Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
1.
Antonie Van Leeuwenhoek ; 117(1): 79, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38755437

RESUMEN

A nitrogen-fixing strain designated SG130T was isolated from paddy soil in Fujian Province, China. Strain SG130T was Gram-staining-negative, rod-shaped, and strictly anaerobic. Strain SG130T showed the highest 16S rRNA gene sequence similarities with the type strains Dendrosporobacter quercicolus DSM 1736T (91.7%), Anaeroarcus burkinensis DSM 6283T (91.0%) and Anaerospora hongkongensis HKU 15T (90.9%). Furthermore, the phylogenetic and phylogenomic analysis also suggested strain SG130T clustered with members of the family Sporomusaceae and was distinguished from other genera within this family. Growth of strain SG130T was observed at 25-45 °C (optimum 30 °C), pH 6.0-9.5 (optimum 7.0) and 0-1% (w/v) NaCl (optimum 0.1%). The quinones were Q-8 and Q-9. The polar lipids were phosphatidylserine (PS), phosphatidylethanolamine (PE), glycolipid (GL), phospholipid (PL) and an unidentified lipid (UL). The major fatty acids (> 10%) were iso-C13:0 3OH (26.6%), iso-C17:1 (15.6%) and iso-C15:1 F (11.4%). The genomic DNA G + C content was 50.7%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain SG130T and the most closely related type strain D. quercicolus DSM 1736T (ANI 68.0% and dDDH 20.3%) were both below the cut-off level for species delineation. The average amino acid identity (AAI) between strain SG130T and the most closely related type strain D. quercicolus DSM 1736T was 63.2%, which was below the cut-off value for bacterial genus delineation (65%). Strain SG130T possessed core genes (nifHDK) involved in nitrogen fixation, and nitrogenase activity (106.38 µmol C2H4 g-1 protein h-1) was examined using the acetylene reduction assay. Based on the above results, strain SG130T is confirmed to represent a novel genus of the family Sporomusaceae, for which the name Azotosporobacter soli gen. nov., sp. nov. is proposed. The type strain is SG130T (= GDMCC 1.3312T = JCM 35641T).


Asunto(s)
Composición de Base , ADN Bacteriano , Filogenia , ARN Ribosómico 16S , Microbiología del Suelo , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Técnicas de Tipificación Bacteriana , China , Fosfolípidos/análisis , Fijación del Nitrógeno , Análisis de Secuencia de ADN , Bacterias Fijadoras de Nitrógeno/clasificación , Bacterias Fijadoras de Nitrógeno/genética , Bacterias Fijadoras de Nitrógeno/aislamiento & purificación , Bacterias Fijadoras de Nitrógeno/metabolismo
2.
Environ Sci Ecotechnol ; 21: 100411, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38746776

RESUMEN

Recent advancements in constructed wetlands (CWs) have highlighted the imperative of enhancing nitrogen (N) removal efficiency. However, the variability in influent substrate concentrations presents a challenge in optimizing N removal strategies due to its impact on removal efficiency and mechanisms. Here we show the interplay between influent substrate concentration and N removal processes within integrated vertical-flow constructed wetlands (IVFCWs), using wastewaters enriched with NO3--N and NH4+-N at varying carbon to nitrogen (C/N) ratios (1, 3, and 6). In the NO3--N enriched systems, a positive correlation was observed between the C/N ratio and total nitrogen (TN) removal efficiency, which markedly increased from 13.46 ± 2.23% to 87.00 ± 2.37% as the C/N ratio escalated from 1 to 6. Conversely, in NH4+-N enriched systems, TN removal efficiencies in the A-6 setup (33.69 ± 4.83%) were marginally 1.25 to 1.29 times higher than those in A-3 and A-1 systems, attributed to constraints in dissolved oxygen (DO) levels and alkalinity. Microbial community analysis and metabolic pathway assessment revealed that anaerobic denitrification, microbial N assimilation, and dissimilatory nitrate reduction to ammonium (DNRA) predominated in NO3--N systems with higher C/N ratios (C/N ≥ 3). In contrast, aerobic denitrification and microbial N assimilation were the primary pathways in NH4+-N systems and low C/N NO3--N systems. A mass balance approach indicated denitrification and microbial N assimilation contributed 4.12-47.12% and 8.51-38.96% in NO3--N systems, respectively, and 0.55-17.35% and 7.83-33.55% in NH4+-N systems to TN removal. To enhance N removal, strategies for NO3--N dominated systems should address carbon source limitations and electron competition between denitrification and DNRA processes, while NH4+-N dominated systems require optimization of carbon utilization pathways, and ensuring adequate DO and alkalinity supply.

