Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Opin Ophthalmol ; 33(6): 585-590, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36094043

RESUMEN

PURPOSE OF REVIEW: Until recently, metastatic uveal melanoma was associated with essentially uniform fatality within months. However, recent developments in screening, improved understanding of the genetic underpinnings of metastatic disease, and pivotal medication approvals have improved the disease's rate of fatality. RECENT FINDINGS: Routine implementation of genetic testing at the time of primary tumor treatment via gene expression profiling or chromosomal analysis has identified patients who are at high risk for metastatic disease. Enhanced screening with imaging directed at the liver and lungs has allowed for identification of early disease and lower tumor burden. Significant work on improved liver directed therapy along with systemic chemotherapy and immunotherapy has improved life expectancy. The first systemic immunotherapy specifically for metastatic uveal melanoma was approved this year. This medication, tebentafusp, is likely to improve life expectancy for all patients with metastatic melanoma assuming they have appropriate human leukocyte antigen (HLA) markers. Multiple clinical trials with novel immunotherapeutic agents are promising as well. SUMMARY: The prognosis for patients with uveal melanoma is far better than ever before because of recent developments in the understanding and treatment of metastatic disease.


Asunto(s)
Melanoma , Neoplasias de la Úvea , Humanos , Melanoma/genética , Melanoma/terapia , Pronóstico , Proteínas Recombinantes de Fusión , Neoplasias de la Úvea/genética
2.
Am Soc Clin Oncol Educ Book ; 42: 1-13, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35561303

RESUMEN

Despite the discovery of RAS oncogenes in human tumor DNA 40 years ago, the development of effective targeted therapies directed against RAS has lagged behind those more successful advancements in the field of therapeutic tyrosine kinase inhibitors targeting other oncogenes such as EGFR, ALK, and ROS1. The discoveries that (1) malignant RAS oncogenes differ from their wild-type counterparts by only a single amino acid change and (2) covalent inhibition of the cysteine residue at codon 12 of KRASG12C in its inactive GDP-bound state resulted in effective inhibition of oncogenic RAS signaling and have catalyzed a dramatic shift in mindset toward KRAS-driven cancers. Although the development of allele-selective KRASG12C inhibitors has changed a treatment paradigm, the clinical activity of these agents is more modest than tyrosine kinase inhibitors targeting other oncogene-driven cancers. Heterogeneous resistance mechanisms generally result in the restoration of RAS/mitogen-activated protein kinase pathway signaling. Many approaches are being evaluated to overcome this resistance, with many combinatorial clinical trials ongoing. Furthermore, because KRASG12D and KRASG12V are more prevalent than KRASG12C, there remains an unmet need for additional therapeutic strategies for these patients. Thus, our current translational standing could be described as "the end of the beginning," with additional discovery and research innovation needed to address the enormous disease burden imposed by RAS-mutant cancers. Here, we describe the development of KRASG12C inhibitors, the challenges of resistance to these inhibitors, strategies to mitigate that resistance, and new approaches being taken to address other RAS-mutant cancers.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas p21(ras) , Genes ras , Humanos , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/genética
3.
Cancer Gene Ther ; 29(12): 1809-1813, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35181742

RESUMEN

Uveal melanoma is a rare malignancy affecting 5.1 patients/million per year with definitive treatment options of enucleation or radiation therapy to the primary tumor. Unfortunately, no FDA-approved systemic therapies exist for patients in the adjuvant or metastatic setting. Molecular profiling over the past decade has helped define uveal melanomas by characteristic mutations: GNAQ, GNA11, BAP1, SF3B1, and EIF1AX mutations. GNAQ/11 mutations are present in over 90% of patients with uveal melanoma and lead to signal transduction through G-protein coupled receptors to downstream growth factors. PKC inhibition has been an active area of investigation targeting this pathway specific to uveal melanoma. Several molecules have been developed and evaluated in clinical trials. Responses have been noted but clinical development has also yielded multiple toxicities and pathways of resistance limiting both breadth and durability of responses leading to combination therapy approaches. PKC inhibition remains an active and encouraging area of research to determine effective therapies for patients with uveal melanoma.


