Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(2): 259-279, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38232730

RESUMEN

Tauopathies are a group of neurodegenerative diseases defined by abnormal aggregates of tau, a microtubule-associated protein encoded by MAPT. MAPT expression is near absent in neural progenitor cells (NPCs) and increases during differentiation. This temporally dynamic expression pattern suggests that MAPT expression could be controlled by transcription factors and cis-regulatory elements specific to differentiated cell types. Given the relevance of MAPT expression to neurodegeneration pathogenesis, identification of such elements is relevant to understanding disease risk and pathogenesis. Here, we performed chromatin conformation assays (HiC & Capture-C), single-nucleus multiomics (RNA-seq+ATAC-seq), bulk ATAC-seq, and ChIP-seq for H3K27ac and CTCF in NPCs and differentiated neurons to nominate candidate cis-regulatory elements (cCREs). We assayed these cCREs using luciferase assays and CRISPR interference (CRISPRi) experiments to measure their effects on MAPT expression. Finally, we integrated cCRE annotations into an analysis of genetic variation in neurodegeneration-affected individuals and control subjects. We identified both proximal and distal regulatory elements for MAPT and confirmed the regulatory function for several regions, including three regions centromeric to MAPT beyond the H1/H2 haplotype inversion breakpoint. We also found that rare and predicted damaging genetic variation in nominated CREs was nominally depleted in dementia-affected individuals relative to control subjects, consistent with the hypothesis that variants that disrupt MAPT enhancer activity, and thereby reduced MAPT expression, may be protective against neurodegenerative disease. Overall, this study provides compelling evidence for pursuing detailed knowledge of CREs for genes of interest to permit better understanding of disease risk.


Asunto(s)
Enfermedades Neurodegenerativas , Proteínas tau , Humanos , Cromatina/genética , Haplotipos , Enfermedades Neurodegenerativas/genética , Neuronas , Secuencias Reguladoras de Ácidos Nucleicos/genética , Proteínas tau/genética
2.
Genome Res ; 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37852782

RESUMEN

Transcription factors (TFs) are trans-acting proteins that bind cis-regulatory elements (CREs) in DNA to control gene expression. Here, we analyzed the genomic localization profiles of 529 sequence-specific TFs and 151 cofactors and chromatin regulators in the human cancer cell line HepG2, for a total of 680 broadly termed DNA-associated proteins (DAPs). We used this deep collection to model each TF's impact on gene expression, and identified a cohort of 26 candidate transcriptional repressors. We examine high occupancy target (HOT) sites in the context of three-dimensional genome organization and show biased motif placement in distal-promoter connections involving HOT sites. We also found a substantial number of closed chromatin regions with multiple DAPs bound, and explored their properties, finding that a MAFF/MAFK TF pair correlates with transcriptional repression. Altogether, these analyses provide novel insights into the regulatory logic of the human cell line HepG2 genome and show the usefulness of large genomic analyses for elucidation of individual TF functions.