3.
Antonie Van Leeuwenhoek ; 117(1): 68, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630330

RESUMEN

In this research, two novel Fe(III)-reducing bacteria, SG10T and SG198T of genus Geothrix, were isolated from the rice field of Fujian Agriculture and Forestry University in Fuzhou, Fujian Province, China. Strains SG10T and SG198T were strictly anaerobic, rod-shaped and Gram-stain-negative. The two novel strains exhibited iron reduction ability, utilizing various single organic acid as the elector donor and Fe(III) as a terminal electron acceptor. Strains SG10T and SG198T showed the highest 16S rRNA sequences similarities to the type strains of Geothrix oryzisoli SG189T (99.0-99.5%) and Geothrix paludis SG195T (99.0-99.7%), respectively. The phylogenetic trees based on the 16S rRNA gene and genome 120 conserved core genes showed that strains SG10T and SG198T belong to the genus Geothrix. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the phylogenetic neighbors and the two isolated strains were 86.1-94.3% and 30.7-59.5%, respectively. The major fatty acids were iso-C15:0, anteiso-C15:0, C16:0 and iso-C13:0 3OH, and MK-8 was the main respiratory quinone. According to above results, the two strains were assigned to the genus Geothrix with the names Geothrix campi sp. nov. and Geothrix mesophila sp. nov. Type strains are SG10T (= GDMCC 1.3406 T = JCM 39331 T) and SG198T (= GDMCC 62910 T = KCTC 25635 T), respectively.


Asunto(s)
Compuestos Férricos , Suelo , Humanos , Filogenia , ARN Ribosómico 16S/genética , Acidobacteria , Bacterias , ADN
4.
J Hazard Mater ; 470: 134259, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38626687

RESUMEN

Seeking for a safe, efficient, inexpensive, and eco-friendly oxidizer is always a big challenge for in-situ chemical oxidation (ISCO) technology. This study adopted the potassium peroxoborate (PPB), a novel peroxide, for soil remediation for the first time. PPB based chemical oxidation system (PPB-CO) could efficiently degrade polycyclic aromatic hydrocarbons (PAHs) without other reagents added, reaching 72.1 %, 64.2 %, and 50.0 % removal rates for naphthalene, phenanthrene, and pyrene after 24 h reaction, respectively. The superior total PAHs removal efficiency (60.6 %) was 3.6-4.7 times higher than that of other commercial peroxides (2Na2CO3•3H2O, CaO2, and H2O2). Mechanism analysis revealed that varieties of reactive oxygen species (ROS) can be generated by PPB through Fenton-like or non-Fenton routines, including H2O2, perborates species, O2•-, •OH, and 1O2. The sustainable generation of H2O2 reduced the disproportionation effect of H2O2 by 86 %, significantly improving the utilization rate. Moreover, sandbox experiments and actual contaminated soil remediation experiments verified the feasibility of PPB-CO in a real polluted site. This work provides a novel strategy for effectively soil remediation, highlighting the selection and application of new oxidants.

