Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microb Biotechnol ; 15(6): 1762-1782, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35084112

RESUMEN

Xanthomonas campestris pv. campestris (Xcc) is a vascular pathogen that invades the xylem of Brassica crops. Current chemical and antibiotics-based control measures for this bacterium are unsustainable and inefficient. After establishing a representative collection of Xcc strains, we isolated and characterized bacteriophages from two clades of phages to assess their potential in phage-based biocontrol. The most promising phages, FoX2 and FoX6, specifically recognize (lipo) polysaccharides, associated with the wxc gene cluster, on the surface of the bacterial cell wall. Next, we determined and optimized the applicability of FoX2 and FoX6 in an array of complementary bioassays, ranging from seed decontamination to irrigation- and spray-based applications. Here, an irrigation-based application showed promising results. In a final proof-of-concept, a CaCl2 -formulated phage cocktail was shown to control the outbreak of Xcc in the open field. This comprehensive approach illustrates the potential of phage biocontrol of black rot disease in Brassica and serves as a reference for the broader implementation of phage biocontrol in integrated pest management strategies.


Asunto(s)
Bacteriófagos , Brassica , Xanthomonas campestris , Brassica/genética , Brassica/microbiología , Familia de Multigenes , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Xanthomonas campestris/genética
2.
Int J Mol Sci ; 21(8)2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32331264

RESUMEN

The prevalence of Pseudomonas syringae pv. porri (Pspo) in Belgium continues to increase and sustainable treatments for this pathogen remain unavailable. A potentially attractive biocontrol strategy would be the application of bacteriophages. The ideal application strategy of phages in an agricultural setting remains unclear, especially in a field-based production such as for leek plants in Flanders. Therefore, more insight in bacteria-phage interaction is required, along with the evaluation of different application strategies. In this study, we further characterized the infection strategy of two Pspo phages, KIL3b and KIL5. We found that both phages recognize lipopolysaccharide (LPS) moieties on the surface of the bacterium. LPS is an important pathogenicity factor of Pspo. Our data also suggest that KIL5 requires an additional protein in the bacterial cytoplasmatic membrane to efficiently infect its host. Virulence tests showed that this protein also contributes to Pspo virulence. Furthermore, a cocktail of both phages was applied in a seed bioassay. A combination of KIL3b and KIL5 reduced the bacterial concentration 100-fold. However, in vitro Pspo resistance against phage infection developed quite rapidly. However, the impact of this phage resistance might be mitigated as is suggested by the fact that those resistance mutations preferably occur in genes involved in LPS metabolism, and that the virulence of those mutants is possibly reduced. Our data suggest that the phage cocktail has promising potential to lower the prevalence of Pspo and to be integrated in a pest management strategy. Targeted research is needed to further explore the applicability of the phages in combination with other disease control strategies.


Asunto(s)
Bacteriófagos/fisiología , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/patogenicidad , Pseudomonas syringae/virología , Receptores Virales/metabolismo , Bélgica , Prueba de Complementación Genética , Genoma Bacteriano , Genómica , Mutación , Polimorfismo de Nucleótido Simple , Pseudomonas syringae/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virulencia
3.
Front Physiol ; 9: 805, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30018564

RESUMEN

RNA interference (RNAi) is a powerful tool to study functional genomics in insects and the potential of using RNAi to suppress crop pests has made outstanding progress. However, the delivery of dsRNA is a challenging step in the development of RNAi bioassays. In this study, we investigated the ability of engineered Flock House virus (FHV) to induce targeted gene suppression through RNAi under in vitro and in vivo condition. As proxy for fruit flies of agricultural importance, we worked with S2 cells as derived from Drosophila melanogaster embryos, and with adult stages of D. melanogaster. We found that the expression level for all of the targeted genes were reduced by more than 70% in both the in vitro and in vivo bioassays. Furthermore, the cell viability and median survival time bioassays demonstrated that the recombinant FHV expressing target gene sequences caused a significantly higher mortality (60-73% and 100%) than the wild type virus (24 and 71%), in both S2 cells and adult insects, respectively. This is the first report showing that a single stranded RNA insect virus such as FHV, can be engineered as an effective in vitro and in vivo RNAi delivery system. Since FHV infects many insect species, the described method could be exploited to improve the efficiency of dsRNA delivery for RNAi-related studies in both FHV susceptible insect cell lines and live insects that are recalcitrant to the uptake of naked dsRNA.

