-H: -6.6 ± 3.0%, p = 0.03) and pSBP (HIIE-T: -2.0 ± 4.6 and HIIE-H: -8.4 ± 4.7%, p = 0.04) were lower in the heat group. Post-training PWV was also significantly lower in the heat group (HIIE-T: + 0.4% and HIIE-H: -6.3%, p = 0.03). Time-trial performance improved with training when data from both groups were pooled, and estimated VO2peak was not significantly different between groups (HIIE-T: 0.7% and HIIE-H: 6.0%, p = 0.10, Cohen's d = 1.4). CONCLUSIONS: The addition of acute heat stress to HIIE elicited additive adaptations in only cardiovascular function compared to HIIE alone in active young adults in temperate conditions, thus providing evidence for its effectiveness as a strategy to amplify exercise-induced cardiovascular adaptations.

5.
Biochim Biophys Acta Bioenerg ; 1864(3): 148973, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36972770

RESUMEN

The mechanisms underlying cigarette smoke-induced mitochondrial dysfunction in skeletal muscle are still poorly understood. Accordingly, this study aimed to examine the effects of cigarette smoke on mitochondrial energy transfer in permeabilized muscle fibers from skeletal muscles with differing metabolic characteristics. The electron transport chain (ETC) capacity, ADP transport, and respiratory control by ADP were assessed in fast- and slow-twitch muscle fibers from C57BL/6 mice (n = 11) acutely exposed to cigarette smoke concentrate (CSC) using high-resolution respirometry. CSC decreased complex I-driven respiration in the white gastrocnemius (CONTROL:45.4 ± 11.2 pmolO2.s-1.mg-1 and CSC:27.5 ± 12.0 pmolO2.s-1.mg-1; p = 0.01) and soleus (CONTROL:63.0 ± 23.8 pmolO2.s-1.mg-1 and CSC:44.6 ± 11.1 pmolO2.s-1.mg-1; p = 0.04). In contrast, the effect of CSC on Complex II-linked respiration increased its relative contribution to muscle respiratory capacity in the white gastrocnemius muscle. The maximal respiratory activity of the ETC was significantly inhibited by CSC in both muscles. Furthermore, the respiration rate dependent on the ADP/ATP transport across the mitochondrial membrane was significantly impaired by CSC in the white gastrocnemius (CONTROL:-70 ± 18 %; CSC:-28 ± 10 %; p < 0.001), but not the soleus (CONTROL:47 ± 16 %; CSC:31 ± 7 %; p = 0.08). CSC also significantly impaired mitochondrial thermodynamic coupling in both muscles. Our findings underscore that acute CSC exposure directly inhibits oxidative phosphorylation in permeabilized muscle fibers. This effect was mediated by significant perturbations of the electron transfer in the respiratory complexes, especially at complex I, in both fast and slow twitch muscles. In contrast, CSC-induced inhibition of the exchange of ADP/ATP across the mitochondrial membrane was fiber-type specific, with a large effect on fast-twitch muscles.


Asunto(s)
Fumar Cigarrillos , Fibras Musculares de Contracción Rápida , Ratones , Animales , Fibras Musculares de Contracción Rápida/metabolismo , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Transferencia de Energía
6.
Life Sci ; 315: 121376, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36646379

RESUMEN

Epidemiological and clinical evidence suggests that cigarette smoke exposure alters glucose and fatty acid metabolism, leading to greater susceptibility to metabolic disorders. However, the effects of cigarette smoke exposure on mitochondrial substrate oxidation in the skeletal muscle are still poorly understood. Accordingly, this study aimed to examine the acute effects of cigarette smoke on mitochondrial respiratory capacity, sensitivity, and concurrent utilization of palmitoylcarnitine (PC), a long-chain fatty acid, and pyruvate, a product of glycolysis, in permeabilized gastrocnemius and soleus muscle fibers exposed to an acute (1 h) dose (4 %) of cigarette smoke concentrate. Cigarette smoke decreased both mitochondrial respiratory capacity (CONTROL: 50.4 ± 11.8 pmolO2/s/mgwt and SMOKE: 22.3 ± 4.4 pmolO2/s/mgwt, p < 0.01) and sensitivity for pyruvate (CONTROL: 0.10 ± 0.04 mM and SMOKE: 0.11 ± 0.04 mM, p < 0.01) in the gastrocnemius muscle. In the soleus, only the sensitivity for pyruvate-stimulated mitochondrial respiration trended toward a decrease (CONTROL: 0.11 ± 0.04 mM and SMOKE: 0.23 ± 0.15 mM, p = 0.08). In contrast, cigarette smoke did not significantly alter palmitoylcarnitine-stimulated mitochondrial respiration in either muscle. In the control condition, pyruvate-supported respiration was inhibited by the concurrent addition of palmitoylcarnitine in the fast-twitch gastrocnemius muscle (-27.1 ± 19.7 %, p < 0.05), but not in the slow-twitch soleus (-9.2 ± 17.0 %). With cigarette smoke, the addition of palmitoylcarnitine augmented the maximal respiration rate stimulated by the concurrent addition of pyruvate in the gastrocnemius (+18.5 ± 39.3 %, p < 0.05). However, cigarette smoke still significantly impaired mitochondrial respiratory capacity with combined substrates compared to control (p < 0.05). Our findings underscore that cigarette smoke directly impairs mitochondrial respiration of carbohydrate-derived substrates and is a primary mechanism underlying cigarette smoke-induced muscle dysfunction, which leads to a vicious cycle involving excess glucose conversion into fatty acids and lipotoxicity.