5.
Environ Sci Ecotechnol ; 21: 100418, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38638606

RESUMEN

Urban surface water pollution poses significant threats to aquatic ecosystems and human health. Conventional nitrogen removal technologies used in urban surface water exhibit drawbacks such as high consumption of carbon sources, high sludge production, and focus on dissolved oxygen (DO) concentration while neglecting the impact of DO gradients. Here, we show an ecological filter walls (EFW) that removes pollutants from urban surface water. We utilized a polymer-based three-dimensional matrix to enhance water permeability, and emergent plants were integrated into the EFW to facilitate biofilm formation. We observed that varying aeration intensities within the EFW's aerobic zone resulted in distinct DO gradients, with an optimal DO control at 3.19 ± 0.2 mg L-1 achieving superior nitrogen removal efficiencies. Specifically, the removal efficiencies of total organic carbon, total nitrogen, ammonia, and nitrate were 79.4%, 81.3%, 99.6%, and 79.1%, respectively. Microbial community analysis under a 3 mg L-1 DO condition revealed a shift in microbial composition and abundance, with genera such as Dechloromonas, Acinetobacter, unclassified_f__Comamonadaceae, SM1A02 and Pseudomonas playing pivotal roles in carbon and nitrogen elimination. Notably, the EFW facilitated shortcut nitrification-denitrification processes, predominantly contributing to nitrogen removal. Considering low manufacturing cost, flexible application, small artificial trace, and good pollutant removal ability, EFW has promising potential as an innovative approach to urban surface water treatment.

7.
Small ; : e2311221, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38462963

RESUMEN

While surface defects and heteroatom doping exhibit promising potential in augmenting the electrocatalytic hydrogen evolution reaction (HER), their performance remains unable to rival that of the costly Pt-based catalysts. Yet, the concurrent modification of catalysts by integrating both approaches stands as a promising strategy to effectively address the aforementioned limitation. In this work, tungsten dopants are introduced into self-supported CoFe-layered double hydroxides (LDH) on nickel foam using a hydrothermal method, and oxygen vacancies (Ov) are further introduced through calcination. The analysis results demonstrated that tungsten doping reduces the Ov formation energy of CoFeW-LDH. The Ov acted as oxophilic sites, facilitating water adsorption and dissociation, and reducing the barrier for cleaving HO─H bonds from 0.64 to 0.14 eV. Additionally, Ov regulated the electronic structure of CoFeW-LDH to endow optimized hydrogen binding ability on tungsten atoms, thereby accelerating alkaline Volmer and Heyrovsky reaction kinetics. Specifically, the abundance of Ov induced a transition of tungsten from a six-coordinated to highly active four-coordinated structure, which becomes the active site for HER. Consequently, an ultra-low overpotential of 41 mV at 10 mA cm-2 , and a low Tafel slope of 35 mV dec-1 are achieved. These findings offer crucial insights for the design of efficient HER electrocatalysts.

8.
ISME Commun ; 4(1): ycae030, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38524761

RESUMEN

Biological nitrogen fixation (BNF) by methanotrophic bacteria has been shown to play an important role in maintaining fertility. However, this process is still limited to aerobic methane oxidation with sufficient oxygen. It has remained unknown whether and how methanotrophic BNF proceeds in hypoxic environments. Herein, we incubated paddy soils with a ferrihydrite-containing mineral salt medium to enrich methanotrophic bacteria in the presence of methane (20%, v/v) under oxygen constraints (0.27%, v/v). The resulting microcosms showed that ferrihydrite-dependent aerobic methane oxidation significantly contributed (81%) to total BNF, increasing the 15N fixation rate by 13-fold from 0.02 to 0.28 µmol 15N2 (g dry weight soil) -1 d-1. BNF was reduced by 97% when ferrihydrite was omitted, demonstrating the involvement of ferrihydrite in methanotrophic BNF. DNA stable-isotope probing indicated that Methylocystis, Methylophilaceae, and Methylomicrobium were the dominant methanotrophs/methylotrophs that assimilated labeled isotopes (13C or 15N) into biomass. Metagenomic binning combined with electrochemical analysis suggested that Methylocystis and Methylophilaceae had the potential to perform methane-induced BNF and likely utilized riboflavin and c-type cytochromes as electron carriers for ferrihydrite reduction. It was concluded that ferrihydrite mediated methanotrophic BNF by methanotrophs/methylotrophs solely or in conjunction with iron-reducing bacteria. Overall, this study revealed a previously overlooked yet pronounced coupling of iron-dependent aerobic methane oxidation to BNF and improves our understanding of methanotrophic BNF in hypoxic zones.

