Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38559279

RESUMEN

Glycans modify protein, lipid, and even RNA molecules to form the regulatory outer coat on cells called the glycocalyx. The changes in glycosylation have been linked to the initiation and progression of many diseases. Thus, while the significance of glycosylation is well established, a lack of accessible methods to characterize glycans has hindered the ability to understand their biological functions. Mass spectrometry (MS)-based methods have generally been at the core of most glycan profiling efforts; however, modern data-independent acquisition (DIA), which could increase sensitivity and simplify workflows, has not been benchmarked for analyzing glycans. Herein, we developed a DIA-based glycomic workflow, termed GlycanDIA, to identify and quantify glycans with high sensitivity and accuracy. The GlycanDIA workflow combined higher energy collisional dissociation (HCD)-MS/MS and staggered windows for glycomic analysis, which facilitates the sensitivity in identification and the accuracy in quantification compared to conventional data-dependent acquisition (DDA)-based glycomics. To facilitate its use, we also developed a generic search engine, GlycanDIA Finder, incorporating an iterative decoy searching for confident glycan identification and quantification from DIA data. The results showed that GlycanDIA can distinguish glycan composition and isomers from N-glycans, O-glycans, and human milk oligosaccharides (HMOs), while it also reveals information on low-abundant modified glycans. With the improved sensitivity, we performed experiments to profile N-glycans from RNA samples, which have been underrepresented due to their low abundance. Using this integrative workflow to unravel the N-glycan profile in cellular and tissue glycoRNA samples, we found that RNA-glycans have specific forms as compared to protein-glycans and are also tissue-specific differences, suggesting distinct functions in biological processes. Overall, GlycanDIA can provide comprehensive information for glycan identification and quantification, enabling researchers to obtain in-depth and refined details on the biological roles of glycosylation.

2.
bioRxiv ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38645235

RESUMEN

Familial dilated cardiomyopathy (DCM) is frequently caused by autosomal dominant point mutations in genes involved in diverse cellular processes, including sarcomeric contraction. While patient studies have defined the genetic landscape of DCM, genetics are not currently used in patient care, and patients receive similar treatments regardless of the underlying mutation. It has been suggested that a precision medicine approach based on the molecular mechanism of the underlying mutation could improve outcomes; however, realizing this approach has been challenging due to difficulties linking genotype and phenotype and then leveraging this information to identify therapeutic approaches. Here, we used multiscale experimental and computational approaches to test whether knowledge of molecular mechanism could be harnessed to connect genotype, phenotype, and drug response for a DCM mutation in troponin T, deletion of K210. Previously, we showed that at the molecular scale, the mutation reduces thin filament activation. Here, we used computational modeling of this molecular defect to predict that the mutant will reduce cellular and tissue contractility, and we validated this prediction in human cardiomyocytes and engineered heart tissues. We then used our knowledge of molecular mechanism to computationally model the effects of a small molecule that can activate the thin filament. We demonstrate experimentally that the modeling correctly predicts that the small molecule can partially rescue systolic dysfunction at the expense of diastolic function. Taken together, our results demonstrate how molecular mechanism can be harnessed to connect genotype and phenotype and inspire strategies to optimize mechanism-based therapeutics for DCM.

3.
Cell Rep Methods ; 4(2): 100713, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38412836

RESUMEN

Protein translational control is critical for ensuring that the fetus develops correctly and that necessary organs and tissues are formed and functional. We developed an in utero method to quantify tissue-specific protein dynamics by monitoring amino acid incorporation into the proteome after pulse injection. Fetuses of pregnant mice were injected with isotopically labeled lysine and arginine via the vitelline vein at various embyonic days, and organs and tissues were harvested. By analyzing the nascent proteome, unique signatures of each tissue were identified by hierarchical clustering. In addition, the quantified proteome-wide turnover rates were calculated between 3.81E-5 and 0.424 h-1. We observed similar protein turnover profiles for analyzed organs (e.g., liver vs. brain); however, their distributions of turnover rates vary significantly. The translational kinetic profiles of developing organs displayed differentially expressed protein pathways and synthesis rates, which correlated with known physiological changes during mouse development.