3.
bioRxiv ; 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37090552

RESUMEN

Background: Tauopathies are a group of neurodegenerative diseases driven by abnormal aggregates of tau, a microtubule associated protein encoded by the MAPT gene. MAPT expression is absent in neural progenitor cells (NPCs) and increases during differentiation. This temporally dynamic expression pattern suggests that MAPT expression is controlled by transcription factors and cis-regulatory elements specific to differentiated cell types. Given the relevance of MAPT expression to neurodegeneration pathogenesis, identification of such elements is relevant to understanding genetic risk factors. Methods: We performed HiC, chromatin conformation capture (Capture-C), single-nucleus multiomics (RNA-seq+ATAC-seq), bulk ATAC-seq, and ChIP-seq for H3K27Ac and CTCF in NPCs and neurons differentiated from human iPSC cultures. We nominated candidate cis-regulatory elements (cCREs) for MAPT in human NPCs, differentiated neurons, and pure cultures of inhibitory and excitatory neurons. We then assayed these cCREs using luciferase assays and CRISPR interference (CRISPRi) experiments to measure their effects on MAPT expression. Finally, we integrated cCRE annotations into an analysis of genetic variation in AD cases and controls. Results: Using orthogonal genomics approaches, we nominated 94 cCREs for MAPT, including the identification of cCREs specifically active in differentiated neurons. Eleven regions enhanced reporter gene transcription in luciferase assays. Using CRISPRi, 5 of the 94 regions tested were identified as necessary for MAPT expression as measured by RT-qPCR and RNA-seq. Rare and predicted damaging genetic variation in both nominated and confirmed CREs was depleted in AD cases relative to controls (OR = 0.40, p = 0.004), consistent with the hypothesis that variants that disrupt MAPT enhancer activity, and thereby reduce MAPT expression, may be protective against neurodegenerative disease. Conclusions: We identified both proximal and distal regulatory elements for MAPT and confirmed the regulatory function for several regions, including three regions centromeric to MAPT beyond the well-described H1/H2 haplotype inversion breakpoint. This study provides compelling evidence for pursuing detailed knowledge of CREs for genes of interest to permit better understanding of disease risk.

5.
Nature ; 583(7818): 720-728, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32728244

RESUMEN

Transcription factors are DNA-binding proteins that have key roles in gene regulation1,2. Genome-wide occupancy maps of transcriptional regulators are important for understanding gene regulation and its effects on diverse biological processes3-6. However, only a minority of the more than 1,600 transcription factors encoded in the human genome has been assayed. Here we present, as part of the ENCODE (Encyclopedia of DNA Elements) project, data and analyses from chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) experiments using the human HepG2 cell line for 208 chromatin-associated proteins (CAPs). These comprise 171 transcription factors and 37 transcriptional cofactors and chromatin regulator proteins, and represent nearly one-quarter of CAPs expressed in HepG2 cells. The binding profiles of these CAPs form major groups associated predominantly with promoters or enhancers, or with both. We confirm and expand the current catalogue of DNA sequence motifs for transcription factors, and describe motifs that correspond to other transcription factors that are co-enriched with the primary ChIP target. For example, FOX family motifs are enriched in ChIP-seq peaks of 37 other CAPs. We show that motif content and occupancy patterns can distinguish between promoters and enhancers. This catalogue reveals high-occupancy target regions at which many CAPs associate, although each contains motifs for only a minority of the numerous associated transcription factors. These analyses provide a more complete overview of the gene regulatory networks that define this cell type, and demonstrate the usefulness of the large-scale production efforts of the ENCODE Consortium.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Cromatina/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Anotación de Secuencia Molecular , Secuencias Reguladoras de Ácidos Nucleicos/genética , Conjuntos de Datos como Asunto , Elementos de Facilitación Genéticos/genética , Células Hep G2 , Humanos , Motivos de Nucleótidos/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Factores de Transcripción/metabolismo
6.
Nature ; 583(7818): 699-710, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32728249

RESUMEN

The human and mouse genomes contain instructions that specify RNAs and proteins and govern the timing, magnitude, and cellular context of their production. To better delineate these elements, phase III of the Encyclopedia of DNA Elements (ENCODE) Project has expanded analysis of the cell and tissue repertoires of RNA transcription, chromatin structure and modification, DNA methylation, chromatin looping, and occupancy by transcription factors and RNA-binding proteins. Here we summarize these efforts, which have produced 5,992 new experimental datasets, including systematic determinations across mouse fetal development. All data are available through the ENCODE data portal (https://www.encodeproject.org), including phase II ENCODE1 and Roadmap Epigenomics2 data. We have developed a registry of 926,535 human and 339,815 mouse candidate cis-regulatory elements, covering 7.9 and 3.4% of their respective genomes, by integrating selected datatypes associated with gene regulation, and constructed a web-based server (SCREEN; http://screen.encodeproject.org) to provide flexible, user-defined access to this resource. Collectively, the ENCODE data and registry provide an expansive resource for the scientific community to build a better understanding of the organization and function of the human and mouse genomes.


