Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.056
Filtrar
1.
Clin Respir J ; 18(5): e13760, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38725324

RESUMEN

OBJECTIVE: Radiation therapy (RT) may increase the risk of second cancer. This study aimed to determine the association between exposure to radiotherapy for the treatment of thoracic cancer (TC) and subsequent secondary lung cancer (SLC). MATERIALS AND METHODS: The Surveillance, Epidemiology, and End Results (SEER) database (from 1975 to 2015) was queried for TC. Univariate Cox regression analyses and multiple primary standardized incidence ratios (SIRs) were used to assess the risk of SLC. Subgroup analyses of patients stratified by latency time since TC diagnosis, age at TC diagnosis, and calendar year of TC diagnosis stage were also performed. Overall survival and SLC-related death were compared among the RT and no radiation therapy (NRT) groups by using Kaplan-Meier analysis and competitive risk analysis. RESULTS: In a total of 329 129 observations, 147 847 of whom had been treated with RT. And 6799 patients developed SLC. Receiving radiotherapy was related to a higher risk of developing SLC for TC patients (adjusted HR, 1.25; 95% CI, 1.19-1.32; P < 0.001). The cumulative incidence of developing SLC in TC patients with RT (3.8%) was higher than the cumulative incidence (2.9%) in TC patients with NRT(P). The incidence risk of SLC in TC patients who received radiotherapy was significantly higher than the US general population (SIR, 1.19; 95% CI, 1.14-1.23; P < 0.050). CONCLUSIONS: Radiotherapy for TC was associated with higher risks of developing SLC compared with patients unexposed to radiotherapy.


Asunto(s)
Neoplasias Pulmonares , Neoplasias Primarias Secundarias , Programa de VERF , Neoplasias Torácicas , Humanos , Masculino , Femenino , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/epidemiología , Persona de Mediana Edad , Anciano , Incidencia , Pronóstico , Neoplasias Torácicas/radioterapia , Neoplasias Torácicas/epidemiología , Neoplasias Primarias Secundarias/epidemiología , Neoplasias Primarias Secundarias/etiología , Estudios Retrospectivos , Factores de Riesgo , Estados Unidos/epidemiología , Radioterapia/efectos adversos , Neoplasias Inducidas por Radiación/epidemiología , Neoplasias Inducidas por Radiación/etiología , Medición de Riesgo/métodos , Adulto
2.
Environ Toxicol Pharmacol ; : 104463, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38734395

RESUMEN

Phthalates can induce hepatotoxicity in animal studies. We aimed to assess the associations of individual and mixture of urinary phthalate metabolites with serum liver function indicators among 764 women undergoing assisted reproductive technology (ART). In linear models, we observed inverse correlations between urinary mono-benzyl phthalate and serum total protein (TP) as well as globulin (ß=-0.27 and -0.23, respectively, P<0.05). Additionally, negative associations were identified between mono-isobutyl phthalate and mono-butyl phthalate (MBP) and aspartate aminotransferase-to-alanine transaminase ratio (AST/ALT) (P<0.05). MBP and the sum of all phthalate metabolites (∑all.phth.m) were positively associated with bilirubin, with ß ranging from 0.14 to 0.47. Most phthalate metabolites were also positively related to gamma-glutamyl transferase (GGT) (all P<0.05). In Bayesian kernel machine regression models, phthalate mixture was positively associated with bilirubin and GGT, whereas inversely associated with AST/ALT and TP. Our results suggest that phthalate exposure may impair liver function among women undergoing ART.

3.
Heliyon ; 10(9): e29848, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38699049

RESUMEN

Systemic lupus erythematosus (SLE) is a complex autoimmune disease with multiple etiological factors. Immune disorder contributes to SLE development and is an important clinical manifestation of SLE patients. Immune dysfunction is characterized by abnormal of B cells, T cells, monocyte-macrophages and dendritic cells (DCs), in both quantity and quality. Adenosine is a critical factor for human immune homeostasis, which acts as an immunosuppressive signal and can prevent the hyperactivity of human immune system. Adenosine levels are significant decreased in serum from SLE patients. Adenosine level is regulated by the CD39, CD73 and adenosine deaminase (ADA). CD39/CD73/ADA catalyzed the cascade enzymatic reaction, which contained the adenosine generation and degradation. Adenosine affects the function of various immune cells via bind to the adenosine receptors, which are expressed on the cell surface. This review aims to export the changes of immune cells and adenosine signal pathway in SLE, as well as the effect of adenosine signal pathway in SLE development.

