Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Exp Med ; 221(3)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38353705

RESUMEN

The function of transient receptor potential vanilloid (TRPV) cation channels governing B cell activation remains to be explored. We present evidence that TRPV2 is highly expressed in B cells and plays a crucial role in the formation of the B cell immunological synapse and B cell activation. Physiologically, TRPV2 expression level is positively correlated to influenza-specific antibody production and is low in newborns and seniors. Pathologically, a positive correlation is established between TRPV2 expression and the clinical manifestations of systemic lupus erythematosus (SLE) in adult and child SLE patients. Correspondingly, mice with deficient TRPV2 in B cells display impaired antibody responses following immunization. Mechanistically, the pore and N-terminal domains of TRPV2 are crucial for gating cation permeation and executing mechanosensation in B cells upon antigen stimulation. These processes synergistically contribute to membrane potential depolarization and cytoskeleton remodeling within the B cell immunological synapse, fostering efficient B cell activation. Thus, TRPV2 is critical in augmenting B cell activation and function.


Asunto(s)
Canales Iónicos , Lupus Eritematoso Sistémico , Recién Nacido , Adulto , Niño , Humanos , Animales , Ratones , Activación de Linfocitos , Anticuerpos Antivirales , Linfocitos B , Cationes , Canales Catiónicos TRPV/genética
3.
Cell Death Dis ; 14(2): 165, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849492

RESUMEN

Chronic inflammation promotes the tumorigenesis and cell stemness maintenance of colorectal cancer (CRC). However, the bridge role of long noncoding RNA (lncRNA) in linking chronic inflammation to CRC development and progression needs better understanding. Here, we elucidated a novel function of lncRNA GMDS-AS1 in persistently activated signal transducer and transcription activator 3 (STAT3) and Wnt signaling and CRC tumorigenesis. Interleukin-6 (IL-6) and Wnt3a induced lncRNA GMDS-AS1 expression, which was highly expressed in the CRC tissues and plasma of CRC patients. GMDS-AS1 knockdown impaired the survival, proliferation and stem cell-like phenotype acquisition of CRC cells in vitro and in vivo. We performed RNA sequencing (RNA-seq) and mass spectrometry (MS) to probe target proteins and identify their contributions to the downstream signaling pathways of GMDS-AS1. In CRC cells, GMDS-AS1 physically interacted with the RNA-stabilizing protein HuR, thereby protecting the HuR protein from polyubiquitination- and proteasome-dependent degradation. HuR stabilized STAT3 mRNA and upregulated the levels of basal and phosphorylated STAT3 protein, persistently activating STAT3 signaling. Our research revealed that the lncRNA GMDS-AS1 and its direct target HuR constitutively activate STAT3/Wnt signaling and promote CRC tumorigenesis, the GMDS-AS1-HuR-STAT3/Wnt axis is a therapeutic, diagnostic and prognostic target in CRC.


Asunto(s)
Neoplasias Colorrectales , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Factores de Transcripción , Inflamación , Neoplasias Colorrectales/genética , Factor de Transcripción STAT3/genética
4.
Comput Intell Neurosci ; 2022: 9662301, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35548096

RESUMEN

Engineering education is based on technical science and aims at training engineers who can transform science and technology into productive forces. In recent years, due to the emergence of new technology revolution, engineering science and production technology have achieved new development, and higher engineering education is also facing new challenges. Engineering education is to cultivate talents in an international environment and update the traditional engineer training model from the aspects of educational philosophy, mode, goal, approach, and means. The author believes that in the process of exploring the new talent training model, we must first change the educational concept and correctly understand and deal with various relationships in engineering education. To solve various decision-making problems in engineering construction, this study introduces the concept of engineering education certification under the background of new infrastructure and engineering education certification, analyzes the current situation and existing problems of engineering education understanding in recent years, and carries out reform and exploration from different aspects. The achievements in engineering education are analyzed. The engineering education project is analyzed and researched using the engineering decision-making scheme. It can be seen from the experimental analysis that the method has a good effect.