Asunto(s)
Melanoma , Neoplasias de la Úvea , Humanos , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/uso terapéutico , Neoplasias de la Úvea/tratamiento farmacológico , Neoplasias de la Úvea/genética , Melanoma/tratamiento farmacológico , Melanoma/genética , Mutación
4.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34161280

RESUMEN

Osteogenesis imperfecta (OI) is a genetic disorder that features wide-ranging defects in both skeletal and nonskeletal tissues. Previously, we and others reported that loss-of-function mutations in FK506 Binding Protein 10 (FKBP10) lead to skeletal deformities in conjunction with joint contractures. However, the pathogenic mechanisms underlying joint dysfunction in OI are poorly understood. In this study, we have generated a mouse model in which Fkbp10 is conditionally deleted in tendons and ligaments. Fkbp10 removal substantially reduced telopeptide lysyl hydroxylation of type I procollagen and collagen cross-linking in tendons. These biochemical alterations resulting from Fkbp10 ablation were associated with a site-specific induction of fibrosis, inflammation, and ectopic chondrogenesis followed by joint deformities in postnatal mice. We found that the ectopic chondrogenesis coincided with enhanced Gli1 expression, indicating dysregulated Hedgehog (Hh) signaling. Importantly, genetic inhibition of the Hh pathway attenuated ectopic chondrogenesis and joint deformities in Fkbp10 mutants. Furthermore, Hh inhibition restored alterations in gait parameters caused by Fkbp10 loss. Taken together, we identified a previously unappreciated role of Fkbp10 in tendons and ligaments and pathogenic mechanisms driving OI joint dysfunction.


Asunto(s)
Condrocitos/patología , Articulaciones/fisiopatología , Actividad Motora , Osteogénesis Imperfecta/fisiopatología , Osteogénesis , Proteínas de Unión a Tacrolimus/metabolismo , Animales , Animales Recién Nacidos , Condrogénesis/genética , Colágeno Tipo I/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Marcha , Eliminación de Gen , Regulación de la Expresión Génica , Proteínas Hedgehog/metabolismo , Hidroxilación , Inflamación/genética , Inflamación/patología , Articulaciones/patología , Ligamentos/patología , Lisina/metabolismo , Ratones , Modelos Biológicos , Osificación Heterotópica/complicaciones , Osificación Heterotópica/genética , Osificación Heterotópica/patología , Osificación Heterotópica/fisiopatología , Osteogénesis/genética , Osteogénesis Imperfecta/complicaciones , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/patología , Péptidos/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal , Proteínas de Unión a Tacrolimus/genética , Tendones/patología
5.
FASEB J ; 34(6): 7885-7904, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32297675

RESUMEN

Nearly 6 million Americans suffer from heart failure. Increased fibrosis contributes to functional decline of the heart that leads to heart failure. Previously, we identified a mechanosensitive protein, small proline-rich repeat 3 (SPRR3), in vascular smooth muscle cells of atheromas. In this study, we demonstrate SPRR3 expression in cardiac fibroblasts which is induced in activated fibroblasts following pressure-induced heart failure. Sprr3 deletion in mice showed preserved cardiac function and reduced interstitial fibrosis in vivo and reduced fibroblast proliferation and collagen expression in vitro. SPRR3 loss resulted in reduced activation of Akt, FAK, ERK, and p38 signaling pathways, which are coordinately regulated by integrins and growth factors. SPRR3 deletion did not impede integrin-associated functions including cell adhesion, migration, or contraction. SPRR3 loss resulted in reduced activation of PDGFRß in fibroblasts. This was not due to the reduced PDGFRß expression levels or decreased binding of the PDGF ligand to PDGFRß. SPRR3 facilitated the association of integrin ß1 with PDGFRß and subsequently fibroblast proliferation, suggesting a role in PDGFRß-Integrin synergy. We postulate that SPRR3 may function as a conduit for the coordinated activation of PDGFRß by integrin ß1, leading to augmentation of fibroblast proliferation and matrix synthesis downstream of biomechanical and growth factor signals.