Asunto(s)
Aminoácidos , Proteoma , Embarazo , Femenino , Ratones , Animales , Aminoácidos/metabolismo , Proteoma/metabolismo , Lisina/metabolismo , Hígado/metabolismo , Desarrollo Fetal
4.
Angew Chem Int Ed Engl ; 63(3): e202316581, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38059785

RESUMEN

Proteolysis targeting chimera (PROTAC) is a state-of-the-art technology for ablating undruggable targets. A PROTAC degrader achieves targeted protein degradation (TPD) through the simultaneous binding of a protein of interest (POI) and an E3 ligase to form a ternary complex. A nanofibril-based PROTAC strategy to form a polynary (E3)m : PROTAC : (POI)n complex has not been reported in the TPD field up to this point. A recent innovation shows that a POI ligand and E3 ligase ligand don't have to be within a fused degrader molecule. Instead, they can be recruited to cellular proximity by a self-assembly-driving peptide and click chemistry. The resulting nanofibrils can recruit multiple POI and E3 ligase molecules to form a polynary complex as a degradation center. The so-called Nano-PROTAC provides a novel approach for TPD in cancer therapy.


Asunto(s)
Péptidos , Ubiquitina-Proteína Ligasas , Proteolisis , Ligandos , Ubiquitina-Proteína Ligasas/metabolismo , Péptidos/metabolismo
5.
J Proteome Res ; 22(12): 3676-3682, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37917986

RESUMEN

Chemical proteomics utilizes small-molecule probes to covalently engage with their interacting proteins. Since chemical probes are tagged to the active or binding sites of functional proteins, chemical proteomics can be used to profile protein targets, reveal precise binding sites/mechanisms, and screen inhibitors competing with probes in a biological context. These capabilities of chemical proteomics have great potential to enable discoveries of both drug targets and lead compounds. However, chemical proteomics is limited by the time-consuming bottleneck of sample preparations, which are processed manually. With the advancement of robotics and artificial intelligence, it is now possible to automate workflows to make chemical proteomics sample preparation a high-throughput process. An automated robotic system represents a major technological opportunity to speed up advances in proteomics, open new frontiers in drug target discovery, and broaden the future of chemical biology.


Asunto(s)
Inteligencia Artificial , Proteómica , Automatización , Proteínas/química , Descubrimiento de Drogas
6.
Chem Commun (Camb) ; 59(83): 12499-12502, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37786919

RESUMEN

The interest in MS-based analysis of modified nucleic acids is increasing due to the application of nucleic acids in therapeutics. However, there are few available integrated platforms for characterizing nucleic acid modifications. Herein, we report a general mass spectrometry-based SWATH platform to identify and quantify both RNA and DNA modifications, which we call SWATH analysis of modified nucleic acids (SWAMNA). SWAMNA incorporates the search engine, NuMo finder, enabling the analysis of modifications in native and permethylated form. SWAMNA will aid discoveries that provide new insights into nucleic acid modifications.


Asunto(s)
Ácidos Nucleicos , ARN , Espectrometría de Masas
7.
J Am Soc Mass Spectrom ; 34(11): 2508-2517, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37853520

RESUMEN

Histones are DNA binding proteins that allow for packaging of the DNA into the nucleus. They are abundantly present across the genome and thus serve as a major site of epigenetic regulation through the use of post-translational modifications (PTMs). Aberrations in histone expression and modifications have been implicated in a variety of human diseases and thus are a major focus of disease etiology studies. A well-established method for studying histones and PTMs is through the chemical derivatization of isolated histones followed by liquid chromatography and mass spectrometry analysis. Using such an approach has allowed for a swath of discoveries to be found, leading to novel therapeutics such as histone deacetylase (HDAC) inhibitors that have already been applied in the clinic. However, with the rapid improvement in instrumentation and data analysis pipelines, it remains important to temporally re-evaluate the established protocols to improve throughput and ensure data quality. Here, we optimized the histone derivatization procedure to increase sample throughput without compromising peptide quantification. An implemented spike-in standard peptide further serves as a quality control to evaluate the propionylation and digestion efficiencies as well as reproducibility in chromatographic retention and separation. Last, the application of various data-independent acquisition (DIA) strategies was explored to ensure low variation between runs. The output of this study is a newly optimized derivatization protocol and mass spectrometry method that maintains high identification and quantification of histone PTMs while increasing sample throughput.