Asunto(s)
ADN/genética , Bases de Datos Genéticas , Genoma/genética , Genómica , Anotación de Secuencia Molecular , Sistema de Registros , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Cromatina/genética , Cromatina/metabolismo , ADN/química , Huella de ADN , Metilación de ADN/genética , Momento de Replicación del ADN , Desoxirribonucleasa I/metabolismo , Genoma Humano , Histonas/metabolismo , Humanos , Ratones , Ratones Transgénicos , Proteínas de Unión al ARN/genética , Transcripción Genética/genética , Transposasas/metabolismo
7.
Methods Mol Biol ; 2117: 3-34, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31960370

RESUMEN

Chromatin immunoprecipitation followed by next-generation DNA sequencing (ChIP-seq) has been used to identify transcription factor (TF) binding proteins throughout the genome. Unfortunately, this approach traditionally requires commercially available, ChIP-seq grade antibodies that frequently fail to generate acceptable datasets. To obtain data for the many TFs for which there is no appropriate antibody, we recently developed a new method for performing ChIP-seq by epitope tagging endogenous TFs using CRISPR/Cas9 genome editing technology (CETCh-seq). Here, we describe our general protocol of CETCh-seq for both adherent and nonadherent cell lines using a commercially available FLAG antibody.


Asunto(s)
Epítopos/metabolismo , Factores de Transcripción/análisis , Factores de Transcripción/genética , Sitios de Unión , Sistemas CRISPR-Cas , Adhesión Celular , Secuenciación de Inmunoprecipitación de Cromatina , Edición Génica , Células Hep G2 , Humanos , Unión Proteica
8.
Genome Res ; 29(11): 1900-1909, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31645363

RESUMEN

MicroRNAs (miRNAs) play a critical role as posttranscriptional regulators of gene expression. The ENCODE Project profiled the expression of miRNAs in an extensive set of organs during a time-course of mouse embryonic development and captured the expression dynamics of 785 miRNAs. We found distinct organ-specific and developmental stage-specific miRNA expression clusters, with an overall pattern of increasing organ-specific expression as embryonic development proceeds. Comparative analysis of conserved miRNAs in mouse and human revealed stronger clustering of expression patterns by organ type rather than by species. An analysis of messenger RNA expression clusters compared with miRNA expression clusters identifies the potential role of specific miRNA expression clusters in suppressing the expression of mRNAs specific to other developmental programs in the organ in which these miRNAs are expressed during embryonic development. Our results provide the most comprehensive time-course of miRNA expression as part of an integrated ENCODE reference data set for mouse embryonic development.


Asunto(s)
Desarrollo Embrionario/genética , MicroARNs/genética , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Ratones , Embarazo , ARN Mensajero/genética
9.
Nat Methods ; 15(5): 330-338, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29638227

RESUMEN

A key component of efforts to address the reproducibility crisis in biomedical research is the development of rigorously validated and renewable protein-affinity reagents. As part of the US National Institutes of Health (NIH) Protein Capture Reagents Program (PCRP), we have generated a collection of 1,406 highly validated immunoprecipitation- and/or immunoblotting-grade mouse monoclonal antibodies (mAbs) to 737 human transcription factors, using an integrated production and validation pipeline. We used HuProt human protein microarrays as a primary validation tool to identify mAbs with high specificity for their cognate targets. We further validated PCRP mAbs by means of multiple experimental applications, including immunoprecipitation, immunoblotting, chromatin immunoprecipitation followed by sequencing (ChIP-seq), and immunohistochemistry. We also conducted a meta-analysis that identified critical variables that contribute to the generation of high-quality mAbs. All validation data, protocols, and links to PCRP mAb suppliers are available at http://proteincapture.org.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Análisis por Matrices de Proteínas/métodos , Factores de Transcripción/metabolismo , Animales , Clonación Molecular , Bases de Datos Factuales , Femenino , Células HeLa , Humanos , Ratones , Ratones Endogámicos BALB C , Reproducibilidad de los Resultados
10.
Semin Cell Dev Biol ; 57: 40-50, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27224938

