Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Psychiatry ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822069

RESUMEN

Drug addiction therapies commonly fail because continued drug use promotes the release of excessive and pleasurable dopamine levels. Because the connection between pleasure and drug use becomes hard-wired in the nucleus accumbens (NAc), which interfaces motivation, effective therapies need to modulate this mesolimbic reward system. Here, we report that mice with knockdown of the cation channel TRPA1 (transient receptor potential ankyrin 1) were resistant to the drug-seeking behavior and reward effects of cocaine compared to their wildtype litter mates. In our study, we demonstrate that TRPA1 inhibition in the NAc reduces cocaine activity and dopamine release, and conversely, that TRPA1 is critical for cocaine-induced synaptic strength in dopamine receptor 1-expressing medium spiny neurons. Taken together, our data support that cocaine-induced reward-related behavior and synaptic release of dopamine in the NAc are controlled by TRPA1 and suggest that TRPA1 has therapeutic potential as a target for drug misuse therapies.

2.
Br J Pharmacol ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38751203

RESUMEN

BACKGROUND AND PURPOSE: Cytoplasmic fragile X mental retardation 1 (FMR1)-interacting protein 2 (CYFIP2), as a component of the Wiskott-Aldrich syndrome protein family verprolin-homologous protein (WAVE) regulatory complex, is involved in actin polymerization, contributing to neuronal development and structural plasticity. Mutating serine-968 to phenylalanine (S968F) in CYFIP2 causes an altered cocaine response in mice. The neuronal mechanisms underlying this response remain unknown. EXPERIMENTAL APPROACH: We performed cocaine reward-related behavioural tests and examined changes in synaptic protein phenotypes and neuronal morphology in the nucleus accumbens (NAc), using CYFIP2 S968F knock-in mice to investigate the role of CYFIP2 in regulating cocaine reward. KEY RESULTS: CYFIP2 S968F mutation attenuated cocaine-induced behavioural sensitization and conditioned place preference. Cocaine-induced c-Fos was not observed in the NAc of CYFIP2 S968F knock-in mice. However, c-Fos induction was still evident in the medial prefrontal cortex (mPFC). CYFIP2 S968F mutation altered cocaine-associated CYFIP2 signalling, glutamatergic protein expression and synaptic density in the NAc following cocaine exposure. To further determine the role of CYFIP2 in NAc neuronal activity and the mPFC projecting to the NAc activity-mediating reward response, we used optogenetic tools to stimulate the NAc or mPFC-NAc pathway and observed that optogenetic activation of the NAc or mPFC-NAc pathway induced reward-related behaviours. This effect was not observed in the S968F mutation in CYFIP2. CONCLUSION AND IMPLICATIONS: These results suggest that CYFIP2 plays a role in controlling cocaine-mediated neuronal function and structural plasticity in the NAc, and that CYFIP2 could serve as a target for regulating cocaine reward.

3.
Br J Pharmacol ; 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644533

RESUMEN

BACKGROUND AND PURPOSE: Methamphetamine (METH) use disorder has risen dramatically over the past decade, and there are currently no FDA-approved medications due, in part, to gaps in our understanding of the pharmacological mechanisms related to METH action in the brain. EXPERIMENTAL APPROACH: Here, we investigated whether transient receptor potential ankyrin 1 (TRPA1) mediates each of several METH abuse-related behaviours in rodents: self-administration, drug-primed reinstatement, acquisition of conditioned place preference, and hyperlocomotion. Additionally, METH-induced molecular (i.e., neurotransmitter and protein) changes in the brain were compared between wild-type and TRPA1 knock-out mice. Finally, the relationship between TRPA1 and the dopamine transporter was investigated through immunoprecipitation and dopamine reuptake assays. KEY RESULTS: TRPA1 antagonism blunted METH self-administration and drug-primed reinstatement of METH-seeking behaviour. Further, development of METH-induced conditioned place preference and hyperlocomotion were inhibited by TRPA1 antagonist treatment, effects that were not observed in TRPA1 knock-out mice. Similarly, molecular studies revealed METH-induced increases in dopamine levels and expression of dopamine system-related proteins in wild-type, but not in TRPA1 knock-out mice. Furthermore, pharmacological blockade of TRPA1 receptors reduced the interaction between TRPA1 and the dopamine transporter, thereby increasing dopamine reuptake activity by the transporter. CONCLUSION AND IMPLICATIONS: This study demonstrates that TRPA1 is involved in the abuse-related behavioural effects of METH, potentially through its modulatory role in METH-induced activation of dopaminergic neurotransmission. Taken together, these data suggest that TRPA1 may be a novel therapeutic target for treating METH use disorder.