Asunto(s)
Proliferación Celular/fisiología , Proteínas Ricas en Prolina del Estrato Córneo/metabolismo , Fibroblastos/metabolismo , Corazón/fisiología , Integrina beta1/metabolismo , Miocardio/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Animales , Adhesión Celular/fisiología , Colágeno/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/metabolismo , Transducción de Señal/fisiología
6.
JCI Insight ; 3(3)2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29415892

RESUMEN

Osteoarthritis (OA) is a degenerative joint disease involving both cartilage and synovium. The canonical Wnt/ß-catenin pathway, which is activated in OA, is emerging as an important regulator of tissue repair and fibrosis. This study seeks to examine Wnt pathway effects on synovial fibroblasts and articular chondrocytes as well as the therapeutic effects of Wnt inhibition on OA disease severity. Mice underwent destabilization of the medial meniscus surgery and were treated by intra-articular injection with XAV-939, a small-molecule inhibitor of Wnt/ß-catenin signaling. Wnt/ß-catenin signaling was highly activated in murine synovial fibroblasts as well as in OA-derived human synovial fibroblasts. XAV-939 ameliorated OA severity associated with reduced cartilage degeneration and synovitis in vivo. Wnt inhibition using mechanistically distinct small-molecule inhibitors, XAV-939 and C113, attenuated the proliferation and type I collagen synthesis in synovial fibroblasts in vitro but did not affect human OA-derived chondrocyte proliferation. However, Wnt modulation increased COL2A1 and PRG4 transcripts, which are downregulated in chondrocytes in OA. In conclusion, therapeutic Wnt inhibition reduced disease severity in a model of traumatic OA via promoting anticatabolic effects on chondrocytes and antifibrotic effects on synovial fibroblasts and may be a promising class of drugs for the treatment of OA.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos/administración & dosificación , Osteoartritis/tratamiento farmacológico , Vía de Señalización Wnt/efectos de los fármacos , Animales , Cartílago Articular/citología , Células Cultivadas , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Colágeno Tipo II/metabolismo , Modelos Animales de Enfermedad , Humanos , Inyecciones Intraarticulares , Masculino , Ratones , Células 3T3 NIH , Osteoartritis/patología , Cultivo Primario de Células , Proteoglicanos/metabolismo , Membrana Sinovial/citología , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/patología , beta Catenina/metabolismo
7.
PLoS One ; 12(9): e0184620, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28886156

RESUMEN

Vascular smooth muscle cells (VSMCs) represent important modulators of plaque stability in advanced lesions. We previously reported that loss of small proline-rich repeat protein 3 (Sprr3), leads to VSMC apoptosis in a PI3K/Akt-dependent manner and accelerates lesion progression. Here, we investigated the role of Sprr3 in modulating plaque stability in hyperlipidemic ApoE-/- mice. We show that loss of Sprr3 increased necrotic core size and reduced cap collagen content of atheromas in brachiocephalic arteries with evidence of plaque rupture and development of intraluminal thrombi. Moreover, Sprr3-/-ApoE-/- mice developed advanced coronary artery lesions accompanied by intraplaque hemorrhage and left ventricle microinfarcts. SPRR3 is known to reduce VSMC survival in lesions by promoting their apoptosis. In addition, we demonstrated that Sprr3-/- VSMCs displayed reduced expression of procollagen in a PI3K/Akt dependent manner. SPRR3 loss also increased MMP gelatinase activity in lesions, and increased MMP2 expression, migration and contraction of VSMCs independently of PI3K/Akt. Consequently, Sprr3 represents the first described VSMC modulator of each of the critical features of cap stability, including VSMC numbers, collagen type I synthesis, and protease activity through Akt dependent and independent pathways.