4.
Methods Mol Biol ; 1746: 131-149, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29492891

RESUMEN

This protocol details the wet lab preparation, extraction of fruit pollen samples, and analysis of the sequencing data following Illumina NextSeq small and total RNA sequencing. The protocol was developed for virus and viroid detection using NGS sequencing and was based on the results of a comparison between different extraction methods followed by yield, RNA purity, and integrity assessment. Moreover, the advantage of an additional ribosomal (r)RNA depletion step to the total RNA extraction protocol was evaluated. The smallRNA procedure is the preferred method of choice. If the total RNA protocol is chosen, the use of the mirVana kit followed by an rRNA depletion step is the best option. The library preparation and sequencing steps were outsourced. As a final step in the data analysis, the VirusDetect software was used to detect the viruses and viroids in the pollen samples.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Enfermedades de las Plantas/genética , Virus de Plantas/genética , Plantas/virología , Polen/virología , ARN Viral/análisis , Viroides/genética , Enfermedades de las Plantas/virología , ARN Viral/genética
5.
Genome Announc ; 6(7)2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29449402

RESUMEN

Xanthomonas arboricola pv. fragariae was described in 2001 as the causal agent of strawberry bacterial leaf blight. We report here the first draft whole-genome sequences of five X. arboricola pv. fragariae isolates from Italy and France.

6.
FEMS Microbiol Ecol ; 92(8)2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27279415

RESUMEN

Here we discuss the advantages of the majority of this versatile and diverse group of microorganisms for plant health and growth as demonstrated by their contribution to disease-suppressive soils, their antifungal and antibacterial activities, their ability to produce volatile compounds and their capacity to enhance plant biomass. Although much is still to be discovered about the colonization strategies and molecular interactions between plant roots and these microorganisms, they are destined to become important players in the field of plant growth-promoting rhizobacteria for agriculture.


Asunto(s)
Desarrollo de la Planta/fisiología , Raíces de Plantas/microbiología , Plantas/microbiología , Streptomyces/crecimiento & desarrollo , Simbiosis/fisiología , Agricultura , Agentes de Control Biológico , Suelo , Microbiología del Suelo
7.
Front Microbiol ; 7: 565, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27148242

RESUMEN

Chitin is a promising soil amendment for improving soil quality, plant growth, and plant resilience. The objectives of this study were twofold. First, to study the effect of chitin mixed in potting soil on lettuce growth and on the survival of two zoonotic bacterial pathogens, Escherichia coli O157:H7 and Salmonella enterica on the lettuce leaves. Second, to assess the related changes in the microbial lettuce rhizosphere, using phospholipid fatty acid (PLFA) analysis and amplicon sequencing of a bacterial 16S rRNA gene fragment and the fungal ITS2. As a result of chitin addition, lettuce fresh yield weight was significantly increased. S. enterica survival in the lettuce phyllosphere was significantly reduced. The E. coli O157:H7 survival was also lowered, but not significantly. Moreover, significant changes were observed in the bacterial and fungal community of the lettuce rhizosphere. PLFA analysis showed a significant increase in fungal and bacterial biomass. Amplicon sequencing showed no increase in fungal and bacterial biodiversity, but relative abundances of the bacterial phyla Acidobacteria, Verrucomicrobia, Actinobacteria, Bacteroidetes, and Proteobacteria and the fungal phyla Ascomycota, Basidiomycota, and Zygomycota were significantly changed. More specifically, a more than 10-fold increase was observed for operational taxonomic units belonging to the bacterial genera Cellvibrio, Pedobacter, Dyadobacter, and Streptomyces and to the fungal genera Lecanicillium and Mortierella. These genera include several species previously reported to be involved in biocontrol, plant growth promotion, the nitrogen cycle and chitin degradation. These results enhance the understanding of the response of the rhizosphere microbiome to chitin amendment. Moreover, this is the first study to investigate the use of soil amendments to control the survival of S. enterica on plant leaves.