Asunto(s)
Ingeniería , Tecnología , Filosofía
5.
Angew Chem Int Ed Engl ; 61(30): e202202520, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35445515

RESUMEN

DNA hydrogels have attracted increasing attention owing to their excellent permeability and high mechanical strength, together with thixotropy, versatile programmability and good biocompatibility. However, the moderate biostability and immune stimulation of DNA have arisen as big concerns for future potential clinical applications. Herein, we report the self-assembly of a novel l-DNA hydrogel, which inherited the extraordinary physical properties of a d-DNA hydrogel. With the mirror-isomer deoxyribose, this hydrogel exhibited improved biostability, withstanding fetal bovine serum (FBS) for at least 1 month without evident decay of its mechanical properties. The low inflammatory response of the l-DNA hydrogel has been verified both in vitro and in vivo. Hence, this l-DNA hydrogel with outstanding biostability and biocompatibility can be anticipated to serve as an ideal 3D cell-culture matrix and implanted bio-scaffold for long-term biomedical applications.


Asunto(s)
ADN , Hidrogeles
6.
Cell Death Differ ; 29(7): 1349-1363, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34999729

RESUMEN

Intestinal intraepithelial lymphocytes (IELs) are distributed along the length of the intestine and are considered the frontline of immune surveillance. The precise molecular mechanisms, especially epigenetic regulation, of their development and function are poorly understood. The trimethylation of histone 3 at lysine 27 (H3K27Me3) is a kind of histone modifications and associated with gene repression. Kdm6b is an epigenetic enzyme responsible for the demethylation of H3K27Me3 and thus promotes gene expression. Here we identified Kdm6b as an important intracellular regulator of small intestinal IELs. Mice genetically deficient for Kdm6b showed greatly reduced numbers of TCRαß+CD8αα+ IELs. In the absence of Kdm6b, TCRαß+CD8αα+ IELs exhibited increased apoptosis, disturbed maturation and a compromised capability to lyse target cells. Both IL-15 and Kdm6b-mediated demethylation of histone 3 at lysine 27 are responsible for the maturation of TCRαß+CD8αα+ IELs through upregulating the expression of Gzmb and Fasl. In addition, Kdm6b also regulates the expression of the gut-homing molecule CCR9 by controlling H3K27Me3 level at its promoter. However, Kdm6b is dispensable for the reactivity of thymic precursors of TCRαß+CD8αα+ IELs (IELPs) to IL-15 and TGF-ß. In conclusion, we showed that Kdm6b plays critical roles in the maturation and cytotoxic function of small intestinal TCRαß+CD8αα+ IELs.


Asunto(s)
Linfocitos Intraepiteliales , Receptores de Antígenos de Linfocitos T alfa-beta , Animales , Antígenos CD8/genética , Antígenos CD8/metabolismo , Epigénesis Genética , Histona Demetilasas/genética , Histonas/metabolismo , Interleucina-15/genética , Interleucina-15/metabolismo , Mucosa Intestinal/metabolismo , Linfocitos Intraepiteliales/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Lisina/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo
7.
Cell Death Differ ; 29(6): 1176-1186, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34853447

RESUMEN

Tumor necrosis factor-α (TNF) is described as a main regulator of cell survival and apoptosis in multiple types of cells, including hepatocytes. Dysregulation in TNF-induced apoptosis is associated with many autoimmune diseases and various liver diseases. Here, we demonstrated a crucial role of Bcl-3, an IκB family member, in regulating TNF-induced hepatic cell death. Specifically, we found that the presence of Bcl-3 promoted TNF-induced cell death in the liver, while Bcl-3 deficiency protected mice against TNF/D-GalN induced hepatoxicity and lethality. Consistently, Bcl-3-depleted hepatic cells exhibited decreased sensitivity to TNF-induced apoptosis when stimulated with TNF/CHX. Mechanistically, the in vitro results showed that Bcl-3 interacted with the deubiquitinase CYLD to synergistically switch the ubiquitination status of RIP1 and facilitate the formation of death-inducing Complex II. This complex further resulted in activation of the caspase cascade to induce apoptosis. By revealing this novel role of Bcl-3 in regulating TNF-induced hepatic cell death, this study provides a potential therapeutic target for liver diseases caused by TNF-related apoptosis.