RESUMEN

Deciphering the intricate molecular processes that orchestrate the spatial and temporal regulation of genes has become an increasingly major focus of biological research. The differential expression of genes by diverse cell types with a common genome is a hallmark of complex cellular functions, as well as the basis for multicellular life. Importantly, a more coherent understanding of gene regulation is critical for defining developmental processes, evolutionary principles and disease etiologies. Here we present our current understanding of gene regulation by focusing on the role of enhancer elements in these complex processes. Although functional genomic methods have provided considerable advances to our understanding of gene regulation, these assays, which are usually performed on a genome-wide scale, typically provide correlative observations that lack functional interpretation. Recent innovations in genome editing technologies have placed gene regulatory studies at an exciting crossroads, as systematic, functional evaluation of enhancers and other transcriptional regulatory elements can now be performed in a coordinated, high-throughput manner across the entire genome. This review provides insights on transcriptional enhancer function, their role in development and disease, and catalogues experimental tools commonly used to study these elements. Additionally, we discuss the crucial role of novel techniques in deciphering the complex gene regulatory landscape and how these studies will shape future research.


Asunto(s)
Elementos de Facilitación Genéticos , Anotación de Secuencia Molecular , Animales , Enfermedad/genética , Desarrollo Embrionario/genética , Regulación de la Expresión Génica , Humanos , Modelos Genéticos
11.
Genome Res ; 25(10): 1581-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26355004

RESUMEN

Chromatin immunoprecipitation followed by next-generation DNA sequencing (ChIP-seq) is a widely used technique for identifying transcription factor (TF) binding events throughout an entire genome. However, ChIP-seq is limited by the availability of suitable ChIP-seq grade antibodies, and the vast majority of commercially available antibodies fail to generate usable data sets. To ameliorate these technical obstacles, we present a robust methodological approach for performing ChIP-seq through epitope tagging of endogenous TFs. We used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based genome editing technology to develop CRISPR epitope tagging ChIP-seq (CETCh-seq) of DNA-binding proteins. We assessed the feasibility of CETCh-seq by tagging several DNA-binding proteins spanning a wide range of endogenous expression levels in the hepatocellular carcinoma cell line HepG2. Our data exhibit strong correlations between both replicate types as well as with standard ChIP-seq approaches that use TF antibodies. Notably, we also observed minimal changes to the cellular transcriptome and to the expression of the tagged TF. To examine the robustness of our technique, we further performed CETCh-seq in the breast adenocarcinoma cell line MCF7 as well as mouse embryonic stem cells and observed similarly high correlations. Collectively, these data highlight the applicability of CETCh-seq to accurately define the genome-wide binding profiles of DNA-binding proteins, allowing for a straightforward methodology to potentially assay the complete repertoire of TFs, including the large fraction for which ChIP-quality antibodies are not available.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Proteínas de Unión al ADN/inmunología , Mapeo Epitopo , Análisis de Secuencia por Matrices de Oligonucleótidos , Animales , Mapeo Epitopo/métodos , Epítopos/análisis , Estudios de Factibilidad , Perfilación de la Expresión Génica , Humanos , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Factores de Transcripción/análisis , Factores de Transcripción/inmunología , Transcriptoma , Células Tumorales Cultivadas
12.
Cancer Lett ; 354(2): 336-47, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25193464