9.
Neoplasia ; 50: 100980, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38382442

RESUMEN

Nasopharyngeal carcinoma (NPC) and oropharyngeal carcinoma (OPC) are subtypes of head and neck cancer with different treatment effects due to the heterogeneity of tumor microenvironments. This study was to investigate the distinctive tumor microenvironments of NPC and OPC. Analyzing single-cell data from 10 cases of each subtype, we reveal significant differences in cellular composition, with NPC microenvironment dominated by T/NK and B cells, and OPC characterized by prevalent epithelial cells and fibroblasts. Dynamic transitions of CD8 T cells are observed in both tumor types, involving shifts from naivety to cytotoxicity, proliferation, and eventual exhaustion/exhausted states. Additionally, Tregs exhibit heightened proliferative abilities in later developmental stages, concomitant with exhaustion. These highly proliferative T cells and Tregs manifest elevated glycolysis and lactate metabolism activities. Furthermore, we explore intercellular communication between glycolytic malignant epithelial cells and these proliferative T cells. These findings offer comprehensive insights into the heterogeneity of tumor microenvironments and provide a solid foundation for future therapeutic strategies and targeted interventions.


Asunto(s)
Carcinoma , Neoplasias Nasofaríngeas , Humanos , Carcinoma/patología , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Carcinoma Nasofaríngeo , Células Epiteliales/metabolismo , Análisis de la Célula Individual , Microambiente Tumoral
10.
World J Clin Cases ; 12(3): 607-615, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38322454

RESUMEN

BACKGROUND: Ischemic colitis (IC) is also known as colon ischemia and is caused by colon vascular occlusion or nonocclusion, which results in a reduced blood supply to the colon and is not significant enough to maintain the metabolic function of cells, leading to intestinal wall ischemia. Its main symptoms include abdominal pain, diarrhea, and bloody stool. In severe cases, intestinal gangrene, peritonitis, intestinal stenosis and even intestinal obstruction may occur. IC induced by long-term use of certain special drugs is relatively rare in clinical practice. This article describes the clinical diagnosis and treatment of a typical case and provides a new treatment idea for the treatment of IC. CASE SUMMARY: The patient was admitted to the hospital with "abdominal pain for half a month and bloody stool with mucous and pus for 3 d" and was diagnosed with "IC". Symptomatic and supportive treatment, such as antibiotics (levofloxacin), acid inhibition and stomach protection, fluid replenishment, and intravenous nutrition, was given. The patient's colonic ulcers were considered to be related to the oral administration of platelet (PLT)-raising capsules; the patient was asked to stop PLT-raising drugs for selective review via colonoscopy, and antibiotics and mesalazine enteric-coated tablets were stopped. Under the guidance of hematology consultation, 60 mg of methylprednisolone was given in combination with PLT infusion to increase the PLT. After treatment, the patient's condition stabilized, the patient's stool turned yellow, the patient's symptoms improved, and the patient was allowed to leave the hospital. CONCLUSION: PLT-raising capsules can lead to IC, so clinicians should have a full understanding of the application of these drugs in the treatment of various causes of thrombocytopenia, weigh the advantages and disadvantages, and observe patients closely.