4.
Arch Pharm Res ; 47(4): 360-376, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38551761

RESUMEN

Novel psychoactive substances (NPSs) are new psychotropic drugs designed to evade substance regulatory policies. 25E-NBOMe (2-(4-ethyl-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine) has recently been identified as an NPS, and its recreational misuse has been reported to be rapidly increasing. However, the psychopharmacological effects and mechanisms of 25E-NBOMe have not been studied. We examined the abuse potential of 25E-NBOMe using the conditioned place preference in male mice and self-administration paradigms in male rats. Additionally, immunoblot assay, enzyme-linked immunosorbent assay, and microdialysis were used to determine the molecular effects of 25E-NBOMe in the nucleus accumbens (NAc). Our data demonstrated that 25E-NBOMe induces conditioned place preference, and the dopaminergic signaling in the NAc mediates these. Following 25E-NBOMe administration, expression of dopamine transporter and dopamine D1 receptor (D1DR) were enhanced in the NAc of male mice, and NAc dopamine levels were reduced in both male mice and rats. Induction of intracellular dopaminergic pathways, DARPP32, and phosphorylation of CREB in the NAc of male mice was also observed. Significantly, pharmacological blockade of D1DR or chemogenetic inhibition of D1DR-expressing medium spiny neurons in the NAc attenuated 25E-NBOMe-induced conditioned place preference in male mice. We also examined the hallucinogenic properties of 25E-NBOMe using the head twitch response test in male mice and found that this behavior was mediated by serotonin 2A receptor activity. Our findings demonstrate that D1DR signaling may govern the addictive potential of 25E-NBOMe. Moreover, our study provides new insights into the potential mechanisms of substance use disorder and the improvement of controlled substance management.


Asunto(s)
Núcleo Accumbens , Psicotrópicos , Receptores de Dopamina D1 , Recompensa , Transducción de Señal , Animales , Masculino , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/antagonistas & inhibidores , Receptores de Dopamina D1/agonistas , Ratones , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Transducción de Señal/efectos de los fármacos , Ratas , Psicotrópicos/farmacología , Ratas Sprague-Dawley , Ratones Endogámicos C57BL , Fenetilaminas/farmacología , Autoadministración , Dopamina/metabolismo
5.
ACS Chem Neurosci ; 14(18): 3487-3498, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37695876

RESUMEN

Adinazolam (ADZ) is a benzodiazepine-type new psychoactive substance (NPS) with anxiolytic, anticonvulsant, and antidepressant effects. High ADZ doses have been reported to impair psychomotor performance and memory; however, the abuse potential and drug dependence of ADZ have not yet been fully investigated. In this study, we evaluated whether ADZ has abuse potential and leads to drug dependence and withdrawal symptoms. The intravenous self-administration (IVSA) test revealed that ADZ (0.01, 0.03, and 0.1 mg/kg/infusion) was self-administered significantly above vehicle levels, suggesting the reinforcing effect of ADZ. Furthermore, we revealed that treatment discontinuation following chronic ADZ administration (3 and 6 mg/kg) caused several somatic withdrawal symptoms in mice, including body tremor. Moreover, it induced motivational withdrawal signs, such as anxiety-related behavior in the elevated plus maze (EPM) test and memory deficits in the Y-maze test. After the IVSA test, an enzyme-linked immunosorbent assay (ELISA) showed that ADZ administration significantly increased the dopamine contents in the thalamus, nucleus accumbens (NAc), and ventral tegmental area (VTA). This finding was also supported by the results of the Western blot. Taken together, our results suggest that ADZ has abuse potential and can lead to drug dependence and withdrawal syndrome.