Asunto(s)
Fumar Cigarrillos , Palmitoilcarnitina , Palmitoilcarnitina/metabolismo , Palmitoilcarnitina/farmacología , Músculo Esquelético/metabolismo , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Piruvatos/farmacología , Mitocondrias Musculares/metabolismo
7.
Free Radic Biol Med ; 195: 261-269, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36586455

RESUMEN

The mechanisms underlying muscle dysfunction with Chronic Obstructive Pulmonary Disease (COPD) are poorly understood. Indirect evidence has recently suggested a role of Advanced Glycation End Products (AGEs) and their receptor (RAGE) in the pathophysiology of COPD. Accordingly, this study aimed to examine the redox balance and mitochondrial alterations in the skeletal muscle of a mouse model deficient in the receptor for AGE (RAGE-KO) and wild-type C57BL/6 exposed to cigarette smoke for 8-months using immunoblotting, spectrophotometry, and high-resolution respirometry. Cigarette smoke exposure increased by two-fold 4-HNE levels (P < 0.001), a marker of oxidative stress, and markedly downregulated contractile proteins, mitochondrial respiratory complexes, and uncoupling proteins levels (P < 0.001). Functional alterations with cigarette smoke exposure included a greater reliance on complex-I supported respiration (P < 0.01) and lower relative respiratory capacity for fatty acid (P < 0.05). RAGE knockout resulted in 47% lower 4-HNE protein levels than the corresponding WT control mice exposed to cigarette smoke (P < 0.05), which was partly attributed to increased Complex III protein levels. Independent of cigarette smoke exposure, RAGE KO decreased mitochondrial specific maximal respiration (P < 0.05), resulting in a compensatory increase in mitochondrial content measured by citrate synthase activity (P < 0.001) such that muscle respiratory capacity remained unaltered. Together, these findings suggest that knockout of RAGE protected the skeletal muscle against oxidative damage induced by 8 months of cigarette smoke exposure. In addition, this study supports a role for RAGE in regulating mitochondrial content and function and can thus serve as a potential therapeutic target.


Asunto(s)
Fumar Cigarrillos , Enfermedad Pulmonar Obstructiva Crónica , Ratones , Animales , Receptor para Productos Finales de Glicación Avanzada , Fumar Cigarrillos/efectos adversos , Ratones Noqueados , Ratones Endogámicos C57BL , Estrés Oxidativo , Mitocondrias/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Productos Finales de Glicación Avanzada/genética , Productos Finales de Glicación Avanzada/metabolismo
8.
Am J Physiol Regul Integr Comp Physiol ; 323(5): R710-R719, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36154490

RESUMEN

An exaggerated mean arterial blood pressure (MAP) response to exercise in patients with peripheral artery disease (PAD), likely driven by inflammation and oxidative stress and, perhaps, required to achieve an adequate blood flow response, is well described. However, the blood flow response to exercise in patients with PAD actually remains equivocal. Therefore, eight patients with PAD and eight healthy controls completed 3 min of plantar flexion exercise at both an absolute work rate (WR) (2.7 W, to evaluate blood flow) and a relative intensity (40%WRmax, to evaluate MAP). The exercise-induced change in popliteal artery blood flow (BF, Ultrasound Doppler), MAP (Finapress), and vascular conductance (VC) were quantified. In addition, resting markers of inflammation and oxidative stress were measured in plasma and muscle biopsies. Exercise-induced ΔBF, assessed at 2.7 W, was lower in PAD compared with controls (PAD: 251 ± 150 vs. Controls: 545 ± 187 mL/min, P < 0.001), whereas ΔMAP, assessed at 40%WRmax, was greater for PAD (PAD: 23 ± 14 vs. Controls: 11 ± 6 mmHg, P = 0.028). The exercise-induced ΔVC was lower for PAD during both the absolute WR (PAD: 1.9 ± 1.6 vs. Controls: 4.7 ± 1.9 mL/min/mmHg) and relative intensity exercise (PAD: 1.9 ± 1.8 vs. Controls: 5.0 ± 2.2 mL/min/mmHg) trials (both, P < 0.01). Inflammatory and oxidative stress markers, including plasma interleukin-6 and muscle protein carbonyls, were elevated in PAD (both, P < 0.05), and significantly correlated with the hemodynamic changes during exercise (r = -0.57 to -0.78, P < 0.05). Thus, despite an exaggerated ΔMAP response, patients with PAD exhibit an impaired exercise-induced ΔBF and ΔVC, and both inflammation and oxidative stress likely play a role in this attenuated hemodynamic response.