4.
Nanomicro Lett ; 16(1): 191, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700650

RESUMEN

Low-temperature processed electron transport layer (ETL) of TiO2 that is widely used in planar perovskite solar cells (PSCs) has inherent low carrier mobility, resulting in insufficient photogenerated electron transport and thus recombination loss at buried interface. Herein, we demonstrate an effective strategy of laser embedding of p-n homojunctions in the TiO2 ETL to accelerate electron transport in PSCs, through localized build-in electric fields that enables boosted electron mobility by two orders of magnitude. Such embedding is found significantly helpful for not only the enhanced crystallization quality of TiO2 ETL, but the fabrication of perovskite films with larger-grain and the less-trap-states. The embedded p-n homojunction enables also the modulation of interfacial energy level between perovskite layers and ETLs, favoring for the reduced voltage deficit of PSCs. Benefiting from these merits, the formamidinium lead iodide (FAPbI3) PSCs employing such ETLs deliver a champion efficiency of 25.50%, along with much-improved device stability under harsh conditions, i.e., maintain over 95% of their initial efficiency after operation at maximum power point under continuous heat and illumination for 500 h, as well as mixed-cation PSCs with a champion efficiency of 22.02% and over 3000 h of ambient storage under humidity stability of 40%. Present study offers new possibilities of regulating charge transport layers via p-n homojunction embedding for high performance optoelectronics.

5.
Dalton Trans ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700437

RESUMEN

The development of integrated multi-catalyst processes has become of high interest to transform abundant feedstocks or environmental pollutants to commodity chemicals in a one pot, one pass fashion. Specifically, CO2 poses a large environmental burden and would thus be a desirable, relatively abundant C1 source in multi-step synthetic chemistry. Herein we disclose the synthesis of aldehydes from CO2via the integration of electrochemical CO2 reduction (CO2RR) and hydroformylation, taking advantage of the typically unwanted concomitant hydrogen evolution (HER) to generate the necessary CO and H2 needed for hydroformylation. Though typical hydroformylation catalysts based on Rh would be deactivated under CO2RR conditions, we circumvent this limitation by spatially segregating our CO2RR and hydroformylation systems in a vial-in-vial reactor, while allowing CO and H2 transport between catalyst sites. In this manner, 97% aldehyde yield from CO2RR and styrene was achieved selectively using a classic homogeneous hydroformylation catalyst in HRh(CO)(PPh3)3, and 43% aldehyde yield was obtained using a heterogenized version of this Rh catalyst onto mesoporous silica. This work not only repurposes undesired HER in CO2RR and prepares aldehydes from CO2 without added H2, but expands the scope of processes that transform feedstocks all the way to commodity chemicals in a one pass manner.

6.
Cancer Res ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38657120

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited therapeutic options. Interleukin-1 receptor type 2 (IL1R2) promotes breast tumor-initiating cell (BTIC) self-renewal and tumor growth in TNBC, indicating that targeting it could improve patient treatment. Here, we observed that IL1R2 blockade strongly attenuated macrophage recruitment and the polarization of tumor-associated macrophages (TAMs) to inhibit BTIC self-renewal and CD8+ T cell exhaustion, which resulted in reduced tumor burden and prolonged survival in TNBC mouse models. IL1R2 activation by TAM-derived IL1ß increased PD-L1 expression by interacting with the transcription factor yin yang 1 (YY1) and inducing YY1 ubiquitination and proteasomal degradation in both TAMs and TNBC cells. Loss of YY1 alleviated the transcriptional repression of c-Fos, which is a transcriptional activator of PD-L1. Combined treatment with an IL1R2-neutralizing antibody and anti-PD-1 led to enhanced anti-tumor efficacy and reduced TAMs, BTICs, and exhausted CD8+ T cells. These results suggest that IL1R2 blockade might be a strategy to potentiate immune checkpoint blockade efficacy in TNBC to improve patient outcomes.