Asunto(s)
Proteínas del Linfoma 3 de Células B , Proteínas Activadoras de GTPasa , Hepatocitos , Factor de Necrosis Tumoral alfa , Animales , Apoptosis/fisiología , Proteínas del Linfoma 3 de Células B/metabolismo , Caspasas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hígado/citología , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Ubiquitinación
9.
Signal Transduct Target Ther ; 5(1): 52, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32355204

RESUMEN

Wnt/ß-catenin signaling plays a critical role in colorectal cancer (CRC) tumorigenesis and the homeostasis of colorectal cancer stem cells (CSCs), but its molecular mechanism remains unclear. B-cell lymphoma 3 (Bcl-3), a member of the IκB family, is overexpressed in CRC and promotes tumorigenicity. Here, we report a novel function of Bcl-3 in maintaining colorectal CSC homeostasis by activating Wnt/ß-catenin signaling. Silencing Bcl-3 suppresses the self-renewal capacity of colorectal CSCs and sensitizes CRC cells to chemotherapeutic drugs through a decrease in Wnt/ß-catenin signaling. Moreover, our data show that Bcl-3 is a crucial component of Wnt/ß-catenin signaling and is essential for ß-catenin transcriptional activity in CRC cells. Interestingly, Wnt3a increases the level and nuclear translocation of Bcl-3, which binds directly to ß-catenin and enhances the acetylation of ß-catenin at lysine 49 (Ac-K49-ß-catenin) and transcriptional activity. Bcl-3 depletion decreases the Ac-K49-ß-catenin level by increasing the level of histone deacetylase 1 to remove acetyl groups from ß-catenin, thus interrupting Wnt/ß-catenin activity. In CRC clinical specimens, Bcl-3 expression negatively correlates with the overall survival of CRC patients. A significantly positive correlation was found between the expression of Bcl-3 and Ac-K49-ß-catenin. Collectively, our data reveal that Bcl-3 plays a crucial role in CRC chemoresistance and colorectal CSC maintenance via its modulation of the Ac-K49-ß-catenin, which serves as a promising therapeutic target for CRC.


Asunto(s)
Proteínas del Linfoma 3 de Células B/metabolismo , Neoplasias Colorrectales/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , Acetilación , Proteínas del Linfoma 3 de Células B/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Tasa de Supervivencia , beta Catenina/genética
10.
Cell Death Differ ; 27(10): 2843-2855, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32346138

RESUMEN

Medullary thymic epithelial cells (mTECs) play a central role in the establishment of T cell central immunological tolerance by promiscuously expressing tissue-restricted antigens (TRAs) and presenting them to developing T cells, leading to deletion of T cells responding to self-antigens. However, molecular mechanisms especially epigenetic regulation of mTEC homeostasis and TRA expression remain elusive. Here we show that the H3K27 demethylase Kdm6b is essential to maintain the postnatal thymic medulla by promoting mTEC survival and regulating the expression of TRA genes. Moreover, mice lacking Kdm6b developed pathological autoimmune disorders. Mechanically, Kdm6b exerted its function by reducing repressive H3K27 trimethylation (H3K27me3) at the promoters of anti-apoptotic gene Bcl2 and a set of Aire-dependent TRA genes. Thus, our findings reveal a dual role of Kdm6b in the regulation of mTEC-mediated T cell central tolerance.


Asunto(s)
Células Epiteliales , Histona Demetilasas con Dominio de Jumonji/fisiología , Linfocitos T Reguladores , Timo , Animales , Células Cultivadas , Células Epiteliales/citología , Células Epiteliales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/inmunología , Timo/citología , Timo/metabolismo
11.
J Mol Cell Biol ; 12(2): 125-137, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31065671