Asunto(s)
Ejercicio Físico , Inflamación , Estrés Oxidativo , Enfermedad Arterial Periférica , Humanos , Presión Arterial , Inflamación/metabolismo , Interleucina-6/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Enfermedad Arterial Periférica/fisiopatología , Flujo Sanguíneo Regional , Hemodinámica
9.
Nitric Oxide ; 128: 59-71, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35977691

RESUMEN

The clinical symptoms of chronic obstructive pulmonary disease (COPD) disease are accompanied by severely debilitating extra-pulmonary manifestations, including vascular dysfunction and hypertension. This systematic review evaluated the current evidence for several therapeutic interventions, targeting the nitric oxide (NO) pathway on hemodynamics and, secondarily, exercise capacity in patients with COPD. A comprehensive search on COPD and NO donors was performed on online databases. Of 934 initially found manuscripts, 27 were included in the review, and 16 in the meta-analysis. The analysis indicated inconsistent effects of dietary nitrate supplementation on exercise tolerance in COPD patients. Dietary nitrate supplementation decreased systolic (-3.7 ± 4.3 mmHg; p = 0.10) and diastolic blood pressure (BP; -2.6 ± 3.2 mmHg; p = 0.05) compared with placebo. When restricted to acute studies, a clinically relevant BP lowering effect of nitrate supplementation during diastole was observed (-4.7 ± 3.2 mmHg; n = 5; p = 0.05). In contrast, inhaled NO (iNO) at doses <20 ppm (+9.2 ± 11.3 mmHg) and 25-40 ppm (-5±2 mmHg) resulted in inconsistent effects on PaO2 (p = 0.48). Data on the effect of iNO on exercise capacity were too limited and inconsistent, but preliminary evidence suggests a possible benefit of iNO on pulmonary vascular resistance during exercise in severe COPD patients. Overall, the effects of acute dietary nitrate supplementation on BP may be of clinical relevance as an adjunct therapy and deserve further investigation in large sample size studies of COPD patients with and without cardiovascular comorbidities. iNO exerted inconsistent physiological effects, with the use of high doses posing safety risks.


Asunto(s)
Nitratos , Enfermedad Pulmonar Obstructiva Crónica , Presión Sanguínea , Suplementos Dietéticos/efectos adversos , Humanos , Pulmón , Óxidos de Nitrógeno/farmacología , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico
10.
J Physiol ; 600(13): 3069-3081, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35593645

RESUMEN

Intramuscular hydrogen ion (H+ ) and inorganic phosphate (Pi) concentrations were dissociated during exercise to challenge their relationships with peripheral and central fatigue in vivo. Ten recreationally active, healthy men (27 ± 5 years; 180 ± 4 cm; 76 ± 10 kg) performed two consecutive intermittent isometric single-leg knee-extensor trials (60 maximal voluntary contractions; 3 s contraction, 2 s relaxation) interspersed with 5 min of rest. Phosphorus magnetic resonance spectroscopy (31 P-MRS) was used to continuously quantify intramuscular [H+ ] and [Pi] during both trials. Using electrical femoral nerve stimulation, quadriceps twitch force (Qtw ) and voluntary activation (VA) were quantified at rest and throughout both trials. Decreases in Qtw and VA from baseline were used to determine peripheral and central fatigue, respectively. Qtw was strongly related to both [H+ ] (ß coefficient: -0.9, P < 0.0001) and [Pi] (-1.1, P < 0.0001) across trials. There was an effect of trial on the relationship between Qtw and [H+ ] (-0.5, P < 0.0001), but not Qtw and [Pi] (0.0, P = 0.976). This suggests that, unlike the unaltered association with [Pi], a given level of peripheral fatigue was associated with a different [H+ ] in Trial 1 vs. Trial 2. VA was related to [H+ ] (-0.3, P < 0.0001), but not [Pi] (-0.2, P = 0.243), across trials and there was no effect of trial (-0.1, P = 0.483). Taken together, these results support intramuscular Pi as a primary cause of peripheral fatigue, and muscle acidosis, probably acting on group III/IV muscle afferents in the interstitial space, as a contributor to central fatigue during exercise. KEY POINTS: We investigated the relationship between intramuscular metabolites and neuromuscular function in humans performing two maximal, intermittent, knee-extension trials interspersed with 5 min of rest. Concomitant measurements of intramuscular hydrogen (H+ ) and inorganic phosphate (Pi) concentrations, as well as quadriceps twitch-force (Qtw ) and voluntary activation (VA), were made throughout each trial using phosphorus magnetic resonance spectroscopy (31 P-MRS) and electrical femoral nerve stimulations. Although [Pi] fully recovered prior to the onset of the second trial, [H+ ] did not. Qtw was strongly related to both [H+ ] and [Pi] across both trials. However, the relationship between Qtw and [H+ ] shifted leftward from the first to the second trial, whereas the relationship between Qtw and [Pi] remained unaltered. VA was related to [H+ ], but not [Pi], across both trials. These in vivo findings support the hypotheses of intramuscular Pi as a primary cause of peripheral fatigue, and muscle acidosis, probably acting on group III/IV muscle afferents, as a contributor to central fatigue.


