Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1384467, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38605965

RESUMEN

Introduction: The therapeutic potential of bispecific antibodies is becoming widely recognised, with over a hundred formats already described. For many applications, enhanced tissue penetration is sought, so bispecifics with low molecular weight may offer a route to enhanced potency. Here we report the design of bi- and tri-specific antibody-based constructs with molecular weights as low as 14.5 and 22 kDa respectively. Methods: Autonomous bovine ultra-long CDR H3 (knob domain peptide) modules have been engineered with artificial coiled-coil stalks derived from Sin Nombre orthohantavirus nucleocapsid protein and human Beclin-1, and joined in series to produce bi- and tri-specific antibody-based constructs with exceptionally low molecular weights. Results: Knob domain peptides with coiled-coil stalks retain high, independent antigen binding affinity, exhibit exceptional levels of thermal stability, and can be readily joined head-to-tail yielding the smallest described multi-specific antibody format. The resulting constructs are able to bind simultaneously to all their targets with no interference. Discussion: Compared to existing bispecific formats, the reduced molecular weight of the knob domain fusions may enable enhanced tissue penetration and facilitate binding to cryptic epitopes that are inaccessible to conventional antibodies. Furthermore, they can be easily produced at high yield as recombinant products and are free from the heavy-light chain mispairing issue. Taken together, our approach offers an efficient route to modular construction of minimalistic bi- and multi-specifics, thereby further broadening the therapeutic scope for knob domain peptides.


Asunto(s)
Anticuerpos Biespecíficos , Animales , Bovinos , Humanos , Anticuerpos Biespecíficos/química , Péptidos , Proteínas de la Nucleocápside
2.
Methods Mol Biol ; 2681: 83-97, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37405644

RESUMEN

Phage display is an in vitro technique used in the discovery of monoclonal antibodies that has been used successfully in the discovery of both camelid VHH and shark variable new antigen receptor domains (VNAR). Bovines also contain a unique "ultralong CDRH3" with a conserved structural motif, comprising a knob domain and ß-stalk. When removed from the antibody scaffold, either the entire ultralong CDRH3 or the knob domain alone, is typically capable of binding an antigen, to produce antibody fragments that are smaller than both VHH and VNAR. By extracting immune material from bovine animals and specifically amplifying knob domain DNA sequences by PCR, knob domain sequences can be cloned into a phagemid vector producing knob domain phage libraries. Target-specific knob domains can be enriched by panning the libraries against an antigen of interest. Phage display of knob domains exploits the link between phage genotype and phenotype and could prove to be a high throughput method to discover target-specific knob domains, helping to explore the pharmacological properties of this unique antibody fragment.


Asunto(s)
Bacteriófagos , Técnicas de Visualización de Superficie Celular , Animales , Bovinos , Antígenos , Anticuerpos Monoclonales/genética , Receptores de Antígenos/genética , Bacteriófagos/genética , Biblioteca de Péptidos
3.
Front Immunol ; 14: 1170357, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251411

RESUMEN

Background: Serum albumin binding is an established mechanism to extend the serum half-life of antibody fragments and peptides. The cysteine rich knob domains, isolated from bovine antibody ultralong CDRH3, are the smallest single chain antibody fragments described to date and versatile tools for protein engineering. Methods: Here, we used phage display of bovine immune material to derive knob domains against human and rodent serum albumins. These were used to engineer bispecific Fab fragments, by using the framework III loop as a site for knob domain insertion. Results: By this route, neutralisation of the canonical antigen (TNFα) was retained but extended pharmacokinetics in-vivo were achieved through albumin binding. Structural characterisation revealed correct folding of the knob domain and identified broadly common but non-cross-reactive epitopes. Additionally, we show that these albumin binding knob domains can be chemically synthesised to achieve dual IL-17A neutralisation and albumin binding in a single chemical entity. Conclusions: This study enables antibody and chemical engineering from bovine immune material, via an accessible discovery platform.