8.
Front Microbiol ; 7: 279, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27014204

RESUMEN

Pseudomonas syringae pv. porri, the causative agent of bacterial blight in leek (Allium porrum), is increasingly frequent causing problems in leek cultivation. Because of the current lack of control measures, novel bacteriophages were isolated to control this pathogen using phage therapy. Five novel phages were isolated from infected fields in Flanders (vB_PsyM_KIL1, vB_PsyM_KIL2, vB_PsyM_KIL3, vB_PsyM_KIL4, and vB_PsyM_KIL5), and were complemented with one selected host range mutant phage (vB_PsyM_KIL3b). Genome analysis of the phages revealed genome sizes between 90 and 94 kb and an average GC-content of 44.8%. Phylogenomic networking classified them into a novel clade, named the "KIL-like viruses," related to the Felixounalikevirus genus, together with phage phiPsa374 from P. syringae pv. actinidiae. In vitro characterization demonstrated the stability and lytic potential of these phages. Host range analysis confirmed heterogeneity within P. syringae pv. porri, leading to the development of a phage cocktail with a range that covers the entire set of 41 strains tested. Specific bio-assays demonstrated the in planta efficacy of phages vB_PsyM_KIL1, vB_PsyM_KIL2, vB_PsyM_KIL3, and vB_PsyM_KIL3b. In addition, two parallel field trial experiments on three locations using a phage cocktail of the six phages showed variable results. In one trial, symptom development was attenuated. These data suggest some potential for phage therapy in controlling bacterial blight of leek, pending optimization of formulation and application methods.

9.
Front Microbiol ; 7: 2062, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28066380

RESUMEN

Adding biochar, the solid coproduct of biofuel production, to peat can enhance strawberry growth, and disease resistance against the airborne fungal pathogen Botrytis cinerea. Additionally, biochar can induce shifts in the strawberry rhizosphere microbiome. However, the moment that this biochar-mediated shift occurs in the rhizosphere is not known. Further, the effect of an above-ground infection on the strawberry rhizosphere microbiome is unknown. In the present study we established two experiments in which strawberry transplants (cv. Elsanta) were planted either in peat or in peat amended with 3% biochar. First, we established a time course experiment to measure the effect of biochar on the rhizosphere bacterial and fungal communities over time. In a second experiment, we inoculated the strawberry leaves with B. cinerea, and studied the impact of the infection on the rhizosphere bacterial community. The fungal rhizosphere community was stabilized after 1 week, except for the upcoming Auriculariales, whereas the bacterial community shifted till 6 weeks. An effect of the addition of biochar to the peat on the rhizosphere microbiome was solely measured for the bacterial community from week 6 of plant growth onwards. When scoring the plant development, biochar addition was associated with enhanced root formation, fruit production, and postharvest resistance of the fruits against B. cinerea. We hypothesize that the bacterial rhizosphere microbiome, but also biochar-mediated changes in chemical substrate composition could be involved in these events. Infection of the strawberry leaves with B. cinerea induced shifts in the bacterial rhizosphere community, with an increased bacterial richness. This disease-induced effect was not observed in the rhizospheres of the B. cinerea-infected plants grown in the biochar-amended peat. The results show that an above-ground infection has its effect on the strawberry rhizosphere microbiome, changing the bacterial interactions in the root-substrate interface. This infection effect on the bacterial rhizosphere microbiome seems to be comparable to, but less pronounced than the effect of biochar-addition to the peat. The biological meaning of these observations needs further research, but this study indicates that biochar and an above-ground pathogen attack help the plant to recruit rhizosphere microbes that may aid them in their plant growth and health.