RESUMEN

Histone methylation is a context-dependent modification that regulates gene expression, and the trimethylation of histone H3 lysine 27 (H3K27me3) usually induces gene silencing. Overcoming colorectal cancer (CRC) chemoresistance is currently a huge challenge, but the relationship between H3K27me3 modification and chemoresistance remains largely unclear. Here, we found that H3K27me3 levels positively correlated with the metastasis-free survival of CRC patients and a low H3K27me3 level predicted a poor outcome upon chemotherapeutic drug treatment. Oxaliplatin stimulation significantly induced the expression of H3K27 lysine demethylase 6A/6B (KDM6A/6B), thus decreasing the level of H3K27me3 in CRC cells. Elevation of H3K27me3 level through KDM6A/6B depletion or GSK-J4 (a KDM6A/6B inhibitor) treatment significantly enhanced oxaliplatin-induced apoptosis. Conversely, when inhibiting the expression of H3K27me3 by EPZ-6438, an inhibitor of the histone methyltransferase EZH2, the proportion of apoptotic cells remarkably decreased. In addition, the combination of GSK-J4 and oxaliplatin significantly inhibited tumor growth in an oxaliplatin-resistant patient-derived xenograft model. Importantly, we revealed that oxaliplatin treatment dramatically induced NOTCH2 expression, which was caused by downregulation of H3K27me3 level on the NOTCH2 transcription initiation site. Thus, the activated NOTCH signaling promoted the expression of stemness-related genes, which resulted in oxaliplatin resistance. Furthermore, oxaliplatin-induced NOTCH signaling could be interrupted by GSK-J4 treatment. Collectively, our findings suggest that elevating H3K27me3 level can improve drug sensitivity in CRC patients.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Histonas/metabolismo , Oxaliplatino/administración & dosificación , Regulación hacia Arriba/efectos de los fármacos , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Benzamidas/farmacología , Benzazepinas/administración & dosificación , Benzazepinas/farmacología , Compuestos de Bifenilo , Neoplasias Colorrectales/patología , Quimioterapia Combinada , Femenino , Células HCT116 , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/metabolismo , Humanos , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Histona Demetilasas con Dominio de Jumonji/metabolismo , Masculino , Metilación/efectos de los fármacos , Ratones , Ratones Desnudos , Persona de Mediana Edad , Morfolinas , Oxaliplatino/farmacología , Pronóstico , Piridonas/farmacología , Pirimidinas/administración & dosificación , Pirimidinas/farmacología , Receptor Notch2/metabolismo , Transducción de Señal/efectos de los fármacos , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Nat Commun ; 10(1): 2935, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31270335

RESUMEN

Trace elements play important roles in human health, but little is known about their functions in humoral immunity. Here, we show an important role for iron in inducing cyclin E and B cell proliferation. We find that iron-deficient individuals exhibit a significantly reduced antibody response to the measles vaccine when compared to iron-normal controls. Mice with iron deficiency also exhibit attenuated T-dependent or T-independent antigen-specific antibody responses. We show that iron is essential for B cell proliferation; both iron deficiency and α-ketoglutarate inhibition could suppress cyclin E1 induction and S phase entry of B cells upon activation. Finally, we demonstrate that three demethylases, KDM2B, KDM3B and KDM4C, are responsible for histone 3 lysine 9 (H3K9) demethylation at the cyclin E1 promoter, cyclin E1 induction and B cell proliferation. Thus, our data reveal a crucial role of H3K9 demethylation in B cell proliferation, and the importance of iron in humoral immunity.


Asunto(s)
Linfocitos B/inmunología , Proliferación Celular , Histonas/química , Histonas/inmunología , Inmunidad Humoral , Lisina/inmunología , Animales , Linfocitos B/química , Linfocitos B/citología , Ciclo Celular , Células Cultivadas , Ciclina E/genética , Ciclina E/inmunología , Desmetilación , Proteínas F-Box/genética , Proteínas F-Box/inmunología , Histonas/genética , Hierro/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/inmunología , Activación de Linfocitos , Lisina/genética , Ratones , Ratones Endogámicos C57BL , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/inmunología , Regiones Promotoras Genéticas , Linfocitos T/citología , Linfocitos T/inmunología
13.
Oncogene ; 37(44): 5887-5900, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29973688

RESUMEN

Multiple studies have shown that chronic inflammation is closely related to the occurrence and development of colorectal cancer (CRC). Classical NF-κB signaling, the key factor in controlling inflammation, has been found to be of great importance to CRC development. However, the role of alternative NF-κB signaling in CRC is still elusive. Here, we found aberrant constitutive activation of alternative NF-κB signaling both in CRC tissue and CRC cells. Knockdown of RelB downregulates c-Myc and upregulates p27Kip1 protein level, which inhibits CRC cell proliferation and retards CRC xenograft growth. Conversely, overexpression of RelB increases proliferation of CRC cells. In addition, we revealed a significant correlation between Bcl-3 and RelB in CRC tissues. The expression of RelB was consistent with the expression of Bcl-3 and the phosphorylation of Bcl-3 downstream proteins p-Akt (S473) and p-GSK3ß (S9). Bcl-3 overexpression can restore the phenotype changes caused by RelB knockdown. Importantly, we demonstrated that alternative NF-κB transcriptional factor (p52:RelB) can directly bind to the promoter region of Bcl-3 gene and upregulate its transcription. Moreover, the expression of RelB, NF-κB2 p52, and Bcl-3 was associated with poor survival of CRC patients. Taken together, these results represent that alternative NF-κB signaling may function as an oncogenic driver in CRC, and also provide new ideas and research directions for the pathogenesis, prevention, and treatment of other inflammatory-related diseases.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Subunidad p52 de NF-kappa B/metabolismo , Proteínas Proto-Oncogénicas/genética , Transducción de Señal , Factor de Transcripción ReIB/metabolismo , Factores de Transcripción/genética , Animales , Proteínas del Linfoma 3 de Células B , Carcinogénesis , Línea Celular Tumoral , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos BALB C , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas/biosíntesis , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Factor de Transcripción ReIB/genética , Factores de Transcripción/biosíntesis , Factores de Transcripción/metabolismo , Transcripción Genética , Regulación hacia Arriba
14.
Oncotarget ; 8(60): 100975-100988, 2017 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-29254139

