Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6227, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37802979

RESUMEN

Air pollution increases cardiovascular and respiratory-disease risk, and reduces cognitive and physical performance. Food production, especially of animal products, is a major source of methane and ammonia emissions which contribute to air pollution through the formation of particulate matter and ground-level ozone. Here we show that dietary changes towards more plant-based flexitarian, vegetarian, and vegan diets could lead to meaningful reductions in air pollution with health and economic benefits. Using systems models, we estimated reductions in premature mortality of 108,000-236,000 (3-6%) globally, including 20,000-44,000 (9-21%) in Europe, 14,000-21,000 (12-18%) in North America, and 49,000-121,000 (4-10%) in Eastern Asia. We also estimated greater productivity, increasing economic output by USD 0.6-1.3 trillion (0.5-1.1%). Our findings suggest that incentivising dietary changes towards more plant-based diets could be a valuable mitigation strategy for reducing ambient air pollution and the associated health and economic impacts, especially in regions with intensive agriculture and high population density.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Contaminantes Atmosféricos/análisis , Contaminación del Aire/prevención & control , Ozono/análisis , Material Particulado/análisis , Asia Oriental
4.
Ecosyst Serv ; 51: 101344, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34631401

RESUMEN

Human intervention on land enhances the supply of provisioning ecosystem services, but also exerts pressures on ecosystem functioning. We utilize the Human Appropriation of Net Primary Production (HANPP) framework to assess these relations in European agriculture, for 220 NUTS2 regions. We put a particular focus on individual land system components, i.e. croplands, grasslands, and livestock husbandry and relate associated biomass flows to the potential net primary productivity NPP. For the reference year 2012, we find that 469 g dm/m2/yr (38% of NPPpot) of used biomass were harvested on total agricultural land, and that one tonne of annually harvested biomass is associated with 1.67 tonnes dry matter (dm) of HANPP, ranging from 0.8 to 8.1 tonnes dry matter (dm) across all regions. EU livestock systems are a large consumer of these provisioning ecosystem services, and invoking higher HANPP flows than current HANPP on cropland and grassland within the EU, even exceeding the potential NPP in one fifth of all NUTS2 regions. NPP remaining in ecosystems after provisioning society with biomass is essential for the functioning of ecosystems and is 563 g dm/m2/yr or 46% of NPPpot on all agricultural land. We conclude from our analysis that the HANPP framework provides useful indicators that should be integrated in future ecosystem service assessments.

5.
Glob Food Sec ; 29: 100546, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34178596

RESUMEN

Growing acknowledgement that food systems require transformation, demands comprehensive sustainability assessments that can support decision-making and sustainability governance. To do so, assessment frameworks must be able to make trade-offs and synergies visible and allow for inclusive negotiation on food system outcomes relevant to diverse food system actors. This paper reviews literature and frameworks and builds on stakeholder input to present a Sustainability Compass made up of a comprehensive set of metrics for food system assessments. The Compass defines sustainability scores for four societal goals, underpinned by areas of concern. We demonstrate proof of concept of the operationalization of the approach and its metrics. The Sustainability Compass is able to generate comprehensive food system insights that enables reflexive evaluation and multi-actor negotiation for policy making.

6.
Glob Food Sec ; 28: 100408, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33738182

RESUMEN

The 'food system' urgently needs a sustainable transformation. Two major challenges have to be solved: the food system has to provide food security with healthy, accessible, affordable, safe and diverse food for all, and it has to do so within the safe operating space of the planetary boundaries, where the pollution from reactive nitrogen turned out to be the largest bottleneck. Here we argue that thinking strategically about how to balance nitrogen flows throughout the food system will make current food systems more resilient and robust. Looking from a material and a governance perspective on the food system, we highlight major nitrogen losses and policy blind spots originating from a compartmentalization of food system spheres. We conclude that a participatory and integrated approach to manage nitrogen flows throughout the food system is necessary to stay within regional and global nitrogen boundaries, and will additionally provide synergies with a sustainable and healthy diet for all.

7.
Glob Food Sec ; 28: 100451, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33738183

RESUMEN

A call to governments to enact a strategy for a sustainable food system is high on the global agenda. A sustainable food system presupposes a need to go beyond a view of the food system as linear and narrow, to comprehend the food system as dynamic and interlinked, which involves understanding social, economic and ecological outcomes and feedbacks of the system. As such, it should be accompanied by strategic, collaborative, transparent, inclusive, and reflexive agenda-setting process. The concepts of, directionality relating to an agreed vision for a future sustainable food system, and, reflexivity which describes the capacity for critical deliberation and responsiveness, are particularly important. Based on those concepts, this paper proposes an evaluative framework to assess tools and instruments applied during the agenda-setting stage. We apply the evaluative framework to recent food policy processes in Finland and Sweden, revealing that their agenda-setting design cannot be assessed as fully addressing both directionality and reflexivity, thus possibly falling short of the policy design needed for enable more transformative policy approaches.