7.
Sci Total Environ ; 927: 172368, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38614346

RESUMEN

BACKGROUND: Disinfection byproducts (DBPs) have been shown to impair thyroid function in experimental models. However, epidemiological evidence is scarce. METHODS: This study included 1190 women undergoing assisted reproductive technology (ART) treatment from the Tongji Reproductive and Environmental (TREE) cohort from December 2018 to August 2021. Serum thyrotropin (TSH), free triiodothyronine (FT3), and free thyroxine (FT4) were measured as indicators of thyroid function. FT4/FT3 and TSH/FT4 ratios were calculated as markers of thyroid hormone homeostasis. Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), the two most abundant HAAs, in urine were detected to assess individual DBP exposures. RESULTS: After adjusting for relevant covariates, positive associations were observed between urinary TCAA concentrations and serum TSH and TSH/FT4 levels (e.g., percent change = 5.82 %, 95 % CI: 0.70 %, 11.21 % for TSH), whereas inverse associations were found for serum FT3 and FT4 (e.g., percent change = -1.29 %, 95 % CI: -2.49 %, -0.07 % for FT3). There also was a negative association between urinary DCAA concentration and serum FT4/FT3 (percent change = -2.49 %, 95 % CI: -4.71 %, -0.23 %). These associations were further confirmed in the restricted cubic spline and generalized additive models with linear or U-shaped dose-response relationships. CONCLUSION: Urinary HAAs were associated with altered thyroid hormone homeostasis among women undergoing ART treatment.


Asunto(s)
Glándula Tiroides , Humanos , Femenino , Adulto , Tiroxina/sangre , Triyodotironina/sangre , Tirotropina/sangre , Hormonas Tiroideas/sangre , Pruebas de Función de la Tiroides , Desinfectantes , Acetatos , China
8.
Small ; : e2401123, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38659372

RESUMEN

Matching the thickness of the graphitic carbon nitride (CN) nanolayer with the charge diffusion length is expected to compensate for the poor intrinsic conductivity and charge recombination in CN for photoelectrochemical cells (PEC). Herein, the compact CN nanolayer with tunable thickness is in situ coated on carbon fibers. The compact packing along with good contact with the substrate improves the electron transport and alleviates the charge recombination. The PEC investigation shows CN nanolayer of 93 nm-thick yields an optimum photocurrent of 116 µA cm-2 at 1.23 V versus RHE, comparable to most micrometer-thick CN layers, with a low onset potential of 0.2 V in 1 m KOH under 1 sun illumination. This optimum performance suggests the electron diffusion length matches with the thickness of the CN nanolayer. Further deposition of NiFe-layered double hydroxide enhanced the surface water oxidation kinetics, delivering an improved photocurrent of 210 µA cm-2 with IPCE of 12.8% at 400 nm. The CN nanolayer also shows extended potential in PEC organic synthesis. This work experimentally reveals the PEC behavior of the nanometer-thick CN layer, providing new insights into CN in the application of energy and environment-related fields.

10.
J Hazard Mater ; 470: 134148, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38565012

RESUMEN

There is increasing global concern regarding the pervasive issue of plastic pollution. We investigated the response of Populus × euramericana cv. '74/76' to nanoplastic toxicity via phenotypic, microanatomical, physiological, transcriptomic, and metabolomic approaches. Polystyrene nanoplastics (PS-NPs) were distributed throughout the test plants after the application of PS-NPs. Nanoplastics principally accumulated in the roots; minimal fractions were translocated to the leaves. In leaves, however, PS-NPs easily penetrated membranes and became concentrated in chloroplasts, causing thylakoid disintegration and chlorophyll degradation. Finally, oxidant damage from the influx of PS-NPs led to diminished photosynthesis, stunted growth, and etiolation and/or wilting. By integrating dual-omics data, we found that plants could counteract mild PS-NP-induced oxidative stress through the antioxidant enzyme system without initiating secondary metabolic defense mechanisms. In contrast, severe PS-NP treatments promoted a shift in metabolic pattern from primary metabolism to secondary metabolic defense mechanisms, an effect that was particularly pronounced during the upregulation of flavonoid biosynthesis. Our findings provide a useful framework from which to further clarify the roles of key biochemical pathways in plant responses to nanoplastic toxicity. Our work also supports the development of effective strategies to mitigate the environmental risks of nanoplastics by biologically immobilizing them in contaminated lands.