RESUMEN

miR-449a has been reported to act as a tumor suppressor in several cancers, however, it is controversial whether it inhibits tumor growth in colorectal cancer. The mechanisms underlying its expression and functions in colorectal cancers are still largely unknown. SATB2 is a sensitive and specific marker for CRC diagnosis. However, the mechanisms by which the expression and functions of SATB2 are regulated still remain to be clarified. We investigated the expression and functional significance of miR-449a and SATB2 and the mechanisms of their dysregulation in human CRC cells. miR-449a overexpression or SATB2 depletion inhibited tumor growth and promoted apoptosis in colorectal tumor cells in vitro and in xenograft mouse model, partially by downregulating SATB2. Expression of miR-449a was increased epigenetically via knocking down their targets, particularly SATB2. miR-449a was downregulated and STAB2 expression was upregulated in human CRCs. Their expressions were significantly associated with overall survival of CRC patients. Our findings demonstrate the existence of a miR-449a-SATB2 negative feedback loop that maintains low levels of miR-449a as well as high level of SATB2, thereby promoting CRC development.

15.
J Mol Cell Biol ; 7(6): 505-16, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25840993

RESUMEN

Interleukin (IL) 17-producing T helper (Th17) cells play critical roles in the clearance of extracellular bacteria and fungi as well as the pathogenesis of various autoimmune diseases, such as multiple sclerosis, psoriasis, and ulcerative colitis. Although a global transcriptional regulatory network of Th17 cell differentiation has been mapped recently, the participation of epigenetic modifications in the differentiation process has yet to be elucidated. We demonstrated here that histone H3 lysine-27 (H3K27) demethylation, predominantly mediated by the H3K27 demethylase Jmjd3, crucially regulated Th17 cell differentiation. Activation of naïve CD4(+) T cells immediately induced high expression of Jmjd3. Genetic depletion of Jmjd3 in CD4(+) T cells specifically impaired Th17 cell differentiation both in vitro and in vivo. Ectopic expression of Jmjd3 largely rescued the impaired differentiation of Th17 cells in vitro in Jmjd3-deficient CD4(+) T cells. Importantly, Jmjd3-deficient mice were resistant to the induction of experimental autoimmune encephalomyelitis (EAE). Furthermore, inhibition of the H3K27 demethylase activity with the specific inhibitor GSK-J4 dramatically suppressed Th17 cell differentiation in vitro. At the molecular level, Jmjd3 directly bound to and reduced the level of H3K27 trimethylation (me3) at the genomic sites of Rorc, which encodes the master Th17 transcription factor Rorγt, and Th17 cytokine genes such as Il17, Il17f, and Il22. Therefore, our studies established a critical role of Jmjd3-mediated H3K27 demethylation in Th17 cell differentiation and suggest that Jmjd3 can be a novel therapeutic target for suppressing autoimmune responses.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Histona Demetilasas con Dominio de Jumonji/fisiología , Células Th17/inmunología , Animales , Autoinmunidad/genética , Autoinmunidad/inmunología , Benzazepinas/farmacología , Linfocitos T CD4-Positivos/inmunología , Diferenciación Celular/genética , Encefalomielitis Autoinmune Experimental/genética , Técnicas de Sustitución del Gen , Interleucina-17/metabolismo , Interleucinas/metabolismo , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Histona Demetilasas con Dominio de Jumonji/genética , Metilación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Pirimidinas/farmacología , Células Th17/enzimología , Interleucina-22
16.
Biotechnol Lett ; 36(10): 1963-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24930111