Asunto(s)
Acidosis , Fosfatos , Electromiografía , Fatiga , Humanos , Masculino , Contracción Muscular , Fatiga Muscular/fisiología , Músculo Esquelético/fisiología , Fósforo
11.
J Appl Physiol (1985) ; 132(3): 874-887, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35175102

RESUMEN

Prolonged sitting in a mild hypercapnic environment impairs peripheral vascular function. The effects of sitting interruptions using passive or active skeletal muscle contractions are still unclear. Therefore, we sought to examine the vascular effects of brief periods (2 min every half hour) of passive and active lower limb movement to interrupt prolonged sitting with mild hypercapnia in adults. Fourteen healthy adults (24 ± 2 yr) participated in three experimental visits sitting for 2.5 h in a mild hypercapnic environment (CO2 = 1,500 ppm): control (CON, no limb movement), passive lower limb movement (PASS), and active lower limb movement (ACT) during sitting. At all visits, brachial and popliteal artery flow-mediated dilation (FMD), microvascular function, plasmatic levels of nitrate/nitrite and endothelin-1, and heart rate variability were assessed before and after sitting. Brachial and popliteal artery FMDs were reduced in CON and PASS (P < 0.05) but were preserved (P > 0.05) in ACT. Microvascular function was blunted in CON (P < 0.05) but was preserved in PASS and ACT (P > 0.05). In addition, total plasma nitrate/nitrite was preserved in ACT (P > 0.05) but was reduced in CON and PASS (P < 0.05), and endothelin-1 levels were decreased in ACT (P < 0.05). Both passive and active movement induced a greater ratio between the low-frequency and high-frequency bands for heart rate variability (P < 0.05). For the first time, to our knowledge, we found that brief periods of passive leg movement can preserve microvascular function, but that an intervention that elicits larger increases in shear rate, such as low-intensity exercise, is required to fully protect both macrovascular and microvascular function and circulating vasoactive substance balance.NEW & NOTEWORTHY Passive leg movement could not preserve macrovascular endothelial function, whereas active leg movement could protect endothelial function. Attenuated microvascular function can be salvaged by passive movement and active movement. Preservation of macrovascular hemodynamics and plasma total nitrate/nitrite and endothelin-1 during prolonged sitting requires active movement. These findings dissociate the impacts induced by mechanical stress (passive movement) from the change in metabolism (active movement) on the vasculature during prolonged sitting in a mild hypercapnic environment.


Asunto(s)
Hipercapnia , Pierna , Adulto , Arteria Braquial , Endotelio Vascular/fisiología , Humanos , Extremidad Inferior/irrigación sanguínea , Flujo Sanguíneo Regional/fisiología , Vasodilatación/fisiología
12.
J Appl Physiol (1985) ; 132(3): 581-592, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35019775

RESUMEN

The long-term sequelae of the coronavirus disease 2019 (COVID-19) are multifaceted and, besides the lungs, impact other organs and tissues, even in cases of mild infection. Along with commonly reported symptoms such as fatigue and dyspnea, a significant proportion of those with prior COVID-19 infection also exhibit signs of cardiac damage, muscle weakness, and ultimately, poor exercise tolerance. This review provides an overview of evidence indicating cardiac impairments and persistent endothelial dysfunction in the peripheral vasculature of those previously infected with COVID-19, irrespective of the severity of the acute phase of illness. In addition, V̇o2peak appears to be lower in convalescent patients, which may stem, in part, from alterations in O2 transport such as impaired diffusional O2 conductance. Together, the persistent multi-organ dysfunction induced by COVID-19 may set previously healthy individuals on a trajectory towards frailty and disease. Given the large proportion of individuals recovering from COVID-19, it is critically important to better understand the physical sequelae of COVID-19, the underlying biological mechanisms contributing to these outcomes, and the long-term effects on future disease risk. This review highlights relevant literature on the pathophysiology post-COVID-19 infection, gaps in the literature, and emphasizes the need for the development of evidence-based rehabilitation guidelines.