Asunto(s)
Roedores , Síndrome de Abstinencia a Sustancias , Animales , Ratones , Benzodiazepinas , Fármacos del Sistema Nervioso Central
6.
Arch Toxicol ; 97(2): 581-591, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36355181

RESUMEN

Mepirapim is a novel synthetic cannabinoid that first appeared on the illicit drug market in 2013. In recent years, recreational abuse of Mepirapim has caused serious emergencies, posing a threat to public health. However, there are no legal regulations to prohibit the use of Mepirapim, as there is no scientific evidence for the dangerous pharmacological effects of the drug. In the present study, we investigated the dangerous neurotoxic effects of Mepirapim through behavioral and molecular experiments in mice (ICR/CD1, male, 25-30 g). In particular, based on a previous study that Mepirapim activates the dopamine system, we evaluated whether high-dose Mepirapim [single (15, 30, or 60 mg·kg-1, i.p.) or multiple (8, 15, or 30 mg·kg-1, i.p. × 4 at 2 h intervals)] treatment causes Parkinson's disease-related symptoms through damage to the dopamine system. In the result, we found that Mepirapim treatment caused comprehensive Parkinson's disease-related symptoms, including motor impairment, cognitive deficits and mood disorders. Furthermore, we confirmed the maladaptation in dopamine-related neurochemicals, including decreased dopamine levels, decreased tyrosine hydroxylase expression, and increased α-synuclein expression, in the brains of mice treated with Mepirapim. Taken together, these results indicate that Mepirapim has dangerous neurotoxic effects that induces Parkinson's disease-related behaviors by causing maladaptation of the dopamine system in the brain. Based on these findings, we propose the strict regulation of recreational abuse and therapeutic misuse of Mepirapim.


Asunto(s)
Trastornos del Conocimiento , Síndromes de Neurotoxicidad , Enfermedad de Parkinson , Masculino , Animales , Ratones , Ratones Endogámicos ICR , Dopamina , Encéfalo
7.
Microorganisms ; 10(7)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35889115

RESUMEN

Cronobacter sakazakii continues to be isolated from ready-to-eat fresh and frozen produce, flours, dairy powders, cereals, nuts, and spices, in addition to the conventional sources of powdered infant formulae (PIF) and PIF production environments. To understand the sequence diversity, phylogenetic relationship, and virulence of C. sakazakii originating from plant-origin foods, comparative molecular and genomic analyses, and zebrafish infection (ZI) studies were applied to 88 strains. Whole genome sequences of the strains were generated for detailed bioinformatic analysis. PCR analysis showed that all strains possessed a pESA3-like virulence plasmid similar to reference C. sakazakii clinical strain BAA-894. Core genome analysis confirmed a shared genomic backbone with other C. sakazakii strains from food, clinical and environmental strains. Emerging nucleotide diversity in these plant-origin strains was highlighted using single nucleotide polymorphic alleles in 2000 core genes. DNA hybridization analyses using a pan-genomic microarray showed that these strains clustered according to sequence types (STs) identified by multi-locus sequence typing (MLST). PHASTER analysis identified 185 intact prophage gene clusters encompassing 22 different prophages, including three intact Cronobacter prophages: ENT47670, ENT39118, and phiES15. AMRFinderPlus analysis identified the CSA family class C ß-lactamase gene in all strains and a plasmid-borne mcr-9.1 gene was identified in three strains. ZI studies showed that some plant-origin C. sakazakii display virulence comparable to clinical strains. Finding virulent plant-origin C. sakazakii possessing significant genomic features of clinically relevant STs suggests that these foods can serve as potential transmission vehicles and supports widening the scope of continued surveillance for this important foodborne pathogen.