RESUMEN

The use of molecularly targeted drugs as single agents has shown limited utility in many tumor types, largely due to the complex and redundant nature of oncogenic signaling networks. Targeting of the PI3K/AKT/mTOR pathway through inhibition of mTOR in combination with aromatase inhibitors has seen success in particular sub-types of breast cancer and there is a need to identify additional synergistic combinations to maximize the clinical potential of mTOR inhibitors. We have used loss-of-function RNAi screens of the mTOR inhibitor rapamycin to identify sensitizers of mTOR inhibition. RNAi screens conducted in combination with rapamycin in multiple breast cancer cell lines identified six genes, AURKB, PLK1, PIK3R1, MAPK12, PRKD2, and PTK6 that when silenced, each enhanced the sensitivity of multiple breast cancer lines to rapamycin. Using selective pharmacological agents we confirmed that inhibition of AURKB or PLK1 synergizes with rapamycin. Compound-associated gene expression data suggested histone deacetylation (HDAC) inhibition as a strategy for reducing the expression of several of the rapamycin-sensitizing genes, and we tested and validated this using the HDAC inhibitor entinostat in vitro and in vivo. Our findings indicate new approaches for enhancing the efficacy of rapamycin including the use of combining its application with HDAC inhibition.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Ensayos de Selección de Medicamentos Antitumorales/métodos , Inhibidores de Proteínas Quinasas/farmacología , Sirolimus/farmacología , Animales , Aurora Quinasa B/antagonistas & inhibidores , Benzamidas/administración & dosificación , Benzamidas/farmacología , Neoplasias de la Mama/enzimología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase Ia , Sinergismo Farmacológico , Femenino , Humanos , Células MCF-7 , Ratones , Ratones SCID , Proteína Quinasa 12 Activada por Mitógenos/antagonistas & inhibidores , Proteínas de Neoplasias/antagonistas & inhibidores , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteína Quinasa D2 , Inhibidores de Proteínas Quinasas/administración & dosificación , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Piridinas/administración & dosificación , Piridinas/farmacología , Interferencia de ARN , Distribución Aleatoria , Sirolimus/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasa Tipo Polo 1
13.
Breast Cancer Res Treat ; 130(2): 663-79, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21814748

RESUMEN

The identification of molecular features that contribute to the progression of breast cancer can provide valuable insight into the pathogenesis of this disease. Deregulated microRNA expression represents one type of molecular event that has been associated with many different human cancers. In order to identify a miRNA/mRNA regulatory interaction that is biologically relevant to the triple-negative breast cancer genotype/phenotype, we initially conducted a miRNA profiling experiment to detect differentially expressed miRNAs in cell line models representing triple-negative (MDA-MB-231), ER(+) (MCF7), and HER-2 overexpressed (SK-BR-3) histotypes. We identified human miR-34a expression as being >3-fold down (from its median expression value across all cell lines) in MDA-MB-231 cells, and identified AXL as a putative mRNA target using multiple miRNA/target prediction algorithms. The miR-34a/AXL interaction was functionally characterized through ectopic overexpression experiments with a miR-34a mimic in two independent triple-negative breast cancer cell lines. In reporter assays, miR-34a binds to its putative target site within the AXL 3'UTR to inhibit luciferase expression. We also observed degradation of AXL mRNA and decreased AXL protein levels, as well as cell signaling effects on AKT phosphorylation and phenotypic effects on cell migration. Finally, we present an inverse correlative trend in miR-34a and AXL expression for both cell line and patient tumor samples.


Asunto(s)
Neoplasias de la Mama/metabolismo , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Regiones no Traducidas 3' , Apoptosis , Secuencia de Bases , Neoplasias de la Mama/genética , Ciclo Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación hacia Abajo , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genes Reporteros , Humanos , Luciferasas de Renilla/biosíntesis , Luciferasas de Renilla/genética , MicroARNs/genética , Fosforilación , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Interferencia de ARN , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Tirosina Quinasa del Receptor Axl
14.
Mol Cancer Res ; 6(2): 212-21, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18314482