Asunto(s)
Epigénesis Genética , Histonas , Humanos , Histonas/química , Reproducibilidad de los Resultados , Procesamiento Proteico-Postraduccional , Péptidos/química
8.
bioRxiv ; 2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37293076

RESUMEN

Protein translational control is highly regulated step in the gene expression program during mammalian development that is critical for ensuring that the fetus develops correctly and that all of the necessary organs and tissues are formed and functional. Defects in protein expression during fetal development can lead to severe developmental abnormalities or premature death. Currently, quantitative techniques to monitor protein synthesis rates in a developing fetus (in utero) are limited. Here, we developed a novel in utero stable isotope labeling approach to quantify tissue-specific protein dynamics of the nascent proteome during mouse fetal development. Fetuses of pregnant C57BL/6J mice were injected with isotopically labeled lysine (Lys8) and arginine (Arg10) via the vitelline vein at various gestational days. After treatment, fetal organs/tissues including brain, liver, lung, and heart were harvested for sample preparation and proteomic analysis. We show that the mean incorporation rate for injected amino acids into all organs was 17.50 ± 0.6%. By analyzing the nascent proteome, unique signatures of each tissue were identified by hierarchical clustering. In addition, the quantified proteome-wide turnover rates (kobs) were calculated between 3.81E-5 and 0.424 hour-1. We observed similar protein turnover profiles for analyzed organs (e.g., liver versus brain), however, their distributions of turnover rates vary significantly. The translational kinetic profiles of developing organs displayed differentially expressed protein pathways and synthesis rates which correlated with known physiological changes during mouse development.

9.
Clin Cancer Res ; 29(16): 3189-3202, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37339179

RESUMEN

PURPOSE: Many cancers lack argininosuccinate synthetase 1 (ASS1), the rate-limiting enzyme of arginine biosynthesis. This deficiency causes arginine auxotrophy, targetable by extracellular arginine-degrading enzymes such as ADI-PEG20. Long-term tumor resistance has thus far been attributed solely to ASS1 reexpression. This study examines the role of ASS1 silencing on tumor growth and initiation and identifies a noncanonical mechanism of resistance, aiming to improve clinical responses to ADI-PEG20. EXPERIMENTAL DESIGN: Tumor initiation and growth rates were measured for a spontaneous Ass1 knockout (KO) murine sarcoma model. Tumor cell lines were generated, and resistance to arginine deprivation therapy was studied in vitro and in vivo. RESULTS: Conditional Ass1 KO affected neither tumor initiation nor growth rates in a sarcoma model, contradicting the prevalent idea that ASS1 silencing confers a proliferative advantage. Ass1 KO cells grew robustly through arginine starvation in vivo, while ADI-PEG20 remained completely lethal in vitro, evidence that pointed toward a novel mechanism of resistance mediated by the microenvironment. Coculture with Ass1-competent fibroblasts rescued growth through macropinocytosis of vesicles and/or cell fragments, followed by recycling of protein-bound arginine through autophagy/lysosomal degradation. Inhibition of either macropinocytosis or autophagy/lysosomal degradation abrogated this growth support effect in vitro and in vivo. CONCLUSIONS: Noncanonical, ASS1-independent tumor resistance to ADI-PEG20 is driven by the microenvironment. This mechanism can be targeted by either the macropinocytosis inhibitor imipramine or the autophagy inhibitor chloroquine. These safe, widely available drugs should be added to current clinical trials to overcome microenvironmental arginine support of tumors and improve patient outcomes.


Asunto(s)
Sarcoma , Neoplasias de los Tejidos Blandos , Humanos , Animales , Ratones , Sarcoma/tratamiento farmacológico , Hidrolasas/farmacología , Polietilenglicoles/farmacología , Polietilenglicoles/uso terapéutico , Línea Celular Tumoral , Argininosuccinato Sintasa/genética , Arginina/metabolismo , Neoplasias de los Tejidos Blandos/tratamiento farmacológico , Microambiente Tumoral
10.
Mol Cell Neurosci ; 125: 103842, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36924917