11.
Artículo en Inglés | MEDLINE | ID: mdl-38323900

RESUMEN

Three microaerophilic bacterial strains, designated SG22T, SG63T and SG29T were isolated from paddy soils in PR China. Cells of these strains were Gram-staining-negative and long rod-shaped. SG22T, SG63T and SG29T showed the highest 16S rRNA gene sequence similarities with the members of the genus Anaeromyxobacter. The results of phylogenetic and phylogenomic analysis also indicated that these strains clustered with members of the genus Anaeromyxobacter. The main respiratory menaquinone of SG22T, SG63T and SG29T was MK-8 and the major fatty acids were iso-C15 : 0, iso-C17 : 0 and C16 : 0. SG22T, SG29T and SG63T not only possessed iron reduction ability but also harboured genes (nifHDK) encoding nitrogenase. The genomic DNA G+C contents of SG22T, SG63T and SG29T ranged from 73.3 to 73.5 %. The average nucleotide identity (ANI) and digital DNA-DNA hybridisation (dDDH) values between SG22T, SG63T and SG29T and the closely related species of the genus Anaeromyxobacter were lower than the cut-off values (dDDH 70 % and ANI 95-96 %) for prokaryotic species delineation. On the basis of these results, strains SG22T, SG63T and SG29T represent three novel species within the genus Anaeromyxobacter, for which the names Anaeromyxobacter terrae sp. nov., Anaeromyxobacter oryzisoli sp. nov. and Anaeromyxobacter soli sp. nov., are proposed. The type strains are SG22T (= GDMCC 1.3185T = JCM 35581T), SG63T (= GDMCC 1.2914T = JCM 35124T) and SG29T (= GDMCC 1.2911T = JCM 35123T).


Asunto(s)
Myxococcales , Bacterias Fijadoras de Nitrógeno , Compuestos Férricos , Filogenia , ARN Ribosómico 16S/genética , Composición de Base , Ácidos Grasos/química , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Nucleótidos , Suelo
12.
Funct Integr Genomics ; 24(1): 20, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267731

RESUMEN

Given the role of chondroitin polymerizing factor (CHPF) in several cancers, we investigated its role in the progression of colorectal cancer (CRC) and its association with NLRP3 inflammasome activation. High expression of CHPF in CRC predicted poor patient prognosis. Using colony formation, EdU staining, wound healing, Transwell invasion, and flow cytometry assays, we revealed that the downregulation of CHPF inhibited the malignant behavior of CRC cells. CHPF promoted NLRP3 inflammasome activation by inducing the MAPK signaling pathway, as evidenced by enhanced expression of Phos-ERK1/2, Phos-MEK1, Phos-MEK2, and NLRP3. Additionally, nuclear factor 1 C-type (NFIC) was revealed as a potential upstream transcription factor of CHPF in the modulation of CRC, and the anti-tumor effects elicited through its knockdown were compromised by CHPF in vitro and in vivo. In summary, we demonstrated that NFIC promoted NLRP3 activation to support CRC development via the CHPF-mediated MAPK signaling.


Asunto(s)
Neoplasias Colorrectales , Inflamasomas , Humanos , Neoplasias Colorrectales/genética , Regulación hacia Abajo , Sistema de Señalización de MAP Quinasas , Factores de Transcripción NFI , Proteína con Dominio Pirina 3 de la Familia NLR/genética
13.
Bioresour Technol ; 393: 130095, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38029804

RESUMEN

A pilot-scale carbon fibers enhanced ecological floating beds (CF-EFBs) was constructed. Compared to EFBs without carbon fibers enhancement, CF-EFBs have the better removal of total inorganic nitrogen (TIN), total phosphorus (TP), and chemical oxygen demand (COD), the removal efficiencies were 3.19, 3.49, and 2.74 times higher than EFBs. Throughout the pilot test (under three different coverage rates), the concentrations of COD, TIN and TP of effluent were 18.11 ± 4.52 mgL-1, 1.95 ± 0.92 mgL-1 and 0.13 ± 0.08 mgL-1. Meanwhile, the average removal of TIN, TP and COD from tailwater was 0.96 gm-2d-1, 0.07 gm-2d-1 and 2.37 gm-2d-1 respectively. When the coverage was 30 %, the CF-EFBs had better nitrogen removal effectiveness (TIN purification ability of 1.49 gm-2d-1). The enrichment of denitrifying bacteria, such as Aridibacter, Nitrospira, Povalibacter, and Phaeodactylibacter increased denitrification efficiency. These results verified the feasibility of CF-EFBs in tailwater treatment at pilot-scale, which was of great significance for the practical application of CF-EFBs.