Asunto(s)
Apolipoproteínas E/metabolismo , Proteínas Ricas en Prolina del Estrato Córneo/metabolismo , Miocitos del Músculo Liso/metabolismo , Animales , Apolipoproteínas E/genética , Proteínas Ricas en Prolina del Estrato Córneo/genética , Femenino , Fibronectinas/metabolismo , Immunoblotting , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/citología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/genética , Transducción de Señal/fisiología
8.
J Bone Miner Res ; 32(6): 1354-1367, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28206698

RESUMEN

Osteogenesis imperfecta (OI), also known as brittle bone disease, displays a spectrum of clinical severity from mild (OI type I) to severe early lethality (OI type II), with clinical features including low bone mass, fractures, and deformities. Mutations in the FK506 Binding Protein 10 (FKBP10), gene encoding the 65-kDa protein FKBP65, cause a recessive form of OI and Bruck syndrome, the latter being characterized by joint contractures in addition to low bone mass. We previously showed that Fkbp10 expression is limited to bone, tendon, and ligaments in postnatal tissues. Furthermore, in both patients and Fkbp10 knockout mice, collagen telopeptide hydroxylysine crosslinking is dramatically reduced. To further characterize the bone specific contributions of Fkbp10, we conditionally ablated FKBP65 in Fkbp10fl/fl mice (Mus musculus; C57BL/6) using the osteoblast-specific Col1a1 2.3-kb Cre recombinase. Using µCT, histomorphometry and quantitative backscattered electron imaging, we found minimal alterations in the quantity of bone and no differences in the degree of bone matrix mineralization in this model. However, mass spectroscopy (MS) of bone collagen demonstrated a decrease in mature, hydroxylysine-aldehyde crosslinking. Furthermore, bone of mutant mice exhibits a reduction in mineral-to-matrix ratio and in crystal size as shown by Raman spectroscopy and small-angle X-ray scattering, respectively. Importantly, abnormalities in bone quality were associated with impaired bone biomechanical strength in mutant femurs compared with those of wild-type littermates. Taken together, these data suggest that the altered collagen crosslinking through Fkbp10 ablation in osteoblasts primarily leads to a qualitative defect in the skeleton. © 2017 American Society for Bone and Mineral Research.


Asunto(s)
Huesos/patología , Eliminación de Gen , Osteoblastos/metabolismo , Proteínas de Unión a Tacrolimus/deficiencia , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Fenómenos Biomecánicos , Densidad Ósea , Huesos/diagnóstico por imagen , Calcificación Fisiológica , Colágeno/metabolismo , Reactivos de Enlaces Cruzados/metabolismo , Cristalización , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Tamaño de los Órganos , Espectrometría Raman , Proteínas de Unión a Tacrolimus/metabolismo , Microtomografía por Rayos X
9.
J Bone Miner Res ; 32(6): 1309-1319, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28177155

RESUMEN

Lysine hydroxylation of type I collagen telopeptides varies from tissue to tissue, and these distinct hydroxylation patterns modulate collagen cross-linking to generate a unique extracellular matrix. Abnormalities in these patterns contribute to pathologies that include osteogenesis imperfecta (OI), fibrosis, and cancer. Telopeptide procollagen modifications are carried out by lysyl hydroxylase 2 (LH2); however, little is known regarding how this enzyme regulates hydroxylation patterns. We identified an ER complex of resident chaperones that includes HSP47, FKBP65, and BiP regulating the activity of LH2. Our findings show that FKBP65 and HSP47 modulate the activity of LH2 to either favor or repress its activity. BiP was also identified as a member of the complex, playing a role in enhancing the formation of the complex. This newly identified ER chaperone complex contributes to our understanding of how LH2 regulates lysyl hydroxylation of type I collagen C-telopeptides to affect the quality of connective tissues. © 2017 American Society for Bone and Mineral Research.