RESUMEN

Chemical platforms that facilitate both the identification and elucidation of new areas for therapeutic development are necessary but lacking. Activity-based protein profiling (ABPP) leverages active site-directed chemical probes as target discovery tools that resolve activity from expression and immediately marry the targets identified with lead compounds for drug design. However, this approach has traditionally focused on predictable and intrinsic enzyme functionality. Here, we applied our activity-based proteomics discovery platform to map non-encoded and post-translationally acquired enzyme functionalities (e.g. cofactors) in vivo using chemical probes that exploit the nucleophilic hydrazine pharmacophores found in a classic antidepressant drug (e.g. phenelzine, Nardil®). We show the probes are in vivo active and can map proteome-wide tissue-specific target engagement of the drug. In addition to engaging targets (flavoenzymes monoamine oxidase A/B) that are associated with the known therapeutic mechanism as well as several other members of the flavoenzyme family, the probes captured the previously discovered N-terminal glyoxylyl (Glox) group of Secernin-3 (SCRN3) in vivo through a divergent mechanism, indicating this functional feature has biochemical activity in the brain. SCRN3 protein is ubiquitously expressed in the brain, yet gene expression is regulated by inflammatory stimuli. In an inflammatory pain mouse model, behavioral assessment of nociception showed Scrn3 male knockout mice selectively exhibited impaired thermal nociceptive sensitivity. Our study provides a guided workflow to entangle molecular (off)targets and pharmacological mechanisms for therapeutic development.


Asunto(s)
Nocicepción , Fenelzina , Animales , Ratones , Masculino , Fenelzina/farmacología , Proteoma , Proteínas del Tejido Nervioso
11.
bioRxiv ; 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36778412

RESUMEN

Chemical platforms that facilitate both the identification and elucidation of new areas for therapeutic development are necessary but lacking. Activity-based protein profiling (ABPP) leverages active site-directed chemical probes as target discovery tools that resolve activity from expression and immediately marry the targets identified with lead compounds for drug design. However, this approach has traditionally focused on predictable and intrinsic enzyme functionality. Here, we applied our activity-based proteomics discovery platform to map non-encoded and post-translationally acquired enzyme functionalities (e.g. cofactors) in vivo using chemical probes that exploit the nucleophilic hydrazine pharmacophores found in a classic antidepressant drug (e.g. phenelzine, Nardil ® ). We show the probes are in vivo active and can map proteome-wide tissue-specific target engagement of the drug. In addition to engaging targets (flavoenzymes monoamine oxidase A/B) that are associated with the known therapeutic mechanism as well as several other members of the flavoenzyme family, the probes captured the previously discovered N -terminal glyoxylyl (Glox) group of Secernin-3 (SCRN3) in vivo through a divergent mechanism, indicating this functional feature has biochemical activity in the brain. SCRN3 protein is ubiquitously expressed in the brain, yet gene expression is regulated by inflammatory stimuli. In an inflammatory pain mouse model, behavioral assessment of nociception showed Scrn3 male knockout mice selectively exhibited impaired thermal nociceptive sensitivity. Our study provides a guided workflow to entangle molecular (off)targets and pharmacological mechanisms for therapeutic development.

12.
Anal Chem ; 94(20): 7246-7254, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35549217

RESUMEN

Chemical modifications of RNA are associated with fundamental biological processes such as RNA splicing, export, translation, and degradation, as well as human disease states, such as cancer. However, the analysis of ribonucleoside modifications is hampered by the hydrophilicity of the ribonucleoside molecules. In this work, we used solid-phase permethylation to first efficiently derivatize the ribonucleosides and quantitatively analyze them by liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method. We identified and quantified more than 60 RNA modifications simultaneously by ultrahigh-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QqQ-MS) performed in the dynamic multiple reaction monitoring (dMRM) mode. The increased hydrophobicity of permethylated ribonucleosides significantly enhanced their retention, separation, and ionization efficiency, leading to improved detection and quantification. We further demonstrate that this novel approach is capable of quantifying cytosine methylation and hydroxymethylation in complex RNA samples obtained from mouse embryonic stem cells with genetic deficiencies in the ten-eleven translocation (TET) enzymes. The results match previously performed analyses and highlight the improved sensitivity, efficacy, and robustness of the new method. Our protocol is quantitative and robust and thus provides an augmented approach for comprehensive analysis of RNA modifications in biological samples.