Asunto(s)
Purificación del Agua , Fibra de Carbono , Nitrógeno , Fósforo , Desnitrificación , Carbono , Reactores Biológicos , Eliminación de Residuos Líquidos
14.
Environ Sci Technol ; 57(51): 21757-21766, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38095196

RESUMEN

The metal-based current collector has been adopted as an essential component of cathodes for electron delivery in microbial electrosynthesis (MES) cells, while the effect of its corrosion on biofilm development and electromethanogenesis activity was overlooked. In this study, the corrosion of the Fe-based current collector was identified to in situ decorate cathode naturally which substantially boosted the performance of CO2 electromethanogenesis in terms of taking over two-thirds less time starting up MES and increasing the CH4 production rate by 3.5 times. Despite the low concentration of Fe (0.13 at%), the electrochemical analysis indicated that it was possible for these Fe deposits to act as electron shuttles and catalysts for H2 production to benefit methanogenesis. The Fe aggregates weakened the dependence of methanogens on electroactive bacteria (EABs) to conduct methanogenesis via interspecies electron transfer as the proportion of EABs on Bio FeCF (with Fe current collector, where CF is carbon felt) was only 25.5% of that on Bio CF (without Fe current collector). On the contrary, the abundance of genes encoding the proteins to uptake extracellular electrons of methanogens on Bio FeCF was 2.3 times higher than that on Bio CF. The enhanced energy transfer maintained high amounts of methanogens and live microorganisms. This study comprehensively explored the multiple roles of Fe-based current collectors in enhancing CO2 electromethanogenesis.


Asunto(s)
Dióxido de Carbono , Metano , Transporte de Electrón , Bacterias/metabolismo , Hierro , Electrodos
15.
World J Clin Oncol ; 14(11): 479-503, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38059183

RESUMEN

BACKGROUND: The COP9 signalosome subunit 6 (COPS6) has been implicated in cancer progression, while its precise role in most types of cancer remains elusive. AIM: To investigate the functional and clinical relevance of COPS6 across various tumor types using publicly available databases. METHODS: We used R software and online analysis databases to analyze the differential expression, prognosis, mutation and related functions of COPS6 in pan-cancer. RESULTS: Differential expression analysis and survival analysis demonstrated that COPS6 was highly expressed and associated with high-risk profiles in the majority of cancer types. Possible associations between COPS6 expression level and prognostic outcomes were found using data from public databases. Mutational analysis revealed that missense mutations were the predominant type of COPS6 mutation. Additionally, positive correlations were identified between COPS6 expression level and tumor mutational burden and microsatellite instability in most types of cancer. Immune infiltration analysis demonstrated a negative correlation between COPS6 expression level and CD8+ T cell infiltration in certain types of cancer. The correlation between COPS6 expression level and cancer-associated fibroblast infiltration exhibited heterogeneity, in which a positive correlation was found in head and neck squamous cell carcinoma and tenosynovial giant cell tumor, and a negative correlation was identified in diffuse large B-cell lymphoma and thymoma. The correlation between COPS6 expression level and macrophage infiltration was closely related to macrophage type. Gene co-expression and enrichment analysis highlighted transcription elongation factor B polypeptide 2 and G protein pathway suppressor 1 were significantly and positively associated with COPS6 expression level. These genes were predominantly involved in processes, such as ubiquitin-mediated proteolysis and human immunodeficiency virus 1 infection. CONCLUSION: In conclusion, this study systematically explored the significance of COPS6 across different tumor types, providing a solid foundation for considering COPS6 as a novel biomarker in cancer research.