RESUMEN

A genetic algorithm (GA) coupled with multiple linear regression (MLR) was used to extract useful features from amino acids and g-gap dipeptides for distinguishing between thermophilic and non-thermophilic proteins. The method was trained by a benchmark dataset of 915 thermophilic and 793 non-thermophilic proteins. The method reached an overall accuracy of 95.4 % in a Jackknife test using nine amino acids, 38 0-gap dipeptides and 29 1-gap dipeptides. The accuracy as a function of protein size ranged between 85.8 and 96.9 %. The overall accuracies of three independent tests were 93, 93.4 and 91.8 %. The observed results of detecting thermophilic proteins suggest that the GA-MLR approach described herein should be a powerful method for selecting features that describe thermostabile machines and be an aid in the design of more stable proteins.


Asunto(s)
Proteínas/química , Proteínas/clasificación , Análisis de Secuencia de Proteína , Algoritmos , Aminoácidos/química , Bases de Datos de Proteínas , Dipéptidos/química , Modelos Lineales , Temperatura
17.
Gastroenterology ; 147(4): 847-859.e11, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24931456

RESUMEN

BACKGROUND & AIMS: Constitutive activation of the transcription factors nuclear factor κB (NF-κB) and STAT3 is involved in the development and progression of human colorectal cancer (CRC). Little is known about how these factors become activated in cancer cells. We investigated whether microRNA miR-221 and miR-222 regulate NF-κB and signal transducer and activator of transcription 3 (STAT3) activation in human CRC cell lines. METHODS: CRC cell lines (HCT116 and RKO) were transfected with miR-221 or miR-222 mimics or inhibitors. The activity levels of NF-κB and STAT3 were measured in dual luciferase reporter assays. We used immunoblot and real-time polymerase chain reaction analyses to measure protein and messenger RNA (mRNA) levels. Cells were analyzed by proliferation, viability, and flow cytometry analyses. Mice were given injections of azoxymethane, followed by dextran sodium sulfate, along with control lentivirus or those expressing mRNAs that bind miR-221 and miR-222 (miR-221/miR-222 sponge). The levels of miR-221 and miR-222 as well as RelA, STAT3, and PDLIM2 mRNAs were measured in 57 paired CRC and adjacent nontumor tissues from patients. RESULTS: In CRC cell lines, mimics of miR-221 and miR-222 activated NF-κB and STAT3, further increasing expression of miR-221 and miR-222. miR-221 and miR-222 bound directly to the coding region of RelA mRNA, increasing its stability. miR-221 and miR-222 also reduced the ubiquitination and degradation of the RelA and STAT3 proteins by binding to the 3' untranslated region of PDLIM2 mRNA (PDLIM2 is a nuclear ubiquitin E3 ligase for RelA and STAT3). Incubation of CRC cells with miR-221 and miR-222 inhibitors reduced their proliferation and colony formation compared with control cells. In mice with colitis, injection of lentiviruses expressing miR-221/miR-222 sponges led to formation of fewer tumors than injection of control lentiviruses. Human CRC tissues had higher levels of miR-221 and miR-222 than nontumor colon tissues; increases correlated with increased levels of RelA and STAT3 mRNAs. Levels of PDLIM2 mRNA were lower in CRC than nontumor tissues. CONCLUSIONS: In human CRC cells, miR-221 and miR-222 act in a positive feedback loop to increase expression levels of RelA and STAT3. Antagonism of miR-221 and miR-222 reduces growth of colon tumors in mice with colitis.


Asunto(s)
Neoplasias Colorrectales/metabolismo , MicroARNs/metabolismo , FN-kappa B/metabolismo , Factor de Transcripción STAT3/metabolismo , Regiones no Traducidas 3' , Animales , Sitios de Unión , Proliferación Celular , Supervivencia Celular , Colitis/genética , Colitis/metabolismo , Colitis/patología , Colitis/terapia , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/prevención & control , Modelos Animales de Enfermedad , Retroalimentación Fisiológica , Regulación Neoplásica de la Expresión Génica , Genes Reporteros , Células HCT116 , Células HT29 , Humanos , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , FN-kappa B/genética , Sistemas de Lectura Abierta , Interferencia de ARN , ARN Mensajero/metabolismo , Factor de Transcripción STAT3/genética , Transducción de Señal , Factores de Tiempo , Factor de Transcripción ReIA/metabolismo , Transfección , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Tumour Biol ; 34(5): 2545-50, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23918309