8.
Glob Environ Change ; 65: 102159, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32982074

RESUMEN

Scenarios describe plausible and internally consistent views of the future. They can be used by scientists, policymakers and entrepreneurs to explore the challenges of global environmental change given an appropriate level of spatial and sectoral detail and systematic development. We followed a nine-step protocol to extend and enrich a set of global scenarios - the Shared Socio-economic Pathways (SSPs) - providing regional and sectoral detail for European agriculture and food systems using a one-to-one nesting participatory approach. The resulting five Eur-Agri-SSPs are titled (1) Agriculture on sustainable paths, (2) Agriculture on established paths, (3) Agriculture on separated paths, (4) Agriculture on unequal paths, and (5) Agriculture on high-tech paths. They describe alternative plausible qualitative evolutions of multiple drivers of particular importance and high uncertainty for European agriculture and food systems. The added value of the protocol-based storyline development process lies in the conceptual and methodological transparency and rigor; the stakeholder driven selection of the storyline elements; and consistency checks within and between the storylines. Compared to the global SSPs, the five Eur-Agri-SSPs provide rich thematic and regional details and are thus a solid basis for integrated assessments of agriculture and food systems and their response to future socio-economic and environmental changes.

9.
Glob Environ Change ; 61: 102029, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32601516

RESUMEN

Humanity's transformation of the nitrogen cycle has major consequences for ecosystems, climate and human health, making it one of the key environmental issues of our time. Understanding how trends could evolve over the course of the 21st century is crucial for scientists and decision-makers from local to global scales. Scenario analysis is the primary tool for doing so, and has been applied across all major environmental issues, including nitrogen pollution. However, to date most scenario efforts addressing nitrogen flows have either taken a narrow approach, focusing on a singular impact or sector, or have not been integrated within a broader scenario framework - a missed opportunity given the multiple environmental and socio-economic impacts that nitrogen pollution exacerbates. Capitalizing on our expanding knowledge of nitrogen flows, this study introduces a framework for new nitrogen-focused narratives based on the widely used Shared Socioeconomic Pathways that include all the major nitrogen-polluting sectors (agriculture, industry, transport and wastewater). These new narratives are the first to integrate the influence of climate and other environmental pollution control policies, while also incorporating explicit nitrogen-control measures. The next step is for them to be used as model inputs to evaluate the impact of different nitrogen production, consumption and loss trajectories, and thus advance understanding of how to address environmental impacts while simultaneously meeting key development goals. This effort is an important step in assessing how humanity can return to the planetary boundary of this essential element over the coming century.

10.
Glob Food Sec ; 25: 100368, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32566471

RESUMEN

Ensuring global food security is one of the challenges of our society. Nitrogen availability is key for food production, while contributing to different environmental impacts. This paper aims firstly to assess nitrogen flows and to highlight hotspots of inefficient use of nitrogen along the European food chain, excluding primary production. Secondly, it aims to analyse the potential for reducing the identified inefficiencies and increase nitrogen circularity. A baseline and three scenarios-reflecting waste targets reported in EU legislation and technological improvements- are analysed. Results highlighted a potential to reduce reactive nitrogen emissions up to more than 45%. However, this would imply the conversion of reactive nitrogen in molecular nitrogen, such as urea, before re-entering in the food chain. Techniques to harvest reactive nitrogen directly from urine and wastewater are considered promising to increase nitrogen use efficiency along the food chain.

11.
Sci Total Environ ; 730: 139151, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32388381

RESUMEN

Sustainable food systems are high on the political and research agendas. One of the three pillars of sustainability is environmental sustainability. We argue that, when defining related policies, such as policies under the European Green Deal, both environmental pressures and impacts carry important and complementary information and should be used in combination. Although the environmental focus of a sustainable food system is to have a positive or neutral impact on the natural environment, addressing pressures is necessary to achieve this goal. We show this by means of the pressure water use (or water footprint) and its related impact water stress, by means of different arguments: 1) Water use and water stress are only weakly correlated; 2) water use can be evaluated towards a benchmark, addressing resource efficiency; 3) water use is used for resource allocation assessments within or between economic sectors; 4) water amounts are needed to set fair share amounts for citizens, regions, countries or on a global level 5) the pressure water use requires less data, whereas water stress assessments have more uncertainty and 6) both provide strong communication tools to citizens, including for food packaging labelling. As a result, we present a water quantity sustainability scheme, that addresses both water use and water stress, and can be used in support of food system policies, including food package labelling.