Asunto(s)
Anticuerpos Biespecíficos , Albúmina Sérica , Animales , Bovinos , Humanos , Albúmina Sérica/metabolismo , Fragmentos Fab de Inmunoglobulinas , Epítopos , Técnicas de Visualización de Superficie Celular
4.
Sci Rep ; 12(1): 15766, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36130996

RESUMEN

The primary host response to Staphylococcus aureus infection occurs via complement. Complement is an elegant evolutionarily conserved system, playing essential roles in early defences by working in concert with immune cells to survey, label and destroy microbial intruders and coordinate inflammation. Currently the exact mechanisms employed by S. aureus to manipulate and evade complement is not clear and is hindered by the lack of accurate molecular tools that can report on complement deposition on the bacterial surface. Current gold-standard detection methods employ labelled complement-specific antibodies and flow cytometry to determine complement deposited on bacteria. These methods are restricted by virtue of the expression of the S. aureus immunoglobulin binding proteins, Protein A and Sbi. In this study we describe the use of a novel antibody-independent C3 probe derived from the staphylococcal Sbi protein, specifically Sbi-IV domain. Here we show that biotin-labelled Sbi-IV interacts specifically with deposited C3 products on the staphylococcal surface and thus can be used to measure complement fixation on wild-type cells expressing a full repertoire of immune evasion proteins. Lastly, our data indicates that genetically diverse S. aureus strains restrict complement to different degrees suggesting that complement evasion is a variable virulence trait among S. aureus isolates.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Proteínas Bacterianas , Biotina/metabolismo , Complemento C3/metabolismo , Humanos , Unión Proteica , Staphylococcus aureus/metabolismo
5.
MAbs ; 14(1): 2076295, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35634719

RESUMEN

Cysteine-rich knob domains can be isolated from the ultralong heavy-chain complementarity-determining region (CDR) 3, which are unique to a subset of bovine antibodies, to create antibody fragments of ~4 kDa. Advantageously, the N- and C- termini of these small binding domains are in close proximity, and we propose that this may offer a practical route to engineer extrinsic binding specificity into proteins. To test this, we transplanted knob domains into various loops of rat serum albumin, targeting sites that were distal to the interface with the neonatal Fc receptor. Using knob domains raised against the clinically validated drug target complement component C5, we produced potent inhibitors, which exhibit an extended plasma half-life in vivo via attenuated renal clearance and neonatal Fc receptor-mediated avoidance of lysosomal catabolism. The same approach was also used to modify a Camelid VHH, targeting a framework loop situated at the opposing end of the domain to the CDRs, to produce a small, single-chain bispecific antibody and a dual inhibitor of Complement C3 and C5. This study presents new protein inhibitors of the complement cascade and demonstrates a broadly applicable method to engineer target specificity within polypeptide chains, using bovine knob domains.


Asunto(s)
Anticuerpos Biespecíficos , Regiones Determinantes de Complementariedad , Animales , Anticuerpos Biespecíficos/química , Bovinos , Activación de Complemento , Regiones Determinantes de Complementariedad/química , Dominios Proteicos , Ratas
6.
ACS Chem Biol ; 16(9): 1757-1769, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34406751

RESUMEN

Cysteine-rich knob domains found in the ultralong complementarity determining regions of a subset of bovine antibodies are capable of functioning autonomously as 3-6 kDa peptides. While they can be expressed recombinantly in cellular systems, in this paper we show that knob domains are also readily amenable to a chemical synthesis, with a co-crystal structure of a chemically synthesized knob domain in complex with an antigen showing structural equivalence to the biological product. For drug discovery, following the immunization of cattle, knob domain peptides can be synthesized directly from antibody sequence data, combining the power and diversity of the bovine immune repertoire with the ability to rapidly incorporate nonbiological modifications. We demonstrate that, through rational design with non-natural amino acids, a paratope diversity can be massively expanded, in this case improving the efficacy of an allosteric peptide. As a potential route to further improve stability, we also performed head-to-tail cyclizations, exploiting the proximity of the N and C termini to synthesize functional, fully cyclic antibody fragments. Lastly, we highlight the stability of knob domains in plasma and, through pharmacokinetic studies, use palmitoylation as a route to extend the plasma half-life of knob domains in vivo. This study presents an antibody-derived medicinal chemistry platform, with protocols for solid-phase synthesis of knob domains, together with the characterization of their molecular structures, in vitro pharmacology, and pharmacokinetics.