Asunto(s)
Colágeno Tipo I/metabolismo , Proteínas del Choque Térmico HSP47/metabolismo , Proteínas de Choque Térmico/metabolismo , Lisina/metabolismo , Complejos Multiproteicos/metabolismo , Péptidos/metabolismo , Procolágeno/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , Animales , Línea Celular , Chaperón BiP del Retículo Endoplásmico , Estabilidad de Enzimas , Humanos , Hidroxilación , Espectrometría de Masas , Ratones , Modelos Biológicos , Mutación/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Resonancia por Plasmón de Superficie
10.
J Bone Miner Res ; 31(5): 1030-40, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26716893

RESUMEN

Osteogenesis imperfecta (OI) is characterized by low bone mass, poor bone quality, and fractures. Standard treatment for OI patients is limited to bisphosphonates, which only incompletely correct the bone phenotype, and seem to be less effective in adults. Sclerostin-neutralizing antibodies (Scl-Ab) have been shown to be beneficial in animal models of osteoporosis, and dominant OI resulting from mutations in the genes encoding type I collagen. However, Scl-Ab treatment has not been studied in models of recessive OI. Cartilage-associated protein (CRTAP) is involved in posttranslational type I collagen modification, and its loss of function results in recessive OI. In this study, we treated 1-week-old and 6-week-old Crtap(-/-) mice with Scl-Ab for 6 weeks (25 mg/kg, s.c., twice per week), to determine the effects on the bone phenotype in models of "pediatric" and "young adult" recessive OI. Vehicle-treated Crtap(-/-) and wild-type (WT) mice served as controls. Compared with control Crtap(-/-) mice, micro-computed tomography (µCT) analyses showed significant increases in bone volume and improved trabecular microarchitecture in Scl-Ab-treated Crtap(-/-) mice in both age cohorts, in both vertebrae and femurs. Additionally, Scl-Ab improved femoral cortical parameters in both age cohorts. Biomechanical testing showed that Scl-Ab improved parameters of whole-bone strength in Crtap(-/-) mice, with more robust effects in the week 6 to 12 cohort, but did not affect the increased bone brittleness. Additionally, Scl-Ab normalized the increased osteoclast numbers, stimulated bone formation rate (week 6 to 12 cohort only), but did not affect osteocyte density. Overall, our findings suggest that Scl-Ab treatment may be beneficial in the treatment of recessive OI caused by defects in collagen posttranslational modification. © 2015 American Society for Bone and Mineral Research.


Asunto(s)
Anticuerpos/farmacología , Genes Recesivos , Glicoproteínas/antagonistas & inhibidores , Osteoclastos/metabolismo , Osteogénesis Imperfecta , Osteogénesis , Proteínas/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de la Matriz Extracelular , Péptidos y Proteínas de Señalización Intercelular , Ratones , Ratones Noqueados , Chaperonas Moleculares , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Osteogénesis Imperfecta/tratamiento farmacológico , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/metabolismo , Osteogénesis Imperfecta/patología
11.
J Bone Miner Res ; 30(3): 489-98, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25251575