12.
Glob Chang Biol ; 26(4): 2584-2598, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31923343

RESUMEN

Cover crops (CC) promote the accumulation of soil organic carbon (SOC), which provides multiple benefits to agro-ecosystems. However, additional nitrogen (N) inputs into the soil could offset the CO2 mitigation potential due to increasing N2 O emissions. Integrated management approaches use organic and synthetic fertilizers to maximize yields while minimizing impacts by crop sequencing adapted to local conditions. The goal of this work was to test whether integrated management, centered on CC adoption, has the potential to maximize SOC stocks without increasing the soil greenhouse gas (GHG) net flux and other agro-environmental impacts such as nitrate leaching. To this purpose, we ran the DayCent bio-geochemistry model on 8,554 soil sampling locations across the European Union. We found that soil N2 O emissions could be limited with simple crop sequencing rules, such as switching from leguminous to grass CC when the GHG flux was positive (source). Additional reductions of synthetic fertilizers applications are possible through better accounting for N available in green manures and from mineralization of soil reservoirs while maintaining cash crop yields. Therefore, our results suggest that a CC integrated management approach can maximize the agro-environmental performance of cropping systems while reducing environmental trade-offs.

13.
J Environ Manage ; 252: 109701, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31629178

RESUMEN

Moving towards a more sustainable future requires concerted actions, particularly in the context of global climate change. Integrated assessments of agricultural systems (IAAS) are considered valuable tools to provide sound information for policy and decision-making. IAAS use storylines to define socio-economic and environmental framework assumptions. While a set of qualitative global storylines, known as the Shared Socio-economic Pathways (SSPs), is available to inform integrated assessments at large scales, their spatial resolution and scope is insufficient for regional studies in agriculture. We present a protocol to operationalize the development of Shared Socio-economic Pathways for European agriculture - Eur-Agri-SSPs - to support IAAS. The proposed design of the storyline development process is based on six quality criteria: plausibility, vertical and horizontal consistency, salience, legitimacy, richness and creativity. Trade-offs between these criteria may occur. The process is science-driven and iterative to enhance plausibility and horizontal consistency. A nested approach is suggested to link storylines across scales while maintaining vertical consistency. Plausibility, legitimacy, salience, richness and creativity shall be stimulated in a participatory and interdisciplinary storyline development process. The quality criteria and process design requirements are combined in the protocol to increase conceptual and methodological transparency. The protocol specifies nine working steps. For each step, suitable methods are proposed and the intended level and format of stakeholder engagement are discussed. A key methodological challenge is to link global SSPs with regional perspectives provided by the stakeholders, while maintaining vertical consistency and stakeholder buy-in. We conclude that the protocol facilitates systematic development and evaluation of storylines, which can be transferred to other regions, sectors and scales and supports inter-comparisons of IAAS.


Asunto(s)
Agricultura , Cambio Climático , Factores Socioeconómicos
14.
Sci Total Environ ; 693: 133642, 2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31635013

RESUMEN

The number of publications on environmental footprint indicators has been growing rapidly, but with limited efforts to integrate different footprints into a coherent framework. Such integration is important for comprehensive understanding of environmental issues, policy formulation and assessment of trade-offs between different environmental concerns. Here, we systematize published footprint studies and define a family of footprints that can be used for the assessment of environmental sustainability. We identify overlaps between different footprints and analyse how they relate to the nine planetary boundaries and visualize the crucial information they provide for local and planetary sustainability. In addition, we assess how the footprint family delivers on measuring progress towards Sustainable Development Goals (SDGs), considering its ability to quantify environmental pressures along the supply chain and relating them to the water-energy-food-ecosystem (WEFE) nexus and ecosystem services. We argue that the footprint family is a flexible framework where particular members can be included or excluded according to the context or area of concern. Our paper is based upon a recent workshop bringing together global leading experts on existing environmental footprint indicators.