RESUMEN

The PVT1 locus is identified as a cluster of T(2;8) and T(8;22) "variant" MYC-activating chromosomal translocation breakpoints extending 400 kb downstream of MYC in a subset (approximately 20%) of Burkitt's lymphoma (vBL). Recent reports that microRNAs (miRNA) may be associated with fragile sites and cancer-associated genomic regions prompted us to investigate whether the PVT1 region on chromosome 8q24 may contain miRNAs. Computational analysis of the genomic sequence covering the PVT1 locus and experimental verification identified seven miRNAs. One miRNA, hsa-miR-1204, resides within a previously described PVT1 exon (1b) that is often fused to the immunoglobulin light chain constant region in vBLs and is present in high copy number in MYC/PVT1-amplified tumors. Like its human counterpart, mouse mmu-miR-1204 represents the closest miRNA to Myc (~50 kb) and is found only 1 to 2 kb downstream of a cluster of retroviral integration sites. Another miRNA, mmu-miR-1206, is close to a cluster of variant translocation breakpoints associated with mouse plasmacytoma and exon 1 of mouse Pvt1. Virtually all the miRNA precursor transcripts are expressed at higher levels in late-stage B cells (including plasmacytoma and vBL cell lines) compared with immature B cells, suggesting possible roles in lymphoid development and/or lymphoma. In addition, lentiviral vector-mediated overexpression of the miR-1204 precursor (human and mouse) in a mouse pre-B-cell line increased expression of Myc. High levels of expression of the hsa-miR-1204 precursor is also seen in several epithelial cancer cell lines with MYC/PVT1 coamplification, suggesting a potentially broad role for these miRNAs in tumorigenesis.


Asunto(s)
Cromosomas Humanos Par 8/genética , Inestabilidad Genómica/genética , MicroARNs/genética , Animales , Linfocitos B/metabolismo , Secuencia de Bases , Northern Blotting , Línea Celular , Biología Computacional , Dosificación de Gen , Genoma Humano/genética , Humanos , Ratones , Datos de Secuencia Molecular , Proteínas Proto-Oncogénicas c-myc/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción Genética
15.
Mol Ecol ; 16(13): 2701-11, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17594441

RESUMEN

We employ a battery of 33 polymorphic microsatellite loci to describe geographical population structure of the mangrove killifish (Kryptolebias marmoratus), the only vertebrate species known to have a mixed-mating system of selfing and outcrossing. Significant population genetic structure was detected at spatial scales ranging from tens to hundreds of kilometres in Florida, Belize, and the Bahamas. The wealth of genotypic information, coupled with the highly inbred nature of most killifish lineages due to predominant selfing, also permitted treatments of individual fish as units of analysis. Genetic clustering algorithms, neighbour-joining trees, factorial correspondence, and related methods all earmarked particular killifish specimens as products of recent outcross events that could often be provisionally linked to specific migration events. Although mutation is the ultimate source of genetic diversity in K. marmoratus, our data indicate that interlocality dispersal and outcross-mediated genetic recombination (and probably genetic drift also) play key proximate roles in the local 'clonal' dynamics of this species.


Asunto(s)
Fundulidae/genética , Animales , Cruzamientos Genéticos , Emigración e Inmigración , Florida , Fundulidae/clasificación , Variación Genética , Genotipo , Geografía , Organismos Hermafroditas , Repeticiones de Microsatélite/genética , Trastornos Ovotesticulares del Desarrollo Sexual , Filogenia , Densidad de Población
16.
Semin Cancer Biol ; 17(1): 65-73, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17113784

RESUMEN

A new species of non-coding RNA, microRNAs (miRNAs) has been identified that may regulate the expression of as many as one third to one half of all protein encoding genes. MicroRNAs are found throughout mammalian genomes, but an association between the location of these miRNAs and regions of genomic instability (or fragile sites) in humans has been suggested [1]. In this review we discuss the possible role of altered miRNA expression on human cancer and conduct an analysis correlating the physical location of murine miRNAs with sites of genetic alteration in mouse models of cancer.