RESUMEN

Osteogenesis imperfecta (OI) type V is characterized by increased bone fragility, long bone deformities, hyperplastic callus formation, and calcification of interosseous membranes. It is caused by a recurrent mutation in the 5' UTR of the IFITM5 gene (c.-14C > T). This mutation introduces an alternative start codon, adding 5 amino acid residues to the N-terminus of the protein. The mechanism whereby this novel IFITM5 protein causes OI type V is yet to be defined. To address this, we created transgenic mice expressing either the wild-type or the OI type V mutant IFITM5 under the control of an osteoblast-specific Col1a1 2.3-kb promoter. These mutant IFITM5 transgenic mice exhibited perinatal lethality, whereas wild-type IFITM5 transgenic mice showed normal growth and development. Skeletal preparations and radiographs performed on E15.5 and E18.5 OI type V transgenic embryos revealed delayed/abnormal mineralization and skeletal defects, including abnormal rib cage formation, long bone deformities, and fractures. Primary osteoblast cultures, derived from mutant mice calvaria at E18.5, showed decreased mineralization by Alizarin red staining, and RNA isolated from calvaria showed reduced expression of osteoblast differentiation markers such as Osteocalcin, compared with nontransgenic littermates and wild-type mice calvaria, consistent with the in vivo phenotype. Importantly, overexpression of wild-type Ifitm5 did not manifest a significant bone phenotype. Collectively, our results suggest that expression of mutant IFITM5 causes abnormal skeletal development, low bone mass, and abnormal osteoblast differentiation. Given that neither overexpression of the wild-type Ifitm5, as shown in our model, nor knock-out of Ifitm5, as previously published, showed significant bone abnormalities, we conclude that the IFITM5 mutation in OI type V acts in a neomorphic fashion.


Asunto(s)
Proteínas de la Membrana/genética , Mutación , Animales , Ratones , Ratones Transgénicos
12.
Nat Med ; 20(6): 670-5, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24793237

RESUMEN

Osteogenesis imperfecta (OI) is a heritable disorder, in both a dominant and recessive manner, of connective tissue characterized by brittle bones, fractures and extraskeletal manifestations. How structural mutations of type I collagen (dominant OI) or of its post-translational modification machinery (recessive OI) can cause abnormal quality and quantity of bone is poorly understood. Notably, the clinical overlap between dominant and recessive forms of OI suggests common molecular pathomechanisms. Here, we show that excessive transforming growth factor-ß (TGF-ß) signaling is a mechanism of OI in both recessive (Crtap(-/-)) and dominant (Col1a2(tm1.1Mcbr)) OI mouse models. In the skeleton, we find higher expression of TGF-ß target genes, higher ratio of phosphorylated Smad2 to total Smad2 protein and higher in vivo Smad2 reporter activity. Moreover, the type I collagen of Crtap(-/-) mice shows reduced binding to the small leucine-rich proteoglycan decorin, a known regulator of TGF-ß activity. Anti-TGF-ß treatment using the neutralizing antibody 1D11 corrects the bone phenotype in both forms of OI and improves the lung abnormalities in Crtap(-/-) mice. Hence, altered TGF-ß matrix-cell signaling is a primary mechanism in the pathogenesis of OI and could be a promising target for the treatment of OI.


Asunto(s)
Osteogénesis Imperfecta/fisiopatología , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Análisis de Varianza , Animales , Colágeno Tipo I/genética , Electroforesis en Gel de Poliacrilamida , Proteínas de la Matriz Extracelular , Femenino , Immunoblotting , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Chaperonas Moleculares , Osteogénesis Imperfecta/metabolismo , Proteínas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Resonancia por Plasmón de Superficie , Microtomografía por Rayos X
13.
Hum Mol Genet ; 23(18): 4822-31, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-24777781

RESUMEN

Osteogenesis imperfecta (OI) is an inherited brittle bone disorder characterized by bone fragility and low bone mass. Loss of function mutations in FK506-binding protein 10 (FKBP10), encoding the FKBP65 protein, result in recessive OI and Bruck syndrome, of which the latter is additionally characterized by joint contractures. FKBP65 is thought to act as a collagen chaperone, but it is unknown how loss of FKBP65 affects collagen synthesis and extracellular matrix formation. We evaluated the developmental and postnatal expression of Fkbp10 and analyzed the consequences of its generalized loss of function. Fkbp10 is expressed at low levels in E13.5 mouse embryos, particularly in skeletal tissues, and steadily increases through E17.5 with expression in not only skeletal tissues, but also in visceral tissues. Postnatally, expression is limited to developing bone and ligaments. In contrast to humans, with complete loss of function mutations, Fkbp10(-/-) mice do not survive birth, and embryos present with growth delay and tissue fragility. Type I calvarial collagen isolated from these mice showed reduced stable crosslink formation at telopeptide lysines. Furthermore, Fkbp10(-/-) mouse embryonic fibroblasts show retention of procollagen in the cell layer and associated dilated endoplasmic reticulum. These data suggest a requirement for FKBP65 function during embryonic connective tissue development in mice, but the restricted expression postnatally in bone, ligaments and tendons correlates with the bone fragility and contracture phenotype in humans.