8.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35745629

RESUMEN

Mepirapim is a synthetic cannabinoid that has recently been abused for recreational purposes. Although serious side effects have been reported from users, the dangerous pharmacological effects of Mepirapim have not been scientifically demonstrated. In this study, we investigated the addictive potential of Mepirapim through an intravenous self-administration test and a conditioned place preference test in rodents. Moreover, to determine whether the pharmacological effects of Mepirapim are mediated by cannabinoid receptors, we investigated whether Mepirapim treatment induces cannabinoid tetrad symptoms in mice. Lastly, to identify Mepirapim induced neurochemical maladaptation in the brains of mice, we performed microdialysis, western blots and neurotransmitter enzyme-linked immunosorbent assays. In the results, Mepirapim supported the maintenance of intravenous self-administration and the development of conditioned place preference. As a molecular mechanism of Mepirapim addiction, we identified a decrease in GABAeric signalling and an increase in dopaminergic signalling in the brain reward circuit. Finally, by confirming the Mepirapim-induced expression of cannabinoid tetrad symptoms, we confirmed that Mepirapim acts pharmacologically through cannabinoid receptor one. Taken together, we found that Mepirapim induces addiction-related behaviours through neurochemical maladaptation in the brain. On the basis of these findings, we propose the strict regulation of recreational abuse of Mepirapim.

9.
J Ginseng Res ; 46(1): 147-155, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35058731

RESUMEN

BACKGROUND: Methamphetamine (METH) is the most widely used psychostimulant and has been known to exhibit reinforcing effects even after long abstinence. We showed the inhibitory effect of Korean Red Ginseng extract (RGE) on METH-induced addictive behaviors in animal models mimicking the human drug-use pattern. METHODS: We first investigated the effect of RGE on the acquisition of METH-induced dependence using self-administration and conditioned place preference (CPP) tests. Additionally, further experiments such as METH-induced motivational behavior and seeking behavior were conducted. To study the underlying mechanism, dopamine receptor, dopamine transporter, and N-methyl-D-aspartate receptor were assessed through Western blot analysis. RESULTS: Treatment with RGE significantly reduced METH-induced self-administration on a fixed-ratio 1 schedule of reinforcement. It could be also decreased a progressive ratio schedule, and inhibited METH-primed reinstatement. In CPP, RGE significantly prevented the development of METH-induced CPP. Moreover, RGE not only shortened the withdrawal period clearly, but also prevented the reinstatement of CPP. RGE treatment also reversed METH-induced overexpression of dopamine transporter, dopamine receptor D1, and NMDA receptor in the nucleus accumbens. CONCLUSION: Our findings reflect that RGE has therapeutic potential to suppress METH-induced addictive behaviors by regulating dopaminergic and NMDAergic system.

10.
Br J Pharmacol ; 178(19): 3869-3887, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33987827

RESUMEN

BACKGROUND AND PURPOSE: Methoxphenidine is a dissociative-based novel psychoactive designer drug. Although fatal accidents from methoxphenidine abuse have been reported, recreational use of the drug continues. We aim to provide scientific supportfor legal regulation of recreational abuse of methoxphenidine by demonstrating its the pharmacological action. EXPERIMENTAL APPROACH: Addictive potential of methoxphenidine was examined using intravenous self-administration test with rats and conditioned place preference test with mice. Further, a series of behavioural tests (open field test, elevated plus maze test, novel object recognition test, social interaction test and tail suspension test) performed to assess whether methoxphenidine caused schizophrenia-related symptoms in mice. Additionally, neurotransmitter enzyme-linked immunosorbent assay and western blot were used to confirm methoxphenidine-induced neurochemical changes in specific brain regions related to abnormal behaviours. KEY RESULTS: Methoxphenidine caused addictive behaviours via reinforcing and rewarding effects. Consistently, methoxphenidine induced over-activation of dopamine pathways in the nuclear accumbens, indicating activation of the brain reward circuit. Also, methoxphenidine caused all categories of schizophrenia-related symptoms, including positive symptoms (hyperactivity, impulsivity), negative symptoms (anxiety, social withdrawal, depression) and cognitive impairment. Consistently, methoxphenidine led to the disruption of the hippocampal-prefrontal cortex pathway that is considered to be pathological involved in schizophrenia. CONCLUSIONS AND IMPLICATIONS: We demonastrate that methoxphenidine causes addictive and schizophrenia-like behaviours and induces neurochemical changes in brain regions associated with these behaviours. We propose that methoxphenidine could be used in developing useful animal disease models and that it also requires legal restrictions on its recreational use.