Asunto(s)
Regiones Determinantes de Complementariedad/química , Fragmentos de Inmunoglobulinas/química , Péptidos Cíclicos/síntesis química , Secuencia de Aminoácidos , Animales , Bovinos , Fragmentos de Inmunoglobulinas/sangre , Fragmentos de Inmunoglobulinas/farmacología , Masculino , Modelos Moleculares , Péptidos Cíclicos/sangre , Péptidos Cíclicos/farmacocinética , Unión Proteica , Dominios Proteicos , Pliegue de Proteína , Ratas Sprague-Dawley , Técnicas de Síntesis en Fase Sólida , Espectrometría de Masas en Tándem , Termodinámica
7.
J Immunol ; 207(6): 1641-1651, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34380648

RESUMEN

Thrombin activation of C5 connects thrombosis to inflammation. Complement research in whole blood ex vivo necessitates anticoagulation, which potentially interferes with the inflammatory modulation by thrombin. We challenged the concept of thrombin as an activator of native C5 by analyzing complement activation and C5 cleavage in human whole blood anticoagulated with Gly-Pro-Arg-Pro (GPRP), a peptide targeting fibrin polymerization downstream of thrombin, allowing complete endogenous thrombin generation. GPRP dose-dependently inhibited coagulation but allowed for platelet activation in accordance with thrombin generation. Spontaneous and bacterial-induced complement activation by Escherichia coli and Staphylococcus aureus, analyzed at the level of C3 and C5, were similar in blood anticoagulated with GPRP and the thrombin inhibitor lepirudin. In the GPRP model, endogenous thrombin, even at supra-physiologic concentrations, did not cleave native C5, despite efficiently cleaving commercially sourced purified C5 protein, both in buffer and when added to C5-deficient serum. In normal serum, only exogenously added, commercially sourced C5 was cleaved, whereas the native plasma C5 remained intact. Crucially, affinity-purified C5, eluted under mild conditions using an MgCl2 solution, was not cleaved by thrombin. Acidification of plasma to pH ≤ 6.8 by hydrochloric or lactic acid induced a C5 antigenic change, nonreversible by pH neutralization, that permitted cleavage by thrombin. Circular dichroism on purified C5 confirmed the structural change during acidification. Thus, we propose that pH-induced conformational change allows thrombin-mediated cleavage of C5 and that, contrary to previous reports, thrombin does not cleave plasma C5 in its native form, suggesting that thrombin cleavage of C5 may be restricted to certain pathophysiological conditions.


Asunto(s)
Complemento C5 , Trombina , Coagulación Sanguínea , Activación de Complemento , Fibrina , Humanos
8.
Front Immunol ; 12: 714055, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34434196

RESUMEN

Cleavage of C3 to C3a and C3b plays a central role in the generation of complement-mediated defences. Although the thioester-mediated surface deposition of C3b has been well-studied, fluid phase dimers of C3 fragments remain largely unexplored. Here we show C3 cleavage results in the spontaneous formation of C3b dimers and present the first X-ray crystal structure of a disulphide-linked human C3d dimer. Binding studies reveal these dimers are capable of crosslinking complement receptor 2 and preliminary cell-based analyses suggest they could modulate B cell activation to influence tolerogenic pathways. Altogether, insights into the physiologically-relevant functions of C3d(g) dimers gained from our findings will pave the way to enhancing our understanding surrounding the importance of complement in the fluid phase and could inform the design of novel therapies for immune system disorders in the future.


Asunto(s)
Complemento C3d/química , Modelos Moleculares , Multimerización de Proteína , Complemento C3/química , Complemento C3/inmunología , Complemento C3d/inmunología , Humanos , Activación de Linfocitos/inmunología , Linfocitos/inmunología , Linfocitos/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Conformación Proteica , Proteolisis , Proteínas Recombinantes/química , Relación Estructura-Actividad
9.
Front Chem ; 9: 668186, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34017820

RESUMEN

Over the last 10 years considerable progress has been made in the application of small molecules to modulating protein-protein interactions (PPIs), and the navigation from "undruggable" to a host of candidate molecules in clinical trials has been well-charted in recent, comprehensive reviews. Structure-based design has played an important role in this scientific journey, with three dimensional structures guiding medicinal chemistry efforts. However, the importance of two additional dimensions: movement and time is only now being realised, as increasing computing power, closely aligned with wet lab validation, is applied to the challenge. Protein dynamics are fundamental to biology and disease, and application to PPI drug discovery has massively widened the scope for new chemical entities to influence function from allosteric, and previously unreported, sites. In this forward-looking perspective we highlight exciting, new opportunities for small molecules to modulate disease biology, by adjusting the frequency profile of natural conformational sampling, through the stabilisation of clinically desired conformers of target proteins.