Asunto(s)
Inestabilidad Genómica , MicroARNs , Neoplasias/genética , Animales , Biología Computacional/métodos , ADN de Neoplasias , Perfilación de la Expresión Génica , Genoma , Genoma Humano , Humanos , Ratones , Modelos Biológicos , Modelos Genéticos , Familia de Multigenes , ARN/genética
17.
Proc Biol Sci ; 273(1600): 2449-52, 2006 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-16959634

RESUMEN

Mixed-mating systems, in which hermaphrodites can either self-fertilize or outcross, are common in many species of plants and invertebrates and have been informative models for studying the selective forces that can maintain both inbreeding and outbreeding in populations. Here, we document a remarkable instance of evolutionary convergence to an analogous mixed mating system by a vertebrate, the mangrove killifish (Kryptolebias marmoratus). In this androdioecious species, most individuals are simultaneous hermaphrodites that characteristically self-fertilize, resulting in local populations that consist of (nearly) homozygous lines. Most demes are also genetically diverse, an observation traditionally attributed to de novo mutation coupled with high levels of inter-site migration. However, data presented here, from a survey of 35 microsatellite loci in Floridian populations, show that genotypic diversity also stems proximally from occasional outcross events that release 'explosions' of transient recombinant variation. The result is a local population genetic pattern (of extensive genotypic variety despite low but highly heterogeneous intra-individual heterozygosities) that differs qualitatively from the genetic architectures known in any other vertebrate species. Advantages of a mixed-mating strategy in K. marmoratus probably relate to this fish's solitary lifestyle and its ability to colonize new habitats.


Asunto(s)
Peces Killi/fisiología , Conducta Sexual Animal , Animales , Florida , Variación Genética , Genotipo , Organismos Hermafroditas , Endogamia , Repeticiones de Microsatélite , Procesos de Determinación del Sexo
18.
J Hered ; 97(5): 508-13, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16968857

RESUMEN

Primers for 36 microsatellite loci were developed and employed to characterize genetic stocks and detect possible outcrossing between highly inbred laboratory strains of the self-fertilizing mangrove killifish, Kryptolebias marmoratus. From attempted crosses involving hermaphrodites from particular geographic strains and gonochoristic males from others, 2 among a total of 32 surveyed progenies (6.2%) displayed multilocus heterozygosity clearly indicative of interstrain gametic syngamy. One of these outcross hybrids was allowed to resume self-fertilization, and microsatellite assays of progeny showed that heterozygosity decreased by approximately 50% after one generation, as expected. Although populations of K. marmoratus consist mostly of synchronous hermaphrodites with efficient mechanisms of internal self-fertilization, these laboratory findings experimentally confirm that conspecific males can mediate occasional outcross events and that this process can release extensive genic heterozygosity.


Asunto(s)
Cruzamientos Genéticos , Fundulidae/genética , Endogamia , Repeticiones de Microsatélite , Animales , Animales Endogámicos , Fertilización , Variación Genética , Heterocigoto , Masculino
19.
Proc Natl Acad Sci U S A ; 103(26): 9924-8, 2006 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-16785430

RESUMEN

The mangrove killifish (Kryptolebias marmoratus) is the only vertebrate known to be capable of self-fertilization. Its gonad is typically an ovotestis that simultaneously produces eggs and sperm, and fertilization is internal. Although most populations of this species consist primarily or exclusively of hermaphroditic individuals, gonochoristic males occur at approximately 20% frequency in a natural population at Twin Cays, Belize. Here we use a battery of 36 microsatellite loci to document a striking genetic pattern (high intraspecimen heterozygosities and low within-population linkage disequilibria) that differs qualitatively from the highly homozygous (or "clonal") genetic architecture characteristic of killifish populations previously studied in Florida, where males are much rarer. These findings document that outcrossing (probably between gonochoristic males and hermaphrodites) is common at the Belize site, and, more importantly, they demonstrate the dramatic impact that functional androdioecy can have on the population genetic architecture of this reproductively unique vertebrate species.


Asunto(s)
Ciprinodontiformes/genética , Fertilización , Endogamia , Trastornos Ovotesticulares del Desarrollo Sexual/genética , Animales , Fertilidad , Desequilibrio de Ligamiento , Masculino , Repeticiones de Microsatélite/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...