Asunto(s)
Conducta Adictiva , Esquizofrenia , Animales , Conducta Adictiva/inducido químicamente , Encéfalo , Ratones , Piperidinas , Ratas
12.
Arch Toxicol ; 95(4): 1413-1429, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33515270

RESUMEN

2C (2C-x) is the general name for the family of phenethylamines containing two methoxy groups at the 2 and 5 positions of the benzene ring. The abuse of 2C family drugs has grown rapidly, although the abuse potential and neurotoxic properties of 2C drugs have not yet been fully investigated. In this study, we investigated the abuse potential and neurotoxicity of 4-chloro-2,5-dimethoxyphenethylamine (2C-C) and 2,5-dimethoxy-4-propylphenethylamine (2C-P). We found that 2C-C and 2C-P produced conditioned place preference in a dose-dependent manner in mice, and increased self-administration in rats, suggesting that 2C-C and 2C-P have abuse potential. To investigate the neurotoxicity of 2C-C and 2C-P, we examined motor performance and memory impairment after high doses of 2C-C and 2C-P. High doses of 2C-C and 2C-P decreased locomotor activity, rota-rod performance, and lower Y-maze test, novel objective recognition test, and passive avoidance test scores. We also observed that 2C-C and 2C-P affected expression levels of the D1 dopamine receptor, D2 dopamine receptor, dopamine transporter, and phospho-dopamine transporter in the nucleus accumbens and the medial prefrontal cortex, and increased c-Fos immuno-positive cells in the nucleus accumbens. Moreover, high doses of 2C-C and 2C-P induced microglial activation, which is involved in the inflammatory reaction in the striatum. These results suggest that 2C-C and 2C-P have abuse potential by affecting dopaminergic signaling and induce neurotoxicity via initiating neuroinflammation at high doses.


Asunto(s)
Drogas de Diseño/toxicidad , Síndromes de Neurotoxicidad/etiología , Fenetilaminas/toxicidad , Animales , Drogas de Diseño/administración & dosificación , Dopamina/metabolismo , Relación Dosis-Respuesta a Droga , Inflamación/inducido químicamente , Inflamación/patología , Locomoción/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Síndromes de Neurotoxicidad/fisiopatología , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Fenetilaminas/administración & dosificación , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Ratas , Ratas Sprague-Dawley
13.
Biomol Ther (Seoul) ; 29(2): 127-134, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32812529

RESUMEN

Neuroinflammation-a common pathological feature of neurodegenerative disorders such as Alzheimer's disease-is mediated by microglial activation. Thus, inhibiting microglial activation is vital for treating various neurological disorders. 7,3',4'-Trihydroxyisoflavone (THIF)-a secondary metabolite of the soybean compound daidzein-possesses antioxidant and anticancer properties. However, the effects of 7,3',4'-THIF on microglial activation have not been explored. In this study, antineuroinflammatory effects of 7,3',4'-THIF in lipopolysaccharide (LPS)-stimulated BV2 microglial cells were examined. 7,3',4'-THIF significantly suppressed the production of the proinflammatory mediators nitric oxide (NO), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) as well as of the proinflammatory cytokine interleukin-6 (IL-6) in LPS-stimulated BV2 microglial cells. Moreover, 7,3',4'-THIF markedly inhibited reactive oxygen species (ROS) generation. Western blotting revealed that 7,3',4'-THIF diminished LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), glycogen synthase kinase-3ß (GSK-3ß), and nuclear factor kappa B (NF-κB). Overall, 7,3',4'-THIF exerts antineuroinflammatory effects against LPS-induced microglial activation by suppressing mitogen-activated protein kinase (MAPK) and NF-κB signaling, ultimately reducing proinflammatory responses. Therefore, these antineuroinflammatory effects of 7,3',4'-THIF suggest its potential as a therapeutic agent for neurodegenerative disorders.

14.
Microorganisms ; 8(2)2020 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-32046365

RESUMEN

: Cronobacter species are considered an opportunistic group of foodborne pathogenic bacteria capable of causing both intestinal and systemic human disease. This review describes common virulence themes shared among the seven Cronobacter species and describes multiple exoproteins secreted by Cronobacter, many of which are bacterial toxins that may play a role in human disease. The review will particularly concentrate on the virulence factors secreted by C. sakazakii, C. malonaticus, and C. turicensis, which are the primary human pathogens of interest. It has been discovered that various species-specific virulence factors adversely affect a wide range of eukaryotic cell processes including protein synthesis, cell division, and ion secretion. Many of these factors are toxins which have been shown to also modulate the host immune response. These factors are encoded on a variety of mobile genetic elements such as plasmids and transposons; this genomic plasticity implies ongoing re-assortment of virulence factor genes which has complicated our efforts to categorize Cronobacter into sharply defined genomic pathotypes.