Asunto(s)
Ribonucleósidos , Animales , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Ratones , ARN/química , Procesamiento Postranscripcional del ARN , Ribonucleósidos/análisis , Ribonucleósidos/química , Ribonucleósidos/metabolismo , Espectrometría de Masas en Tándem/métodos
13.
J Am Chem Soc ; 144(12): 5377-5388, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35235319

RESUMEN

Electrophilic cofactors are widely distributed in nature and play important roles in many physiological and disease processes, yet they have remained blind spots in traditional activity-based protein profiling (ABPP) approaches that target nucleophiles. More recently, reverse-polarity (RP)-ABPP using hydrazine probes identified an electrophilic N-terminal glyoxylyl (Glox) group for the first time in secernin-3 (SCRN3). The biological function(s) of both the protein and Glox as a cofactor has not yet been pharmacologically validated because of the lack of selective inhibitors that could disrupt and therefore identify its activity. Here, we present the first platform for analyzing the reactivity and selectivity of an expanded nucleophilic probe library toward main-chain carbonyl cofactors such as Glox and pyruvoyl (Pyvl) groups. We first applied the library proteome-wide to profile and confirm engagement with various electrophilic protein targets, including secernin-2 (SCRN2), shown here also to possess a Glox group. A broadly reactive indole ethylhydrazine probe was used for a competitive in vitro RP-ABPP assay to screen for selective inhibitors against such cofactors from a set of commercially available nucleophilic fragments. Using Glox-containing SCRN proteins as a case study, naphthyl hydrazine was identified as a potent and selective SCRN3 inhibitor, showing complete inhibition in cell lysates with no significant cross-reactivity detected for other enzymes. Moving forward, this platform provides the fundamental basis for the development of selective Glox inhibitors and represents a starting point to advance small molecules that modulate electrophile-dependent function.


Asunto(s)
Hidrazinas , Proteoma , Hidrazinas/farmacología
14.
J Chromatogr A ; 1663: 462754, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34954531

RESUMEN

High-throughput screening of inhibitors from natural products is an efficient approach to target key enzymes in diabetes progression. In this study, an on-line detection system was established for the first time to rapidly screen inhibitors of α-amylase and α-glucosidase from Prunus mume. Among 28 identified compounds, 26 and 21 compounds showed strong inhibitory effect against α-amylase and α-glucosidase, respectively. Their inhibitory effects were validated by in vitro enzyme assay and fluorescence quenching which demonstrated that these inhibitors effectively interfered enzyme active sites. The inhibition kinetics suggested that chemical structures are of great importance for interfering the enzyme structures and their microenvironment polarity. Among evaluated compounds, isorhamnetin-3-O-glucoside (19) showed the strongest binding activities to α-amylase and α-glucosidase (6.34×106·nmol-1 and 6.28×106·nmol-1, respectively) by the on-line detection system. Its IC50 values were 0.16 ± 0.06 and 0.09 ± 0.01 µM against α-amylase and α-glucosidase, respectively. 19 gave a much higher Ki for α-amylase (0.1307 mM) than α-glucosidase (0.0063 mM), indicating its selectivity towards α-glucosidase. This reported method was rapid and reliable to identify prototype inhibitors against key enzymes in diabetes, and thus might serve as a general platform to screen enzyme inhibitors from natural products.


Asunto(s)
Diabetes Mellitus , Prunus , Inhibidores Enzimáticos , Inhibidores de Glicósido Hidrolasas/farmacología , Humanos , alfa-Amilasas , alfa-Glucosidasas
15.
ACS Cent Sci ; 7(9): 1524-1534, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34584954

RESUMEN

Most known probes for activity-based protein profiling (ABPP) use electrophilic groups that tag a single type of nucleophilic amino acid to identify cases in which its hyper-reactivity underpins function. Much important biochemistry derives from electrophilic enzyme cofactors, transient intermediates, and labile regulatory modifications, but ABPP probes for such species are underdeveloped. Here, we describe a versatile class of probes for this less charted hemisphere of the proteome. The use of an electron-rich hydrazine as the common chemical modifier enables covalent targeting of multiple, pharmacologically important classes of enzymes bearing diverse organic and inorganic cofactors. Probe attachment occurs by both polar and radicaloid mechanisms, can be blocked by molecules that occupy the active sites, and depends on the proper poise of the active site for turnover. These traits will enable the probes to be used to identify specific inhibitors of individual members of these multiple enzyme classes, making them uniquely versatile among known ABPP probes.