15.
J Environ Manage ; 241: 293-304, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31009817

RESUMEN

Livestock production is important for food security, nutrition, and landscape maintenance, but it is associated with several environmental impacts. To assess the risk and benefits arising from livestock production, transparent and robust indicators are required, such as those offered by life cycle assessment. A central question in such approaches is how environmental burden is allocated to livestock products and to manure that is re-used for agricultural production. To incentivize sustainable use of manure, it should be considered as a co-product as long as it is not disposed of, or wasted, or applied in excess of crop nutrient needs, in which case it should be treated as a waste. This paper proposes a theoretical approach to define nutrient requirements based on nutrient response curves to economic and physical optima and a pragmatic approach based on crop nutrient yield adjusted for nutrient losses to atmosphere and water. Allocation of environmental burden to manure and other livestock products is then based on the nutrient value from manure for crop production using the price of fertilizer nutrients. We illustrate and discuss the proposed method with two case studies.


Asunto(s)
Fertilizantes , Estiércol , Agricultura , Animales , Producción de Cultivos , Ganado
16.
Mitig Adapt Strateg Glob Chang ; 23(3): 451-468, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30093833

RESUMEN

Taking the European Union (EU) as a case study, we simulate the application of non-uniform national mitigation targets to achieve a sectoral reduction in agricultural non-carbon dioxide (CO2) greenhouse gas (GHG) emissions. Scenario results show substantial impacts on EU agricultural production, in particular, the livestock sector. Significant increases in imports and decreases in exports result in rather moderate domestic consumption impacts but induce production increases in non-EU countries that are associated with considerable emission leakage effects. The results underline four major challenges for the general integration of agriculture into national and global climate change mitigation policy frameworks and strategies, as they strengthen requests for (1) a targeted but flexible implementation of mitigation obligations at national and global level and (2) the need for a wider consideration of technological mitigation options. The results also indicate that a globally effective reduction in agricultural emissions requires (3) multilateral commitments for agriculture to limit emission leakage and may have to (4) consider options that tackle the reduction in GHG emissions from the consumption side.

17.
PLoS One ; 12(4): e0176111, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28448607

RESUMEN

Two objectives of the Common Agricultural Policy post-2013 (CAP, 2014-2020) in the European Union (EU) are the sustainable management of natural resources and climate smart agriculture. To understand the CAP impact on these priorities, the Land Use/Cover statistical Area frame Survey (LUCAS) employs direct field observations and soil sub-sampling across the EU. While a huge amount of information can be retrieved from LUCAS points for monitoring the environmental status of agroecosystems and assessing soil carbon sequestration, a fundamental aspect relating to climate change action is missing, namely nitrous oxide (N2O) soil emissions. To fill this gap, we ran the DayCent biogeochemistry model for more than 11'000 LUCAS sampling points under agricultural use, assessing also the model uncertainty. The results showed that current annual N2O emissions followed a skewed distribution with a mean and median values of 2.27 and 1.71 kg N ha-1 yr-1, respectively. Using a Random Forest regression for upscaling the modelled results to the EU level, we estimated direct soil emissions of N2O in the range of 171-195 Tg yr-1 of CO2eq. Moreover, the direct regional upscaling using modelled N2O emissions in LUCAS points was on average 0.95 Mg yr-1 of CO2eq. per hectare, which was within the range of the meta-model upscaling (0.92-1.05 Mg ha-1 yr-1 of CO2eq). We concluded that, if information on management practices would be made available and model bias further reduced by N2O flux measurement at representative LUCAS points, the combination of the land use/soil survey with a well calibrated biogeochemistry model may become a reference tool to support agricultural, environmental and climate policies.


Asunto(s)
Monitoreo del Ambiente , Modelos Teóricos , Óxido Nitroso/análisis , Suelo/química , Agricultura , Secuestro de Carbono , Efecto Invernadero
18.
PLoS One ; 10(5): e0127554, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26018186