15.
Microorganisms ; 7(11)2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31726673

RESUMEN

Cronobacter species are a group of foodborne pathogenic bacteria that cause both intestinal and systemic human disease in individuals of all age groups. Little is known about the mechanisms that Cronobacter employ to survive and persist in foods and other environments. Toxin-antitoxin (TA) genes are thought to play a role in bacterial stress physiology, as well as in the stabilization of horizontally-acquired re-combinatorial elements such as plasmids, phage, and transposons. TA systems have been implicated in the formation of a persistence phenotype in some bacterial species including Escherichia coli and Salmonella. This project's goal was to understand the phylogenetic relatedness among TA genes present in Cronobacter. Preliminary studies showed that two typical toxin genes, fic and hipA followed species evolutionary lines. A local database of 22 TA homologs was created for Cronobacter sakazakii and a Python version 3 shell script was generated to extract TA FASTA sequences present in 234 C. sakazakii genomes previously sequenced as part of Center for Food Safety and Applied Nutrition's (CFSAN) GenomeTrakr project. BLAST analysis showed that not every C. sakazakii strain possessed all twenty-two TA loci. Interestingly, some strains contained either a toxin or an antitoxin component, but not both. Five common toxin genes: ESA_00258 (parDE toxin-antitoxin family), ESA_00804 (relBE family), ESA_01887 (relBE family), ESA_03838 (relBE family), and ESA_04273 (YhfG-Fic family) were selected for PCR analysis and the primers were designed to detect these genes. PCR analysis showed that 55 of 63 strains possessed three of these genes Sequence analysis identified homologs of the target genes and some of the strains were PCR-negative for one or more of the genes, pointing to potential nucleotide polymorphisms in those loci or that these toxin genes were absent. Phylogenetic studies using a Cronobacter pan genomic microarray showed that for the most part TAs follow species evolutionary lines except for a few toxin genes possessed by some C. malonaticus and C. universalis strains; this demonstrates that some TA orthologues share a common phylogeny. Within the C. sakazakii strains, the prevalence and distribution of these TA homologs by C. sakazakii strain BAA-894 (a powdered infant formula isolate) followed sequence-type evolutionary lineages. Understanding the phylogeny of TAs among the Cronobacter species is essential to design future studies to realize the physiological mechanisms and roles for TAs in stress adaptation and persistence of Cronobacter within food matrices and food processing environments.

16.
Stand Genomic Sci ; 13: 35, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30519380

RESUMEN

Cronobacter sakazakii is a Gram-negative opportunistic pathogen that causes life- threatening infantile infections, such as meningitis, septicemia, and necrotizing enterocolitis, as well as pneumonia, septicemia, and urinary tract and wound infections in adults. Here, we report 26 draft genome sequences of C. sakazakii, which were obtained from dried spices from the USA, the Middle East, China, and the Republic of Korea. The average genome size of the C. sakazakii genomes was 4393 kb, with an average of 4055 protein coding genes, and an average genome G + C content of 56.9%. The genomes contained genes related to carbohydrate transport and metabolism, amino acid transport and metabolism, and cell wall/membrane biogenesis. In addition, we identified genes encoding proteins involved in osmotic responses such as DnaJ, Aquaproin Z, ProQ, and TreF, as well as virulence-related and heat shock-related proteins. Interestingly, a metabolic island comprised of a variably-sized xylose utilization operon was found within the spice-associated C. sakazakii genomes, which supports the hypothesis that plants may serve as transmission vectors or alternative hosts for Cronobacter species. The presence of the genes identified in this study can support the remarkable phenotypic traits of C. sakazakii such as the organism's capabilities of adaptation and survival in response to adverse growth environmental conditions (e.g. osmotic and desiccative stresses). Accordingly, the genome analyses provided insights into many aspects of physiology and evolutionary history of this important foodborne pathogen.