16.
Curr Protoc Chem Biol ; 12(4): e86, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33197155

RESUMEN

Reverse-polarity activity-based protein profiling (RP-ABPP) is a chemical proteomics approach that uses nucleophilic probes amenable to "click" chemistry deployed into living cells in culture to capture, immunoprecipitate, and identify protein-bound electrophiles. RP-ABPP is used to characterize the structure and function of reactive electrophilic post-translational modifications (PTMs) and the proteins harboring them, which may uncover unknown or novel functions. RP-ABPP has demonstrated utility as a versatile method to monitor the metabolic regulation of electrophilic cofactors, using a pyruvoyl cofactor in S-adenosyl-L-methionine decarboxylase (AMD1), and to discover novel types of electrophilic modifications on proteins in human cells, such as the glyoxylyl modification on secernin-3 (SCRN3). These cofactors cannot be predicted by sequence, and therefore this area is relatively undeveloped. RP-ABPP is the only global, unbiased approach to discover such electrophiles. Here, we describe the utility of these experiments and provide a detailed protocol for de novo discovery, quantitation, and global profiling of electrophilic functionality of proteins. © 2020 The Authors. Basic Protocol 1: Identification and quantification of probe-reactive proteins Basic Protocol 2: Characterization of the site of probe labeling Basic Protocol 3: Determination and quantitation of electrophile structure.


Asunto(s)
Coenzimas/análisis , Proteómica , Química Clic , Coenzimas/metabolismo , Humanos , Sondas Moleculares/química , Procesamiento Proteico-Postraduccional
17.
J Pineal Res ; 68(2): e12626, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31770455

RESUMEN

Tryptophan hydroxylase (TPH) activity was detected in cultured epidermal melanocytes and dermal fibroblasts with respective Km of 5.08 and 2.83 mM and Vmax of 80.5 and 108.0 µmol/min. Low but detectable TPH activity was also seen in cultured epidermal keratinocytes. Serotonin and/or its metabolite and precursor to melatonin, N-acetylserotonin (NAS), were identified by LC/MS in human epidermis and serum. Endogenous epidermal levels were 113.18 ± 13.34 and 43.41 ± 12.45 ng/mg protein for serotonin (n = 8/8) and NAS (n = 10/13), respectively. Their production was independent of race, gender, and age. NAS was also detected in human serum (n = 13/13) at a concentration 2.44 ± 0.45 ng/mL, while corresponding serotonin levels were 295.33 ± 17.17 ng/mL (n = 13/13). While there were no differences in serum serotonin levels, serum NAS levels were slightly higher in females. Immunocytochemistry studies showed localization of serotonin to epidermal and follicular keratinocytes, eccrine glands, mast cells, and dermal fibrocytes. Endogenous production of serotonin in cultured melanocytes, keratinocytes, and dermal fibroblasts was modulated by UVB. In conclusion, serotonin and NAS are produced endogenously in the epidermal, dermal, and adnexal compartments of human skin and in cultured skin cells. NAS is also detectable in human serum. Both serotonin and NAS inhibited melanogenesis in human melanotic melanoma at concentrations of 10-4 -10-3  M. They also inhibited growth of melanocytes. Melanoma cells were resistant to NAS inhibition, while serotonin inhibited cell growth only at 10-3  M. In summary, we characterized a serotonin-NAS system in human skin that is a part of local neuroendocrine system regulating skin homeostasis.


Asunto(s)
Epidermis/metabolismo , Fibroblastos/metabolismo , Queratinocitos/metabolismo , Melatonina/metabolismo , Serotonina/análogos & derivados , Envejecimiento de la Piel , Adulto , Anciano , Anciano de 80 o más Años , Línea Celular Tumoral , Femenino , Humanos , Masculino , Persona de Mediana Edad , Serotonina/metabolismo
18.
J Chromatogr A ; 1613: 460663, 2020 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-31732156

RESUMEN

An on-line high-performance liquid chromatography-diode-array-detector-electrospray ionization-ion-trap-time-of-flight-mass spectrometry-total antioxidant capacity detection (HPLC-DAD-ESI-IT-TOF-MS-TACD) system was applied for the identification and evaluation of antioxidants in Rosa chinensis Jacq., an edible flower in food industry and a widely used traditional Chinese medicine. With the help of this platform, the HPLC fingerprint, mass fragmentations, and sample activity profiles against 1,1-diphenylpicryl-2-hydrazyl radical (DPPH•) and ferric reducing antioxidant power (FRAP) were recorded after one injection. Using this technique, 80 compounds were separated and identified by their LC/MS behaviors with the assistance of standard compounds. In addition, 11 different Rosa chinensis Jacq. samples were profiled and then quantified for their DPPH• and FRAP activities. Interestingly, a total of 52 compounds showed antioxidative effects against DPPH• and 61 were active against FRAP. The results demonstrated that the on-line system is a powerful technique for antioxidant discovery in Rosa chinensis Jacq. and other food resources.