Asunto(s)
COVID-19 , Disnea , Fatiga , Humanos , Músculos , SARS-CoV-2
13.
Am J Physiol Regul Integr Comp Physiol ; 321(5): R687-R698, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34549627

RESUMEN

Recently it was documented that fatiguing, high-intensity exercise resulted in a significant attenuation in maximal skeletal muscle mitochondrial respiratory capacity, potentially due to the intramuscular metabolic perturbation elicited by such intense exercise. With the utilization of intrathecal fentanyl to attenuate afferent feedback from group III/IV muscle afferents, permitting increased muscle activation and greater intramuscular metabolic disturbance, this study aimed to better elucidate the role of metabolic perturbation on mitochondrial respiratory function. Eight young, healthy males performed high-intensity cycle exercise in control (CTRL) and fentanyl-treated (FENT) conditions. Liquid chromatography-mass spectrometry and high-resolution respirometry were used to assess metabolites and mitochondrial respiratory function, respectively, pre- and postexercise in muscle biopsies from the vastus lateralis. Compared with CTRL, FENT yielded a significantly greater exercise-induced metabolic perturbation (PCr: -67% vs. -82%, Pi: 353% vs. 534%, pH: -0.22 vs. -0.31, lactate: 820% vs. 1,160%). Somewhat surprisingly, despite this greater metabolic perturbation in FENT compared with CTRL, with the only exception of respiratory control ratio (RCR) (-3% and -36%) for which the impact of FENT was significantly greater, the degree of attenuated mitochondrial respiratory capacity postexercise was not different between CTRL and FENT, respectively, as assessed by maximal respiratory flux through complex I (-15% and -33%), complex II (-36% and -23%), complex I + II (-31% and -20%), and state 3CI+CII control ratio (-24% and -39%). Although a basement effect cannot be ruled out, this failure of an augmented metabolic perturbation to extensively further attenuate mitochondrial function questions the direct role of high-intensity exercise-induced metabolite accumulation in this postexercise response.


Asunto(s)
Metabolismo Energético , Ejercicio Físico , Mitocondrias Musculares/metabolismo , Contracción Muscular , Músculo Cuádriceps/metabolismo , Adulto , Analgésicos Opioides/administración & dosificación , Ciclismo , Respiración de la Célula , Fentanilo/administración & dosificación , Voluntarios Sanos , Humanos , Inyecciones Espinales , Masculino , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/fisiología , Músculo Cuádriceps/inervación , Distribución Aleatoria , Adulto Joven
14.
Am J Physiol Endocrinol Metab ; 321(1): E80-E89, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34121449

RESUMEN

Because patients with chronic obstructive pulmonary disease (COPD) are often physically inactive, it is still unclear whether the lower respiratory capacity in the locomotor muscles of these patients is due to cigarette smoking per se or is secondary to physical deconditioning. Accordingly, the purpose of this study was to examine mitochondrial alterations in the quadriceps muscle of 10 mice exposed to 8 mo of cigarette smoke, a sedentary mouse model of emphysema, and 9 control mice, using immunoblotting, spectrophotometry, and high-resolution respirometry in permeabilized muscle fibers. Mice exposed to smoke displayed a twofold increase in the oxidative stress marker, 4-HNE, (P < 0.05) compared with control mice. This was accompanied by significant decrease in protein expression of UCP3 (65%), ANT (58%), and mitochondrial complexes II-V (∼60%-75%). In contrast, maximal ADP-stimulated respiration with complex I and II substrates (CON: 23.6 ± 6.6 and SMO: 19.2 ± 8.2 ρM·mg-1·s-1) or octanoylcarnitine (CON: 21.8 ± 9.0 and SMO: 16.5 ± 6.6 ρM·mg-1·s-1) measured in permeabilized muscle fibers, as well as citrate synthase activity, were not significantly different between groups. Collectively, our findings revealed that sedentary mice exposed to cigarette smoke for 8 mo, which is typically associated with pulmonary inflammation and emphysema, exhibited a preserved mitochondrial respiratory capacity for various substrates, including fatty acid, in the skeletal muscle. However, the mitochondrial adaptations induced by cigarette smoke favored the development of chronic oxidative stress, which can indirectly contribute to augment the susceptibility to muscle fatigue and exercise intolerance.NEW & NOTEWORTHY It is unclear whether the exercise intolerance and skeletal muscle mitochondrial dysfunction observed in patients with COPD is due to cigarette smoke exposure, per se, or if they are secondary consequences to inactivity. Herein, while long-term exposure to cigarette smoke induces oxidative stress and an altered skeletal muscle phenotype, cigarette smoke does not directly contribute to mitochondrial dysfunction. With this evidence, we demonstrate the critical role of physical inactivity in cigarette smoke-related skeletal muscle dysfunction.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Músculo Esquelético/ultraestructura , Nicotiana , Humo/efectos adversos , Animales , Citrato (si)-Sintasa/metabolismo , Modelos Animales de Enfermedad , Enfisema/patología , Femenino , Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Musculares/genética , Estrés Oxidativo , Consumo de Oxígeno , Músculo Cuádriceps/ultraestructura , Conducta Sedentaria
15.
Br J Nutr ; 125(2): 161-171, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-32660675