16.
Front Plant Sci ; 14: 1270933, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38023926

RESUMEN

Temperature is one of the most important environmental factors affecting grape season growth and geographical distribution. With global warming and the increasing occurrence of extreme high-temperature weather, the impact of high temperatures on grape production has intensified. Therefore, identifying the molecular regulatory networks and key genes involved in grape heat tolerance is crucial for improving the resistance of grapes and promoting sustainable development in grape production. In this study, we observed the phenotypes and cellular structures of four grape varieties, namely, Thompson Seedless (TS), Brilliant Seedless (BS), Jumeigui (JMG), and Shine Muscat (SM), in the naturally high-temperature environment of Turpan. Heat tolerance evaluations were conducted. RNA-seq was performed on 36 samples of the four varieties under three temperature conditions (28°C, 35°C, and 42°C). Through differential expression analysis revealed the fewest differentially expressed genes (DEGs) between the heat-tolerant materials BS and JMG, and the DEGs common to 1890 were identified among the four varieties. The number of differentially expressed genes within the materials was similar, with a total of 3767 common DEGs identified among the four varieties. KEGG enrichment analysis revealed that fatty acid metabolism, starch and sucrose metabolism, plant hormone signal transduction, the MAPK signaling pathway, and plant-pathogen interactions were enriched in both between different temperatures of the same material, and between different materials of the same temperature. We also conducted statistical and expression pattern analyses of differentially expressed transcription factors. Based on Weighted correlation network analysis (WGCNA), four specific modules highly correlated with grape heat tolerance were identified by constructing coexpression networks. By calculating the connectivity of genes within the modules and expression analysis, six candidate genes (VIT_04s0044g01430, VIT_17s0000g09190, VIT_01s0011g01350, VIT_01s0011g03330, VIT_04s0008g05610, and VIT_16s0022g00540) related to heat tolerance were discovered. These findings provide a theoretical foundation for further understanding the molecular mechanisms of grape heat tolerance and offer new gene resources for studying heat tolerance in grapes.

17.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37921447

RESUMEN

In this study, two novel alkalitolerant strains (FJAT-53046T and FJAT-53715T) were isolated from sediment samples collected in Zhangzhou, PR China. Phylogeny based on 16S rRNA gene sequences suggested that strains FJAT-53046T and FJAT-53715T were new members of the genus Pseudalkalibacillus. The two novel strains showed the highest 16S rRNA gene sequence similarity to Pseudalkalibacillus hwajinpoensis DSM 16206T, with values of 97.4 and 97.6 %, respectively. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the two strains and the reference strain were 77.2 and 79.6 %, 20.9 and 30.2 %, respectively, which were below the prokaryotic species delineation thresholds. The ANI and dDDH values between strains FJAT-53046T and FJAT-53715T were 86.0 and 30.2 %, respectively, suggesting that they belonged to different species in the genus Pseudalkalibacillus. The major respiratory quinone in both strains was MK-7 and the major cellular fatty acids were anteiso-C15 : 0 and anteiso-C17 : 0. Diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine were the major polar lipids in both novel strains. Combined with results stemming from the determination of physical and biochemical characteristics, chemical properties, and genome analysis, strains FJAT-53046T and FJAT-53715T are proposed to represent two novel species of the genus Pseudalkalibacillus, for which the names Pseudalkalibacillus spartinae sp. nov. and Pseudalkalibacillus sedimenti sp. nov. are proposed. The type strains are FJAT-53046T (=GDMCC 1.3077T=JCM 35611T) and FJAT-53715T (=GDMCC 1.3076T=JCM 35610T), respectively.


Asunto(s)
Bacillus , Ácidos Grasos , Ácidos Grasos/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Microbiología del Suelo , Pared Celular/química , Ácido Diaminopimélico/química , Peptidoglicano/química , Vitamina K 2/química
18.
Microbiol Resour Announc ; 12(11): e0017223, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37815359

RESUMEN

Mucilaginibacter gossypii P3, which was isolated from the sub-surface soil of the Zijin Gold and Copper Mine, displayed extremely high resistance to multiple heavy metal(loid)s and contained two novel ars operons. Complete genome sequencing of P3 yielded a single, closed genome of 7,187,928 bp, with GC content of 42.79%.