Asunto(s)
Populus , Populus/efectos de los fármacos , Populus/metabolismo , Populus/crecimiento & desarrollo , Populus/genética , Poliestirenos/toxicidad , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Clorofila/metabolismo , Metabolómica , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Nanopartículas/toxicidad , Multiómica
11.
Nat Mater ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627527

RESUMEN

Ion exchange is a powerful method to access metastable materials with advanced functionalities for energy storage applications. However, high concentrations and unfavourably large excesses of lithium are always used for synthesizing lithium cathodes from parent sodium material, and the reaction pathways remain elusive. Here, using layered oxides as model materials, we demonstrate that vacancy level and its corresponding lithium preference are critical in determining the accessible and inaccessible ion exchange pathways. Taking advantage of the strong lithium preference at the right vacancy level, we establish predictive compositional and structural evolution at extremely dilute and low excess lithium based on the phase equilibrium between Li0.94CoO2 and Na0.48CoO2. Such phase separation behaviour is general in both surface reaction-limited and diffusion-limited exchange conditions and is accomplished with the charge redistribution on transition metals. Guided by this understanding, we demonstrate the synthesis of NayCoO2 from the parent LixCoO2 and the synthesis of Li0.94CoO2 from NayCoO2 at 1-1,000 Li/Na (molar ratio) with an electrochemical assisted ion exchange method by mitigating the kinetic barriers. Our study opens new opportunities for ion exchange in predictive synthesis and separation applications.

12.
Sci Rep ; 14(1): 7691, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565845

RESUMEN

Spinal cord injury (SCI) is a prevalent and serious complication among patients with spinal tuberculosis (STB) that can lead to motor and sensory impairment and potentially paraplegia. This research aims to identify factors associated with SCI in STB patients and to develop a clinically significant predictive model. Clinical data from STB patients at a single hospital were collected and divided into training and validation sets. Univariate analysis was employed to screen clinical indicators in the training set. Multiple machine learning (ML) algorithms were utilized to establish predictive models. Model performance was evaluated and compared using receiver operating characteristic (ROC) curves, area under the curve (AUC), calibration curve analysis, decision curve analysis (DCA), and precision-recall (PR) curves. The optimal model was determined, and a prospective cohort from two other hospitals served as a testing set to assess its accuracy. Model interpretation and variable importance ranking were conducted using the DALEX R package. The model was deployed on the web by using the Shiny app. Ten clinical characteristics were utilized for the model. The random forest (RF) model emerged as the optimal choice based on the AUC, PRs, calibration curve analysis, and DCA, achieving a test set AUC of 0.816. Additionally, MONO was identified as the primary predictor of SCI in STB patients through variable importance ranking. The RF predictive model provides an efficient and swift approach for predicting SCI in STB patients.


Asunto(s)
Traumatismos de la Médula Espinal , Tuberculosis de la Columna Vertebral , Humanos , Estudios Prospectivos , Tuberculosis de la Columna Vertebral/complicaciones , Traumatismos de la Médula Espinal/complicaciones , Algoritmos , Aprendizaje Automático , Estudios Retrospectivos
13.
Commun Biol ; 7(1): 394, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561421

RESUMEN

Brainbow is a genetic cell-labeling technique that allows random colorization of multiple cells and real-time visualization of cell fate within a tissue, providing valuable insights into understanding complex biological processes. However, fluorescent proteins (FPs) in Brainbow have distinct excitation spectra with peak difference greater than 35 nm, which requires sequential imaging under multiple excitations and thus leads to long acquisition times. In addition, they are not easily used together with other fluorophores due to severe spectral bleed-through. Here, we report the development of a single-wavelength excitable Brainbow, UFObow, incorporating three newly developed blue-excitable FPs. We have demonstrated that UFObow enables not only tracking the growth dynamics of tumor cells in vivo but also mapping spatial distribution of immune cells within a sub-cubic centimeter tissue, revealing cell heterogeneity. This provides a powerful means to explore complex biology in a simultaneous imaging manner at a single-cell resolution in organs or in vivo.