RESUMEN

Anthocyanins and bromelain have gained significant attention due to their antioxidative and anti-inflammatory properties. Both have been shown to improve endothelial function, blood pressure (BP) and oxygen utility capacity in humans; however, the combination of these two and the impacts on endothelial function, BP, total antioxidant capacity (TAC) and oxygen utility capacity have not been previously investigated. The purpose of this study was to investigate the impacts of a combined anthocyanins and bromelain supplement (BE) on endothelial function, BP, TAC, oxygen utility capacity and fatigability in healthy adults. Healthy adults (n 18, age 24 (sd 4) years) received BE or placebo in a randomised crossover design. Brachial artery flow-mediated dilation (FMD), BP, TAC, resting heart rate, oxygen utility capacity and fatigability were measured pre- and post-BE and placebo intake. The BE group showed significantly increased FMD, reduced systolic BP and improved oxygen utility capacity compared with the placebo group (P < 0·05). Tissue saturation and oxygenated Hb significantly increased following BE intake, while deoxygenated Hb significantly decreased (P < 0·05) during exercise. Additionally, TAC was significantly increased following BE intake (P < 0·05). There were no significant differences for resting heart rate, diastolic BP or fatigability index. These results suggest that BE intake is an effective nutritional therapy for improving endothelial function, BP, TAC and oxygen utility capacity, which may be beneficial to support vascular health in humans.


Asunto(s)
Antocianinas/farmacología , Antioxidantes/farmacología , Bromelaínas/farmacología , Suplementos Dietéticos , Endotelio Vascular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Adolescente , Presión Sanguínea/efectos de los fármacos , Arteria Braquial/efectos de los fármacos , Estudios Cruzados , Método Doble Ciego , Ejercicio Físico/fisiología , Femenino , Voluntarios Sanos , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Masculino , Fatiga Muscular/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Adulto Joven
16.
Physiol Rep ; 8(16): e14563, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32812401

RESUMEN

Exercise-induced hyperemia in calf muscles was recently shown to be quantifiable with high-resolution magnetic resonance imaging (MRI). However, processing of the MRI data to obtain muscle-perfusion maps is time-consuming. This study proposes to substantially accelerate the mapping of muscle perfusion using a deep-learning method called artificial neural network (NN). Forty-eight MRI scans were acquired from 21 healthy subjects and patients with peripheral artery disease (PAD). For optimal training of NN, different training-data sets were compared, investigating the effect of data diversity and reference perfusion accuracy. Reference perfusion was estimated by tracer kinetic model fitting initialized with multiple values (multigrid model fitting). Result: The NN method was much faster than tracer kinetic model fitting. To generate a perfusion map of matrix 128 × 128 on a same computer, multigrid model fitting took about 80 min, single-grid or regular model fitting about 3 min, while the NN method took about 1 s. Compared to the reference values, NN trained with a diverse group gave estimates with mean absolute error (MAE) of 15.9 ml/min/100g and correlation coefficient (R) of 0.949, significantly more accurate than regular model fitting (MAE 22.3 ml/min/100g, R 0.889, p < .001). Conclusion: the NN method enables rapid perfusion mapping, and if properly trained, estimates perfusion with accuracy comparable to multigrid model fitting.