Asunto(s)
Tejido Conectivo/fisiología , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/patología , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo , Animales , Animales Recién Nacidos , Huesos/metabolismo , Tejido Conectivo/embriología , Modelos Animales de Enfermedad , Embrión de Mamíferos , Genes Letales , Humanos , Ligamentos/metabolismo , Ratones , Ratones Endogámicos C57BL , Tendones/metabolismo
14.
PLoS Genet ; 10(1): e1004121, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24465224

RESUMEN

Mutations in the genes encoding cartilage associated protein (CRTAP) and prolyl 3-hydroxylase 1 (P3H1 encoded by LEPRE1) were the first identified causes of recessive Osteogenesis Imperfecta (OI). These proteins, together with cyclophilin B (encoded by PPIB), form a complex that 3-hydroxylates a single proline residue on the α1(I) chain (Pro986) and has cis/trans isomerase (PPIase) activity essential for proper collagen folding. Recent data suggest that prolyl 3-hydroxylation of Pro986 is not required for the structural stability of collagen; however, the absence of this post-translational modification may disrupt protein-protein interactions integral for proper collagen folding and lead to collagen over-modification. P3H1 and CRTAP stabilize each other and absence of one results in degradation of the other. Hence, hypomorphic or loss of function mutations of either gene cause loss of the whole complex and its associated functions. The relative contribution of losing this complex's 3-hydroxylation versus PPIase and collagen chaperone activities to the phenotype of recessive OI is unknown. To distinguish between these functions, we generated knock-in mice carrying a single amino acid substitution in the catalytic site of P3h1 (Lepre1(H662A) ). This substitution abolished P3h1 activity but retained ability to form a complex with Crtap and thus the collagen chaperone function. Knock-in mice showed absence of prolyl 3-hydroxylation at Pro986 of the α1(I) and α1(II) collagen chains but no significant over-modification at other collagen residues. They were normal in appearance, had no growth defects and normal cartilage growth plate histology but showed decreased trabecular bone mass. This new mouse model recapitulates elements of the bone phenotype of OI but not the cartilage and growth phenotypes caused by loss of the prolyl 3-hydroxylation complex. Our observations suggest differential tissue consequences due to selective inactivation of P3H1 hydroxylase activity versus complete ablation of the prolyl 3-hydroxylation complex.


Asunto(s)
Colágeno/genética , Hidroxilación/genética , Glicoproteínas de Membrana/genética , Osteogénesis Imperfecta/genética , Osteogénesis/genética , Proteínas/genética , Proteoglicanos/genética , Animales , Colágeno/química , Ciclofilinas/genética , Proteínas de la Matriz Extracelular , Técnicas de Sustitución del Gen , Glicoproteínas de Membrana/metabolismo , Ratones , Chaperonas Moleculares , Osteogénesis Imperfecta/patología , Pliegue de Proteína , Mapas de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Proteoglicanos/metabolismo , Esqueleto
15.
J Bone Miner Res ; 28(11): 2333-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23674381