10.
Elife ; 102021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33570492

RESUMEN

Bovines have evolved a subset of antibodies with ultra-long heavy chain complementarity determining regions that harbour cysteine-rich knob domains. To produce high-affinity peptides, we previously isolated autonomous 3-6 kDa knob domains from bovine antibodies. Here, we show that binding of four knob domain peptides elicits a range of effects on the clinically validated drug target complement C5. Allosteric mechanisms predominated, with one peptide selectively inhibiting C5 cleavage by the alternative pathway C5 convertase, revealing a targetable mechanistic difference between the classical and alternative pathway C5 convertases. Taking a hybrid biophysical approach, we present C5-knob domain co-crystal structures and, by solution methods, observed allosteric effects propagating >50 Å from the binding sites. This study expands the therapeutic scope of C5, presents new inhibitors, and introduces knob domains as new, low molecular weight antibody fragments, with therapeutic potential.


Antibodies are proteins produced by the immune system that can selectively bind to other molecules and modify their behaviour. Cows are highly equipped at fighting-off disease-causing microbes due to the unique shape of some of their antibodies. Unlike other jawed vertebrates, cows' antibodies contain an ultra-long loop region that contains a 'knob domain' which sticks out from the rest of the antibody. Recent research has shown that when detached, the knob domain behaves like an antibody fragment, and can independently bind to a range of different proteins. Antibody fragments are commonly developed in the laboratory to target proteins associated with certain diseases, such as arthritis and cancer. But it was unclear whether the knob domains from cows' antibodies could also have therapeutic potential. To investigate this, Macpherson et al. studied how knob domains attach to complement C5, a protein in the inflammatory pathway which is a drug target for various diseases, including severe COVID-19. The experiments identified various knob domains that bind to complement C5 and inhibits its activity by altering its structure or movement. Further tests studying the structure of these interactions, led to the discovery of a common mechanism by which inhibitors can modify the behaviour of this inflammatory protein. Complement C5 is involved in numerous molecular pathways in the immune system, which means many of the drugs developed to inhibit its activity can also leave patients vulnerable to infection. However, one of the knob domains identified by Macpherson et al. was found to reduce the activity of complement C5 in some pathways, whilst leaving other pathways intact. This could potentially reduce the risk of bacterial infections which sometimes arise following treatment with these types of inhibitors. These findings highlight a new approach for developing drug inhibitors for complement C5. Furthermore, the ability of knob domains to bind to multiple sites of complement C5 suggests that this fragment could be used to target proteins associated with other diseases.


Asunto(s)
Regulación Alostérica/efectos de los fármacos , Complemento C5/antagonistas & inhibidores , Descubrimiento de Drogas , Péptidos/química , Péptidos/farmacología , Animales , Bovinos , Complemento C5/química , Complemento C5/metabolismo , Simulación del Acoplamiento Molecular , Conformación Proteica/efectos de los fármacos
11.
PLoS Biol ; 18(9): e3000821, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32886672

RESUMEN

As a novel alternative to established surface display or combinatorial chemistry approaches for the discovery of therapeutic peptides, we present a method for the isolation of small, cysteine-rich domains from bovine antibody ultralong complementarity-determining regions (CDRs). We show for the first time that isolated bovine antibody knob domains can function as autonomous entities by binding antigen outside the confines of the antibody scaffold. This yields antibody fragments so small as to be considered peptides, each stabilised by an intricate, bespoke arrangement of disulphide bonds. For drug discovery, cow immunisations harness the immune system to generate knob domains with affinities in the picomolar to low nanomolar range, orders of magnitude higher than unoptimized peptides from naïve library screening. Using this approach, knob domain peptides that tightly bound Complement component C5 were obtained, at scale, using conventional antibody discovery and peptide purification techniques.


Asunto(s)
Anticuerpos/química , Disulfuros/aislamiento & purificación , Dominios de Inmunoglobulinas , Fragmentos de Péptidos/aislamiento & purificación , Dominios y Motivos de Interacción de Proteínas , Animales , Anticuerpos/inmunología , Anticuerpos/metabolismo , Afinidad de Anticuerpos , Formación de Anticuerpos , Especificidad de Anticuerpos , Antígenos/genética , Antígenos/inmunología , Linfocitos B/fisiología , Bovinos , Complemento C5/química , Complemento C5/genética , Complemento C5/inmunología , Regiones Determinantes de Complementariedad/química , Regiones Determinantes de Complementariedad/genética , Regiones Determinantes de Complementariedad/inmunología , Disulfuros/química , Disulfuros/inmunología , Mapeo Epitopo/métodos , Humanos , Inmunización , Dominios de Inmunoglobulinas/genética , Modelos Moleculares , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/inmunología , Dominios y Motivos de Interacción de Proteínas/genética
12.
J Biol Chem ; 293(36): 14112-14121, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30030376