17.
Genome Announc ; 6(15)2018 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-29650569

RESUMEN

Here, we present draft genome sequences of 29 Cronobacter sakazakii isolates obtained from foods of plant origin and dried-food manufacturing facilities. Assemblies and annotations resulted in genome sizes ranging from 4.3 to 4.5 Mb and 3,977 to 4,256 gene-coding sequences with G+C contents of ∼57.0%.

18.
Gut Pathog ; 10: 11, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29556252

RESUMEN

BACKGROUND: Malonate utilization, an important differential trait, well recognized as being possessed by six of the seven Cronobacter species is thought to be largely absent in Cronobacter sakazakii (Csak). The current study provides experimental evidence that confirms the presence of a malonate utilization operon in 24 strains of sequence type (ST) 64, obtained from Europe, Middle East, China, and USA; it offers explanations regarding the genomic diversity and phylogenetic relatedness among these strains, and that of other C. sakazakii strains. RESULTS: In this study, the presence of a malonate utilization operon in these strains was initially identified by DNA microarray analysis (MA) out of a pool of 347 strains obtained from various surveillance studies involving clinical, spices, milk powder sources and powdered infant formula production facilities in Ireland and Germany, and dried dairy powder manufacturing facilities in the USA. All ST64 C. sakazakii strains tested could utilize malonate. Zebrafish embryo infection studies showed that C. sakazakii ST64 strains are as virulent as other Cronobacter species. Parallel whole genome sequencing (WGS) and MA showed that the strains phylogenetically grouped as a separate clade among the Csak species cluster. Additionally, these strains possessed the Csak O:2 serotype. The nine-gene, ~ 7.7 kbp malonate utilization operon was located in these strains between two conserved flanking genes, gyrB and katG. Plasmidotyping results showed that these strains possessed the virulence plasmid pESA3, but in contrast to the USA ST64 Csak strains, ST64 Csak strains isolated from sources in Europe and the Middle East, did not possess the type six secretion system effector vgrG gene. CONCLUSIONS: Until this investigation, the presence of malonate-positive Csak strains, which are associated with foods and clinical cases, was under appreciated. If this trait was used solely to identify Cronobacter strains, many strains would likely be misidentified. Parallel WGS and MA were useful in characterizing the total genome content of these Csak O:2, ST64, malonate-positive strains and further provides an understanding of their phylogenetic relatedness among other virulent C. sakazakii strains.

19.
Eur J Obstet Gynecol Reprod Biol ; 121(2): 236-42, 2005 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16054969

RESUMEN

OBJECTIVE: This study was undertaken to compare the patterns of menstruation-related problems between adolescents and premarital women who visited the Young Lady Clinic (YLC) at Samsung Medical Center. STUDY DESIGN: This study includes 646 adolescents (aged 10-20, group I) and 591 premarital young women (aged 21-30, group II) who visited the YLC with menstruation-related problems (amenorrhea, oligomenorrhea, dysmenorrhea, abnormal uterine bleeding (AUB), etc.). Comparisons between the two groups were made with the use of chi(2)-test and Fisher's exact test. RESULTS: For primary amenorrhea, hypogonadotropic hypogonadism was more frequent in group I (p = 0.007), and eugonadism in group II (p = 0.0025). Chromosomal competent ovarian failure (p = 0.003) and hyperprolactinemia (p < 0.001) were more frequent causes of secondary amenorrhea in group II. Endometriosis without ovarian endometrioma was the more frequent laparoscopic finding for patients of group I (p = 0.0429). Regarding AUB, dysfunctional uterine bleeding (DUB) was more frequent for group I (p < 0.001) and endocrinopathies (p = 0.006) and benign lesions of genital tract (p < 0.0001) for group II. CONCLUSION: The menstruation-related problems showed different features for each group. These data might give us an insight, at least in part, into the menstruation-related problems of Korean young women.


Asunto(s)
Trastornos de la Menstruación/clasificación , Trastornos de la Menstruación/etiología , Adolescente , Adulto , Factores de Edad , Niño , Femenino , Humanos , Corea (Geográfico) , Trastornos de la Menstruación/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...