RESUMEN

Osteogenesis imperfecta (OI) is typically caused by mutations in type 1 collagen genes, but in recent years new recessive and dominant forms caused by mutations in a plethora of different genes have been characterized. OI type V is a dominant form caused by the recurrent (c.-14C > T) mutation in the 5'UTR of the IFITM5 gene. The mutation adds five residues to the N-terminus of the IFITM5, but the pathophysiology of the disease remains to be elucidated. Typical clinical features present in the majority of OI type V patients include interosseous membrane calcification between the radius and ulna and between the tibia and fibula, radial head dislocation, and significant hyperplastic callus formation at the site of fractures. We report a 5-year-old child with clinical features of OI type III or severe OI type IV (characteristic facies, gray sclerae, typical fractures) and absence of classical features of OI type V with a de novo recurrent IFITM5 mutation (c.-14C > T), now typical of OI type V. This highlights the variability of OI caused by IFITM5 mutations and suggests screening for mutations in this gene in most cases of OI where type 1 collagen mutations are absent.


Asunto(s)
Proteínas de la Membrana/genética , Mutación/genética , Osteogénesis Imperfecta/genética , Secuencia de Bases , Niño , Femenino , Antebrazo/diagnóstico por imagen , Humanos , Masculino , Datos de Secuencia Molecular , Osteogénesis Imperfecta/diagnóstico por imagen , Linaje , Radiografía
16.
J Bone Miner Res ; 28(7): 1523-30, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23408678

RESUMEN

In a large cohort of osteogenesis imperfecta type V (OI type V) patients (17 individuals from 12 families), we identified the same mutation in the 5' untranslated region (5'UTR) of the interferon-induced transmembrane protein 5 (IFITM5) gene by whole exome and Sanger sequencing (IFITM5 c.-14C > T) and provide a detailed description of their phenotype. This mutation leads to the creation of a novel start codon adding five residues to IFITM5 and was recently reported in several other OI type V families. The variability of the phenotype was quite large even within families. Whereas some patients presented with the typical calcification of the forearm interosseous membrane, radial head dislocation and hyperplastic callus (HPC) formation following fractures, others had only some of the typical OI type V findings. Thirteen had calcification of interosseous membranes, 14 had radial head dislocations, 10 had HPC, 9 had long bone bowing, 11 could ambulate without assistance, and 1 had mild unilateral mixed hearing loss. The bone mineral density varied greatly, even within families. Our study thus highlights the phenotypic variability of OI type V caused by the IFITM5 mutation.


Asunto(s)
Regiones no Traducidas 5'/genética , Densidad Ósea , Codón Iniciador/genética , Proteínas de la Membrana , Osteogénesis Imperfecta , Mutación Puntual , Adulto , Niño , Preescolar , Familia , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Osteogénesis Imperfecta/diagnóstico por imagen , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/fisiopatología , Radiografía , Estudios Retrospectivos
17.
J Bone Miner Res ; 26(12): 2798-803, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21826736

RESUMEN

Osteogenesis imperfecta (OI) is a spectrum of genetic disorders characterized by bone fragility. It is caused by dominant mutations affecting the synthesis and/or structure of type I procollagen or by recessively inherited mutations in genes responsible for the posttranslational processing/trafficking of type I procollagen. Recessive OI type VI is unique among OI types in that it is characterized by an increased amount of unmineralized osteoid, thereby suggesting a distinct disease mechanism. In a large consanguineous family with OI type VI, we performed homozygosity mapping and next-generation sequencing of the candidate gene region to isolate and identify the causative gene. We describe loss of function mutations in serpin peptidase inhibitor, clade F, member 1 (SERPINF1) in two affected members of this family and in an additional unrelated patient with OI type VI. SERPINF1 encodes pigment epithelium-derived factor. Hence, loss of pigment epithelium-derived factor function constitutes a novel mechanism for OI and shows its involvement in bone mineralization.


Asunto(s)
Proteínas del Ojo/genética , Mutación/genética , Factores de Crecimiento Nervioso/genética , Osteogénesis Imperfecta/genética , Serpinas/genética , Adolescente , Adulto , Secuencia de Bases , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Datos de Secuencia Molecular , Linaje , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...