Asunto(s)
Ejercicio Físico , Hiperemia/fisiopatología , Imagen por Resonancia Magnética/métodos , Músculo Esquelético/fisiopatología , Imagen de Perfusión/métodos , Enfermedad Arterial Periférica/fisiopatología , Adulto , Anciano , Tobillo/irrigación sanguínea , Tobillo/fisiología , Aprendizaje Profundo , Femenino , Humanos , Hiperemia/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Músculo Esquelético/diagnóstico por imagen , Enfermedad Arterial Periférica/diagnóstico por imagen
17.
Am J Physiol Heart Circ Physiol ; 319(2): H456-H467, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32706261

RESUMEN

Peripheral artery disease (PAD) is a manifestation of atherosclerosis in the leg arteries, which causes claudication. This may be in part due to vascular mitochondrial dysfunction and excessive reactive oxygen species (ROS) production. A mitochondrial-targeted antioxidant (MitoQ) has been shown to improve vascular mitochondrial function that, in turn, led to improved vascular function in older adults and animal models. However, the roles of vascular mitochondria in vascular function including endothelial function and arterial stiffness in patients with PAD are unknown; therefore, with the use of acute MitoQ intake, this study examined the roles of vascular mitochondria in endothelial function, arterial stiffness, exercise tolerance, and skeletal muscle function in patients with PAD. Eleven patients with PAD received either MitoQ or placebo in a randomized crossover design. At each visit, blood samples, brachial and popliteal artery flow-mediated dilation (FMD), peripheral and central pulse-wave velocity (PWV), blood pressure (BP), maximal walking capacity, time to claudication (COT), and oxygen utility capacity were measured pre- and-post-MitoQ and placebo. There were significant group by time interactions (P < 0.05) for brachial and popliteal FMD that both increased by Δ2.6 and Δ3.3%, respectively, and increases superoxide dismutase (Δ0.03 U/mL), maximal walking time (Δ73.8 s), maximal walking distance (Δ49.3 m), and COT (Δ44.2 s). There were no changes in resting heart rate, BP, malondialdehyde, total antioxidant capacity, PWV, or oxygen utility capacity (P > 0.05). MitoQ intake may be an effective strategy for targeting the vascular mitochondrial environment, which may be useful for restoring endothelial function, leg pain, and walking time in patients with PAD.NEW & NOTEWORTHY The results of this study reveal for the first time that acute oral intake of mitochondrial-targeted antioxidant (MitoQ, 80 mg) is effective for improving vascular endothelial function and superoxide dismutase in patients with peripheral artery disease (PAD). Acute MitoQ intake is also effective for improving maximal walking capacity and delaying the onset of claudication in patients with PAD. These findings suggest that the acute oral intake of MitoQ-mediated improvements in vascular mitochondria play a pivotal role for improving endothelial function, the redox environment, and skeletal muscle performance in PAD.


Asunto(s)
Antioxidantes/uso terapéutico , Arteria Braquial/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Tolerancia al Ejercicio/efectos de los fármacos , Hemodinámica/efectos de los fármacos , Claudicación Intermitente/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Compuestos Organofosforados/uso terapéutico , Enfermedad Arterial Periférica/tratamiento farmacológico , Arteria Poplítea/efectos de los fármacos , Ubiquinona/análogos & derivados , Anciano , Antioxidantes/metabolismo , Presión Arterial/efectos de los fármacos , Arteria Braquial/metabolismo , Arteria Braquial/fisiopatología , Estudios Cruzados , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Femenino , Humanos , Claudicación Intermitente/diagnóstico , Claudicación Intermitente/metabolismo , Claudicación Intermitente/fisiopatología , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Contracción Muscular/efectos de los fármacos , Nebraska , Compuestos Organofosforados/metabolismo , Enfermedad Arterial Periférica/diagnóstico , Enfermedad Arterial Periférica/metabolismo , Enfermedad Arterial Periférica/fisiopatología , Arteria Poplítea/metabolismo , Arteria Poplítea/fisiopatología , Recuperación de la Función , Factores de Tiempo , Resultado del Tratamiento , Ubiquinona/metabolismo , Ubiquinona/uso terapéutico , Rigidez Vascular/efectos de los fármacos , Caminata
18.
Am J Physiol Heart Circ Physiol ; 319(2): H468-H480, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32648821