19.
mBio ; : e0215023, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37855611

RESUMEN

Nitrogen gas (N2) fixation driven by diazotrophs is a crucial process for supplying nitrogen to paddy soil ecosystems. The genus Geomonas has been considered to be an important potential diazotroph in paddy soils, but direct experimental evidence of the nitrogen-fixing ability of Geomonas in pure culture is still lacking. Hence, we aimed to demonstrate this nitrogen-fixing capability and shed light on how this process was regulated in response to ammonium (NH4 +) in Geomonas. In this study, we determined that a key nitrogenase gene (nifH) was present in 50 isolates from paddy soils. Members of Geomonas contained the minimum nitrogen fixation gene cluster (nifBHDKEN) based on genomic analysis, implying Geomonas species had the potential to fix nitrogen. Acetylene reduction assay (ARA), 15N2 isotope labeling, and total nitrogen accumulation assays validated that Geomonas was, indeed, able to fix nitrogen in pure culture. Under nitrogen-fixing conditions, the cell morphology of Geomonas changed from short rod-shaped (with NH4 +) to long rod-shaped and flagella became longer and thicker. The expression of genes correlated to nitrogen fixation in the Geomonas transcriptome was quantified in response to NH4 +. Expression of genes associated with nitrogenase, flavin-based electron bifurcation complexes (such as the FixAB system), NH4 + uptake, and transformation (e.g., glutamine and glutamate synthetases) were significantly upregulated under nitrogen-fixing conditions, suggesting these mechanisms might be involved in N2 fixation in Geomonas. These results were verified by RT-qPCR. Taken together, our results demonstrate that Geomonas species possess the ability to fix N2 and expand our understanding on the ecological significance and potential applications of Geomonas in paddy soil ecosystems. IMPORTANCE The ability of Geomonas species to fix nitrogen gas (N2) is an important metabolic feature for its application as a plant growth-promoting rhizobacterium. This research is of great importance as it provides the first comprehensive direct experimental evidence of nitrogen fixation by the genus Geomonas in pure culture. We isolated a number of Geomonas strains from paddy soils and determined that nifH was present in these strains. This study demonstrated that these Geomonas species harbored genes encoding nitrogenase, as do Geobacter and Anaeromyxobacter in the same class of Deltaproteobacteria. We demonstrated N2-dependent growth of Geomonas and determined regulation of gene expression associated with nitrogen fixation. The research establishes and advances our understanding of nitrogen fixation in Geomonas.

20.
J Transl Med ; 21(1): 580, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644433

RESUMEN

To gain deeper insights into the microenvironment of breast cancer, we utilized GeoMx Digital Spatial Profiling (DSP) technology to analyze transcripts from 107 regions of interest in 65 untreated breast cancer tissue samples. Our study revealed spatial heterogeneity in the expression of marker genes in tumor cell enriched, immune cell enriched, and normal epithelial areas. We evaluated a total of 55 prognostic markers in tumor cell enriched regions and 15 in immune cell enriched regions, identifying that tumor cell enriched regions had higher levels of follicular helper T cells, resting dendritic cells, and plasma cells than immune cell enriched regions, while the levels of resting CD4 memory in T cells and regulatory (Treg) T cells were lower. Additionally, we analyzed the heterogeneity of HLA gene families, immunological checkpoints, and metabolic genes in these areas. Through univariate Cox analysis, we identified 5 prognosis-related metabolic genes. Furthermore, we conducted immunostaining experiments, including EMILIN2, SURF4, and LYPLA1, to verify our findings. Our investigation into the spatial heterogeneity of the breast cancer tumor environment has led to the discovery of specific diagnostic and prognostic markers in breast cancer.


Asunto(s)
Neoplasias Mamarias Animales , Microambiente Tumoral , Animales , Pronóstico , Células Plasmáticas , Proyectos de Investigación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...