Asunto(s)
Diagnóstico por Imagen , Técnicas Genéticas , Animales , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Colorantes , Mamíferos/genética
14.
Environ Pollut ; 348: 123815, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38508365

RESUMEN

Cyclodextrin (CD), a cyclic oligosaccharide from enzymatic starch breakdown, plays a crucial role in pharmaceuticals, food, agriculture, textiles, biotechnology, chemicals, and environmental applications, including water and wastewater treatment. In this study, a statistical analysis was performed using VOSviewer and Citespace to scrutinize 2038 articles published from 1993 to 2022. The investigation unveiled a notable upsurge in pertinent articles and citation counts, with China and USA contributing the highest publication volumes. The prevailing research focus predominantly revolves around the application of CD-based materials used as adsorbents to remove conventional contaminants such as dyes and metals. The CD chemistry allows the construction of materials with various architectures, including cross-linked, grafted, hybrid or supported systems. The main adsorbents are cross-linked CD polymers, including nanosponges, fibres and hybrid composites. Additionally, research efforts are actually concentrated on the synthesis of CD-based membranes, CD@graphene oxide, and CD@TiO2. These materials are proposed as adsorbents to remove emerging pollutants. By employing bibliometric analysis, this study delivers a comprehensive retrospective review and synthesis of research concerning CD-based adsorbents for the removal of contaminants from wastewater, thereby offering valuable insights for future large-scale application of CD-based adsorption materials.


Asunto(s)
Ciclodextrinas , Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Agua , Colorantes , Adsorción , Bibliometría , Contaminantes Químicos del Agua/análisis
15.
Sci Adv ; 10(11): eadh1330, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489373

RESUMEN

Rare earth elements (REEs), critical to modern industry, are difficult to separate and purify, given their similar physicochemical properties originating from the lanthanide contraction. Here, we systematically study the transport of lanthanide ions (Ln3+) in artificially confined angstrom-scale two-dimensional channels using MoS2-based building blocks in an aqueous environment. The results show that the uptake and permeability of Ln3+ assume a well-defined volcano shape peaked at Sm3+. This transport behavior is rooted from the tradeoff between the barrier for dehydration and the strength of interactions of lanthanide ions in the confinement channels, reminiscent of the Sabatier principle. Molecular dynamics simulations reveal that Sm3+, with moderate hydration free energy and intermediate affinity for channel interaction, exhibit the smallest dehydration degree, consequently resulting in the highest permeability. Our work not only highlights the distinct mass transport properties under extreme confinement but also demonstrates the potential of dialing confinement dimension and chemistry for greener REEs separation.

16.
Molecules ; 29(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38542894

RESUMEN

The lactic acid bacteria Streptococcus thermophilus and Lactobacillus helveticus are commonly used as starter cultures in dairy product production. This study aimed to investigate the characteristics of fermented milk using different ratios of these strains and analyze the changes in volatile compounds during fermentation and storage. A 10:1 ratio of Streptococcus thermophilus CICC 6063 to Lactobacillus helveticus CICC 6064 showed optimal fermentation time (4.2 h), viable cell count (9.64 log10 colony-forming units/mL), and sensory evaluation score (79.1 points). In total, 56 volatile compounds were identified and quantified by solid-phase microextraction and gas chromatography-mass spectrometry (SPME-GC-MS), including aldehydes, ketones, acids, alcohols, esters, and others. Among these, according to VIP analysis, 2,3-butanedione, acetoin, 2,3-pentanedione, hexanoic acid, acetic acid, acetaldehyde, and butanoic acid were identified as discriminatory volatile metabolites for distinguishing between different time points. Throughout the fermentation and storage process, the levels of 2,3-pentanedione and acetoin exhibited synergistic dynamics. These findings enhance our understanding of the chemical and molecular characteristics of milk fermented with Streptococcus thermophilus and Lactobacillus helveticus, providing a basis for improving the flavor and odor of dairy products during fermentation and storage.