RESUMEN

Prolonged sitting, which is known to impair peripheral vascular function, often occurs in spaces (e.g., offices) with mild hypercapnic atmospheres. However, the effects of prolonged sitting in hypercapnic conditions on vascular function are unknown. Therefore, the purpose of this study was to investigate the effects of prolonged sitting in mild hypercapnic conditions on vascular and autonomic function in humans. Twelve healthy young adults participated in two experimental visits that consisted of sitting for 2.5 h in a control condition [normal atmospheric conditions sitting (PSIT)] or a mild hypercapnic condition (HCAP; CO2 = 1,500 ppm). During each visit, heart rate variability (HRV), blood pressure (BP), pulse wave velocity (PWV), augmentation index (AIx), brachial and popliteal artery flow-mediated dilation (FMD), and near-infrared spectroscopy (NIRS) were assessed before and after prolonged sitting. Sitting significantly decreased AIx in both groups (P < 0.05). Brachial and popliteal FMD were reduced with sitting (P < 0.05), and the reduction in popliteal FMD was amplified by HCAP (P < 0.05). Baseline microvascular oxygenation was decreased following sitting in both groups (P < 0.05). However, microvascular reoxygenation upon cuff release was slower only in HCAP (P < 0.05). HRV, HR, BP, and PWV did not significantly change with sitting in either group (P > 0.05). We conclude that prolonged sitting attenuated both brachial and popliteal endothelial function and was associated with perturbed microcirculation. Additionally, mild hypercapnic conditions further impaired peripheral endothelial and microvascular function. Together, these findings suggest that prolonged sitting is accompanied by a host of deleterious effects on the vasculature, which are exacerbated by mild hypercapnia.NEW & NOTEWORTHY The results of this study reveal that prolonged sitting attenuates endothelial function and microvascular function. Additionally, prolonged sitting with mild hypercapnia, which is similar to everyday environments, further exacerbates peripheral endothelial function and microvascular function.


Asunto(s)
Arteria Braquial/inervación , Hemodinámica , Hipercapnia/fisiopatología , Arteria Poplítea/inervación , Sedestación , Sistema Nervioso Simpático/fisiopatología , Adulto , Presión Arterial , Arteria Braquial/diagnóstico por imagen , Femenino , Frecuencia Cardíaca , Hemoglobinas/metabolismo , Humanos , Hipercapnia/sangre , Hipercapnia/diagnóstico por imagen , Masculino , Microcirculación , Oxihemoglobinas/metabolismo , Arteria Poplítea/diagnóstico por imagen , Factores de Tiempo , Rigidez Vascular , Adulto Joven
20.
J Appl Physiol (1985) ; 128(5): 1402-1411, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32324478

RESUMEN

Chronic obstructive pulmonary disease (COPD), characterized by pulmonary dysfunction, is now also recognized to be associated with free radical-mediated vascular dysfunction. However, as previous investigations have utilized the brachial artery flow-mediated dilation technique, whether such vascular dysfunction exists in the locomotor muscle of patients with COPD remains unclear. Therefore, in patients with COPD (n = 13, 66 ± 6 yr) and healthy age- and sex-matched control subjects (n = 12, 68 ± 6 yr), second-by-second measurements of leg blood flow (LBF) (ultrasound Doppler), mean arterial pressure (MAP) (Finapres), and leg vascular conductance (LVC) were recorded before and during both 2 min of continuous upright seated continuous-movement passive leg movement (PLM) and a single-movement PLM (sPLM). In response to PLM, both peak change in LBF (COPD 321 ± 54, Control 470 ± 55 ∆mL/min) and LVC (COPD 3.0 ± 0.5, Control 5.4 ± 0.5 ∆mL·min-1·mmHg-1) were significantly attenuated in patients with COPD compared with control subjects (P < 0.05). This attenuation in the patients with COPD was also evident in response to sPLM, with peak change in LBF tending to be lower (COPD 142 ± 26, Control 169 ± 14 ∆mL/min) and LVC being significantly lower (P < 0.05) in the patients than the control subjects (COPD 1.6 ± 0.4, Control 2.5 ± 0.3 ∆mL·min-1·mmHg-1). Therefore, utilizing both PLM and sPLM, this study provides evidence of locomotor muscle vascular dysfunction in patients with COPD, perhaps due to redox imbalance and reduced nitric oxide bioavailability, which is in agreement with an increased cardiovascular disease risk in this population. This locomotor muscle vascular dysfunction, in combination with the clearly dysfunctional lungs, may contribute to the exercise intolerance associated with COPD.NEW & NOTEWORTHY Utilizing both the single and continuous passive leg movement (PLM) models, which induce nitric oxide (NO)-dependent hyperemia, this study provides evidence of vascular dysfunction in the locomotor muscle of patients with chronic obstructive pulmonary disease (COPD), independent of central hemodynamics. This impaired hyperemia may be the result of an oxidant-mediated attenuation in NO bioavailability. In addition to clearly dysfunctional lungs, vascular dysfunction in locomotor muscle may contribute to the exercise intolerance associated with COPD and increased cardiovascular disease risk.


Asunto(s)
Pierna , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Movimiento , Músculo Esquelético , Músculos , Flujo Sanguíneo Regional , Vasodilatación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...