RESUMEN

Complement component C5 is the target of the mAb eculizumab and is the focus of a sustained drug discovery effort to prevent complement-induced inflammation in a range of autoimmune diseases. The immune evasion protein OmCI binds to and potently inactivates C5; this tight-binding interaction can be exploited to affinity-purify C5 protein from serum, offering a vastly simplified protocol compared with existing methods. However, breaking the high-affinity interaction requires conditions that risk denaturing or activating C5. We performed structure-guided in silico mutagenesis to identify prospective OmCI residues that contribute significantly to the binding affinity. We tested our predictions in vitro, using site-directed mutagenesis, and characterized mutants using a range of biophysical techniques, as well as functional assays. Our biophysical analyses suggest that the C5-OmCI interaction is complex with potential for multiple binding modes. We present single mutations that lower the affinity of OmCI for C5 and combinations of mutations that significantly decrease or entirely abrogate formation of the complex. The affinity-attenuated forms of OmCI are suitable for affinity purification and allow elution under mild conditions that are nondenaturing or activating to C5. We present the rational design, biophysical characterization, and experimental validation of affinity-reduced forms of OmCI as tool reagents to enable the affinity purification of C5.


Asunto(s)
Complemento C5/aislamiento & purificación , Descubrimiento de Drogas , Animales , Sitios de Unión , Diseño de Fármacos , Humanos , Evasión Inmune , Mutagénesis Sitio-Dirigida , Unión Proteica , Purificación por Afinidad en Tándem
13.
PLoS Biol ; 16(5): e2006192, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29782488

RESUMEN

Aiming at the design of an allosteric modulator of the neonatal Fc receptor (FcRn)-Immunoglobulin G (IgG) interaction, we developed a new methodology including NMR fragment screening, X-ray crystallography, and magic-angle-spinning (MAS) NMR at 100 kHz after sedimentation, exploiting very fast spinning of the nondeuterated soluble 42 kDa receptor construct to obtain resolved proton-detected 2D and 3D NMR spectra. FcRn plays a crucial role in regulation of IgG and serum albumin catabolism. It is a clinically validated drug target for the treatment of autoimmune diseases caused by pathogenic antibodies via the inhibition of its interaction with IgG. We herein present the discovery of a small molecule that binds into a conserved cavity of the heterodimeric, extracellular domain composed of an α-chain and ß2-microglobulin (ß2m) (FcRnECD, 373 residues). X-ray crystallography was used alongside NMR at 100 kHz MAS with sedimented soluble protein to explore possibilities for refining the compound as an allosteric modulator. Proton-detected MAS NMR experiments on fully protonated [13C,15N]-labeled FcRnECD yielded ligand-induced chemical-shift perturbations (CSPs) for residues in the binding pocket and allosteric changes close to the interface of the two receptor heterodimers present in the asymmetric unit as well as potentially in the albumin interaction site. X-ray structures with and without ligand suggest the need for an optimized ligand to displace the α-chain with respect to ß2m, both of which participate in the FcRnECD-IgG interaction site. Our investigation establishes a method to characterize structurally small molecule binding to nondeuterated large proteins by NMR, even in their glycosylated form, which may prove highly valuable for structure-based drug discovery campaigns.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Receptores Fc/metabolismo , Sitio Alostérico , Cristalografía por Rayos X , Células HEK293 , Humanos , Ligandos
14.
J Cutan Med Surg ; 20(4): 293-303, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27207348

RESUMEN

Many chronic medical disorders are associated with psychiatric morbidity. Yet the psychological burden of these disorders often goes unnoticed. In dermatology, psoriasis has a higher association with psychiatric illness, including depression and suicide risk, compared with many other conditions. Studies suggest that effective treatment of psoriasis results in the improvement of psychiatric morbidity, particularly depression and anxiety. New biologic treatments for psoriasis may offer help beyond clearing of the skin in these patients and may lead to a reduction of psychiatric morbidity. Although concerns have been raised regarding the potential link between interleukin-17R blockade in the treatment of psoriasis and suicide, current literature provides no evidence to support this association.


Asunto(s)
Factores Inmunológicos/uso terapéutico , Interleucinas/antagonistas & inhibidores , Psoriasis/tratamiento farmacológico , Psoriasis/psicología , Suicidio , Humanos , Psoriasis/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...