RESUMEN

Many studies proposed that cytochrome P450 1A1 (CYP1A1) MspI polymorphism may be associated with endometrial cancer risk, but the findings from previous studies reported conflicting results. A meta-analysis of all relevant studies was performed to get a comprehensive assessment of the association between CYP1A1 MspI polymorphism and endometrial cancer risk. Eligible studies were searched in PubMed and China National Knowledge Infrastructure databases. The pooled odds ratios (ORs) with the corresponding 95 % confidence intervals (95 % CIs) were calculated to evaluate the association. Twelve studies with a total of 2,111 cases and 2,894 controls were finally included into the meta-analysis. Overall, meta-analysis of a total of 12 studies showed that there was no obvious association between CYP1A1 MspI polymorphism and endometrial cancer risk (ORC vs. T = 0.97, 95 % CI 0.77-1.22, P OR = 0.808; ORCC vs. TT = 1.00, 95 % CI 0.57-1.76, P OR = 0.994; ORCC vs. TT/TC = 0.88, 95 % CI 0.65-1.20, P OR = 0.425; ORCC/TC vs. TT = 0.98, 95 % CI 0.74-1.29, P OR = 0.861). Subgroup analyses by ethnicity further showed that there was no obvious association between CYP1A1 MspI polymorphism and endometrial cancer risk in both Caucasians and Asians. There was no obvious risk of publication bias. Therefore, the meta-analysis suggests that CYP1A1 MspI polymorphism is not associated with endometrial cancer risk.


Asunto(s)
Citocromo P-450 CYP1A1/genética , Neoplasias Endometriales/genética , Desoxirribonucleasa HpaII/química , Neoplasias Endometriales/enzimología , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Oportunidad Relativa , Polimorfismo de Longitud del Fragmento de Restricción , Factores de Riesgo
19.
Protein Pept Lett ; 18(1): 17-22, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20858199

RESUMEN

Calmodulin-binding protein-10 (CaMBP10) was isolated previously from Chinese cabbage and identified as a member of the lipid transfer protein family. In this study, we found that CaMBP10 was phosphorylated in a calcium(Ca(2+))-dependent manner, and the phosphorylation was inhibited by calmodulin (CaM) antagonists. In-gel kinase assay revealed that the phosphorylation of CaMBP10 was catalyzed by a 45 kDa protein kinase, which underwent autophosphorylation in the presence of Ca(2+). Immunoblotting assay further identified this kinase as a calcium-dependent protein kinase (CDPK). In addition, the phosphorylation site was mapped to the C-terminal region of CaMBP10, where the CaM-binding domain resides. These results provide novel insights into the molecular mechanisms that regulate CaMBP10 functions.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/química , Proteínas Portadoras/química , Proteínas de Plantas/química , Brassica , Fosforilación
20.
FEBS J ; 275(21): 5298-308, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18803664

RESUMEN

Although plant non-specific lipid transfer proteins (ns-LTPs) are characterized by their ability to bind and transfer a broad range of hydrophobic ligands in vitro, their biological functions in vivo remain unclear. Recently, it has been proposed that ns-LTPs may play a key role in plant defense mechanisms, particularly during the induction of systemic acquired resistance, however, very little is known about the regulation in this process. We report that the binding of maize non-specific lipid transfer protein (Zm-LTP) to calmodulin (CaM) is in a calcium-independent manner. To better understand the interaction mechanism between Zm-LTP and CaM, the CaM-binding site of Zm-LTP was mapped to the region of amino acids 46-60. Point mutations indicate that four amino acid residues, R46, R47, K54 and R58, in this region are crucial for binding. Furthermore, we tested the effects of CaM on the lipid-binding activity of Zm-LTP in the presence of Ca(2+), EGTA, N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide and trifluoperazine respectively. We also investigated the structural features of CaM-binding motifs in LTPs from different species and strong differences were observed. Taken together, our results suggest that the interaction with CaM could be a common feature of plant LTPs. The identification and characterization of CaM-binding domain of LTPs should provide new insights into the mechanism by which the physiological functions of LTPs are regulated.


Asunto(s)
Calmodulina/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/química , Secuencia de Aminoácidos , Sitios de Unión/genética , Calcio/farmacología , Calmodulina/fisiología , Metabolismo de los Lípidos , Mutación Puntual , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...