Asunto(s)
Antioxidantes/química , Técnicas de Química Analítica/métodos , Rosa/química , Cromatografía Líquida de Alta Presión , Flores/química , Medicina Tradicional China , Espectrometría de Masa por Ionización de Electrospray
19.
Mol Cancer Ther ; 19(2): 348-363, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31645441

RESUMEN

Triple-negative breast cancer (TNBC) accounts for approximately 15% of breast cancer cases in the United States. TNBC has poorer overall prognosis relative to other molecular subtypes due to rapid onset of drug resistance to conventional chemotherapies and increased risk of visceral metastases. Taxanes like paclitaxel are standard chemotherapies that stabilize microtubules, but their clinical efficacy is often limited by drug resistance and neurotoxicities. We evaluated the preclinical efficacy of a novel, potent, and orally bioavailable tubulin inhibitor, VERU-111, in TNBC models. VERU-111 showed potent cytotoxicity against TNBC cell lines, inducing apoptosis and cell-cycle arrest in a concentration-dependent manner. VERU-111 also efficiently inhibited colony formation, cell migration, and invasion. Orally administered VERU-111 inhibited MDA-MB-231 xenograft growth in a dose-dependent manner, with similar efficacies to paclitaxel, but without acute toxicity. VERU-111 significantly reduced metastases originating from the mammary fat pad into lung, liver, and kidney metastasis in an experimental metastasis model. Moreover, VERU-111, but not paclitaxel, suppressed growth of luciferase-labeled, taxane-resistant, patient-derived metastatic TNBC tumors. In this model, VERU-111 repressed growth of preestablished axillary lymph node metastases and lung, bone, and liver metastases at study endpoint, whereas paclitaxel enhanced liver metastases relative to vehicle controls. Collectively, these studies strongly suggest that VERU-111 is not only a potent inhibitor of aggressive TNBC phenotypes, but it is also efficacious in a taxane-resistant model of metastatic TNBC. Thus, VERU-111 is a promising new generation of tubulin inhibitor for the treatment of TNBC and may be effective in patients who progress on taxanes.Results presented in this study demonstrate the efficacy of VERU-111 in vivo and provide strong rationale for future development of VERU-111 as an effective treatment for metastatic breast cancer.


Asunto(s)
Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Moduladores de Tubulina/uso terapéutico , Administración Oral , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Metástasis de la Neoplasia
20.
J Chromatogr A ; 1598: 232-241, 2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-30981514

RESUMEN

Shuxuening injection (SXNI), one of the traditional Chinese medicine injections (TCMI), is widely used for the treatment of cardiovascular diseases in the clinic. However, its allergic reactions have impeded the clinical applications of SXNI, such adverse reactions have not been well understood due to the lack of methods for detecting haptens. In this study, a high-performance liquid chromatography-diode-array detector-multi-stage mass spectrometry-human serum albumin-fluorescence detector (HPLC-DAD-MSn-HSA-FLD) system was established to identify and screen haptens for the first time. Flavones, flavonols and their glycosides in SXNI showed strong HSA binding ability in different degrees. Fifteen of these compounds were used to study the association of HSA binding ability and sensitizability using isothermal titration calorimetry (ITC) and fluorescence techniques, furthermore, RBL-2H3 cell experiments were conducted to verify the results. It was found that ginkgolides showed no sensitizability, while flavones and flavonol aglycones showed stronger sensitizability than their glycosides. The system was proven to be precise, stable and reproducible, which lays a foundation for screening haptens in SXNI and relevant samples.


Asunto(s)
Química Farmacéutica/métodos , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/química , Haptenos/análisis , Espectrometría de Masas , Albúmina Sérica Humana/análisis , Química Farmacéutica/instrumentación , Fluorescencia , Humanos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...