Asunto(s)
Lactobacillus delbrueckii , Lactobacillus helveticus , Pentanonas , Animales , Leche/química , Streptococcus thermophilus/metabolismo , Fermentación , Acetoína/análisis , Lactobacillus delbrueckii/metabolismo , Cetonas/análisis
18.
Nat Commun ; 15(1): 2781, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555303

RESUMEN

Electrochemical research often requires stringent combinations of experimental parameters that are demanding to manually locate. Recent advances in automated instrumentation and machine-learning algorithms unlock the possibility for accelerated studies of electrochemical fundamentals via high-throughput, online decision-making. Here we report an autonomous electrochemical platform that implements an adaptive, closed-loop workflow for mechanistic investigation of molecular electrochemistry. As a proof-of-concept, this platform autonomously identifies and investigates an EC mechanism, an interfacial electron transfer (E step) followed by a solution reaction (C step), for cobalt tetraphenylporphyrin exposed to a library of organohalide electrophiles. The generally applicable workflow accurately discerns the EC mechanism's presence amid negative controls and outliers, adaptively designs desired experimental conditions, and quantitatively extracts kinetic information of the C step spanning over 7 orders of magnitude, from which mechanistic insights into oxidative addition pathways are gained. This work opens opportunities for autonomous mechanistic discoveries in self-driving electrochemistry laboratories without manual intervention.

19.
Appl Opt ; 63(6): 1529-1537, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38437365

RESUMEN

Photon counting is an effective way to enhance the dynamic range of the data acquisition system (DAQ) in Raman lidars. However, there exists a deficiency of relatively high dead times among current options, which necessitates an additional calibration procedure for the nonlinearity of the photon counting signal, thus leading to unanticipated errors. A field programmable gate array (FPGA)-based photon counting module has been proposed and implemented in a Raman lidar, offering two operational channels. Through observational experiments, it was determined that this module has an overall dead time of 1.13 ns taking advantage of the high-speed amplifier/discriminator pair and the logic design, a significant improvement compared to the 4.35 ns of a commercially used Licel transient recorder within the same counting rate range. This notably low dead time implies that its output maintains sufficient linearity even at substantially high counting rates. As a result, the need for a dead time calibration procedure prior to signal integration with the analog signal is eliminated, reducing uncertainty in the final integrated signal, and even in the retrieval result. The backscattering result of the comparison between this module and a transient recorder indicates that a more precise performance can be acquired benefiting from this hardware upgrading.

20.
Environ Int ; 185: 108563, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38461776

RESUMEN

BACKGROUND: Pregnant women in the Shanghai Birth Cohort (SBC) of China faced dual threats of per- and polyfluoroalkyl substances (PFAS) exposure and vitamin D (VD) insufficiency, potentially impacting offspring neurodevelopment. However, little is known about whether maternal VD status modifies PFAS-related neurodevelopment effect. OBJECTIVES: To explore the modifying role of maternal VD status in the effect of prenatal PFAS exposure on childhood neurodevelopment. METHODS: We included 746 mother-child pairs from the SBC. Ten PFAS congeners and VD levels were measured in maternal blood samples collected during the first and second trimester respectively. At 2 years of age, toddlers underwent neurodevelopment assessments using Bayley-III Scales. Multivariate linear, logistic regression, and weighted quantile sum approach were used to estimate associations of Bayley-III scores with individual and mixture PFAS. We stratified participants into VD sufficient and insufficient groups and further balanced PFAS differences between these groups by matching all PFAS levels. We fitted the same statistical models in each VD group before and after matching. RESULTS: Nearly half (46.5 %) of pregnant women were VD insufficient (<30 ng/mL). In the overall population, PFAS exposure was associated with lower language scores and an increased risk for neurodevelopmental delay, but higher cognitive scores. However, adverse associations with PFAS were mainly observed in the VD sufficient group, while the VD insufficient group showed positive cognitive score associations. Higher PFAS concentrations were found in the VD sufficient group compared to the VD insufficient group. Post-matching, adverse associations in the VD sufficient group were nullified, whereas in the VD insufficient group, positive associations disappeared and adverse associations becoming more pronounced. CONCLUSION: In this Chinese birth cohort, high prenatal PFAS exposure and low maternal VD levels collectively heighten the risk of adverse childhood neurodevelopment. However, disentangling PFAS and VD interrelationships is crucial to avoid paradoxical findings.


Asunto(s)
Ácidos Alcanesulfónicos , Contaminantes Ambientales , Fluorocarburos , Efectos Tardíos de la Exposición Prenatal , Humanos , Femenino , Embarazo , Preescolar , Niño , Efectos Tardíos de la Exposición Prenatal/epidemiología , Vitamina D , Fluorocarburos/toxicidad , China/epidemiología , Vitaminas , Contaminantes Ambientales/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...