RESUMEN

About 25% of European livestock intake is based on permanent and sown grasslands. To fulfill rising demand for animal products, an intensification of livestock production may lead to an increased consumption of crop and compound feeds. In order to preserve an economically and environmentally sustainable agriculture, a more forage based livestock alimentation may be an advantage. However, besides management, grassland productivity is highly vulnerable to climate (i.e., temperature, precipitation, CO2 concentration), and spatial information about European grassland productivity in response to climate change is scarce. The process-based vegetation model ORCHIDEE-GM, containing an explicit representation of grassland management (i.e., herbage mowing and grazing), is used here to estimate changes in potential productivity and potential grass-fed ruminant livestock density across European grasslands over the period 1961-2010. Here "potential grass-fed ruminant livestock density" denotes the maximum density of livestock that can be supported by grassland productivity in each 25 km × 25 km grid cell. In reality, livestock density could be higher than potential (e.g., if additional feed is supplied to animals) or lower (e.g., in response to economic factors, pedo-climatic and biotic conditions ignored by the model, or policy decisions that can for instance reduce livestock numbers). When compared to agricultural statistics (Eurostat and FAOstat), ORCHIDEE-GM gave a good reproduction of the regional gradients of annual grassland productivity and ruminant livestock density. The model however tends to systematically overestimate the absolute values of productivity in most regions, suggesting that most grid cells remain below their potential grassland productivity due to possible nutrient and biotic limitations on plant growth. When ORCHIDEE-GM was run for the period 1961-2010 with variable climate and rising CO2, an increase of potential annual production (over 3%) per decade was found: 97% of this increase was attributed to the rise in CO2, -3% to climate trends and 15% to trends in nitrogen fertilization and deposition. When compared with statistical data, ORCHIDEE-GM captures well the observed phase of climate-driven interannual variability in grassland production well, whereas the magnitude of the interannual variability in modeled productivity is larger than the statistical data. Regional grass-fed livestock numbers can be reproduced by ORCHIDEE-GM based on its simple assumptions and parameterization about productivity being the only limiting factor to define the sustainable number of animals per unit area. Causes for regional model-data misfits are discussed, including uncertainties in farming practices (e.g., nitrogen fertilizer application, and mowing and grazing intensity) and in ruminant diet composition, as well as uncertainties in the statistical data and in model parameter values.


Asunto(s)
Ganado/crecimiento & desarrollo , Poaceae/crecimiento & desarrollo , Rumiantes/crecimiento & desarrollo , Agricultura/métodos , Animales , Dióxido de Carbono/química , Cambio Climático , Ecosistema , Europa (Continente) , Fertilizantes , Pradera , Modelos Teóricos , Nitrógeno/química , Temperatura
19.
Integr Environ Assess Manag ; 11(3): 404-16, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25655187

RESUMEN

Direct greenhouse gas (GHG) emissions from agriculture accounted for approximately 10% of total European Union (EU) emissions in 2010. To reduce farming-related GHG emissions, appropriate policy measures and supporting tools for promoting low-C farming practices may be efficacious. This article presents the methodology and testing results of a new EU-wide, farm-level C footprint calculator. The Carbon Calculator quantifies GHG emissions based on international standards and technical specifications on Life Cycle Assessment (LCA) and C footprinting. The tool delivers its results both at the farm level and as allocated to up to 5 main products of the farm. In addition to the quantification of GHG emissions, the calculator proposes mitigation options and sequestration actions that may be suitable for individual farms. The results obtained during a survey made on 54 farms from 8 EU Member States are presented. These farms were selected in view of representing the diversity of farm types across different environmental zones in the EU. The results of the C footprint of products in the data set show wide range of variation between minimum and maximum values. The results of the mitigation actions showed that the tool can help identify practices that can lead to substantial emission reductions. To avoid burden-shifting from climate change to other environmental issues, the future improvements of the tool should include incorporation of other environmental impact categories in place of solely focusing on GHG emissions.


Asunto(s)
Agricultura/estadística & datos numéricos , Huella de Carbono , Carbono/análisis , Monitoreo del Ambiente/métodos , Cambio Climático , Unión Europea
20.
Glob Chang Biol ; 19(1): 3-18, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23504717

RESUMEN

The livestock sector contributes considerably to global greenhouse gas emissions (GHG). Here, for the year 2007 we examined GHG emissions in the EU27 livestock sector and estimated GHG emissions from production and consumption of livestock products; including imports, exports and wastage. We also reviewed available mitigation options and estimated their potential. The focus of this review is on the beef and dairy sector since these contribute 60% of all livestock production emissions. Particular attention is paid to the role of land use and land use change (LULUC) and carbon sequestration in grasslands. GHG emissions of all livestock products amount to between 630 and 863 Mt CO2 e, or 12-17% of total EU27 GHG emissions in 2007. The highest emissions aside from production, originate from LULUC, followed by emissions from wasted food. The total GHG mitigation potential from the livestock sector in Europe is between 101 and 377 Mt CO2 e equivalent to between 12 and 61% of total EU27 livestock sector emissions in 2007. A reduction in food waste and consumption of livestock products linked with reduced production, are the most effective mitigation options, and if encouraged, would also deliver environmental and human health benefits. Production of beef and dairy on grassland, as opposed to intensive grain fed production, can be associated with a reduction in GHG emissions depending on actual LULUC emissions. This could be promoted on rough grazing land where appropriate.


Asunto(s)
Restauración y Remediación Ambiental , Gases , Efecto Invernadero , Ganado , Animales , Europa (Continente)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...