10.
Pest Manag Sci ; 72(9): 1702-9, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26620187

RESUMEN

BACKGROUND: Previous studies have indicated the control potential of entomopathogenic nematodes (EPNs) against Tuta absoluta. Here, the potential of Steinernema feltiae, S. carpocapsae and Heterorhabditis bacteriophora is studied when applied against larvae of T. absoluta inside leaf mines in tomato leaf discs by means of an automated spray boom. RESULTS: The studied EPN species were effective against all four larval instars of T. absoluta but caused higher mortality in the later instars (e.g. fourth instar: 77.1-97.4% mortality) than in the first instars (36.8-60.0% mortality). Overall, S. feltiae and S. carpocapsae yielded better results than H. bacteriophora. Steinernema carpocapsae and H. bacteriophora performed better at 25 °C (causing 55.3 and 97.4% mortality respectively) than at 18 °C (causing 12.5 and 34.2% mortality respectively), whereas S. feltiae caused 100% mortality at both temperatures. Under optimal spraying conditions and with the use of Addit and Silwet L-77 adjuvants, a reduced dosage of 6.8 infective juveniles (IJs) cm(-2) yielded equally good control as a recommended dosage of 27.3 IJs cm(-2) . CONCLUSION: Under laboratory conditions, S. feltiae and S. carpocapsae showed good potential against the larvae of T. absoluta inside tomato leaf mines. Results need to be confirmed in greenhouse experiments. © 2015 Society of Chemical Industry.


Asunto(s)
Mariposas Nocturnas/parasitología , Control Biológico de Vectores/métodos , Rabdítidos/fisiología , Animales , Larva/crecimiento & desarrollo , Larva/parasitología , Solanum lycopersicum/crecimiento & desarrollo , Mariposas Nocturnas/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo
11.
Antonie Van Leeuwenhoek ; 107(4): 869-81, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25588569

RESUMEN

Four bacterial strains, designated M89, M92, M97(T), and M106, were isolated in a previous study from surface-sterilized leaves of rice (Oryza sativa) or murainagrass (Ischaemum rugosum) at three sites in Mali, Africa. Here they were examined by a polyphasic taxonomic approach and analysis of a whole-genome sequence. Phylogenetic analyses based on 16S rRNA sequence and multilocus sequence analysis of seven genes showed that these four strains formed a distinct lineage representing a novel species within the genus Xanthomonas. This was supported by whole-genome average nucleotide identity values calculated from comparisons of strain M97(T) with established Xanthomonas species. The strains can be differentiated from the known Xanthomonas species on the basis of their fatty acid and carbohydrate utilization profiles. Population growth studies on rice confirmed that these bacteria multiply in rice leaves without causing symptoms. Identification of this novel species can be accomplished by using diagnostic primer sets or by gyrB gene sequence analysis. We propose to classify these rice- and grass-associated bacteria as Xanthomonas maliensis sp. nov. with strain M97(T) = CFBP7942(T) = LMG27592(T) as the type strain.


Asunto(s)
Oryza/microbiología , Hojas de la Planta/microbiología , Xanthomonas/clasificación , Xanthomonas/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Análisis por Conglomerados , Citosol/química , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Ácidos Grasos/análisis , Genoma Bacteriano , Malí , Tipificación de Secuencias Multilocus , Filogenia , ARN Ribosómico 16S/genética , Xanthomonas/genética
12.
Int J Environ Res Public Health ; 11(10): 10105-24, 2014 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-25268508

RESUMEN

It is accepted that irrigation water is a potential carrier of enteric pathogens, such as Salmonella and E. coli O157:H7 and, therefore, a source for contamination of fresh produce. We tested this by comparing irrigation water samples taken from five different greenhouses in Belgium. The water samples were inoculated with four zoonotic strains, two Salmonella and two E. coli O157:H7 strains, and pathogen survival and growth in the water were monitored up till 14 days. The influence of water temperature and chemical water quality was evaluated, and the survival tests were also performed in water samples from which the resident aquatic microbiota had previously been eliminated by filter sterilization. The pathogen's survival differed greatly in the different irrigation waters. Three water samples contained nutrients to support important growth of the pathogens, and another enabled weaker growth. However, for all, growth was only observed in the samples that did not contain the resident aquatic microbiota. In the original waters with their specific water biota, pathogen levels declined. The same survival tendencies existed in water of 4 °C and 20 °C, although always more expressed at 20 °C. Low water temperatures resulted in longer pathogen survival. Remarkably, the survival capacity of two E. coli 0157:H7 strains differed, while Salmonella Thompson and Salmonella Typhimurium behaved similarly. The pathogens were also transferred to detached lettuce leaves, while suspended in two of the water samples or in a buffer. The effect of the water sample on the pathogen's fitness was also reproduced on the leaves when stored at 100% relative humidity. Inoculation of the suspension in buffer or in one of the water samples enabled epiphytic growth and survival, while the pathogen level in the other water sample decreased once loaded on the leaves. Our results show that irrigation waters from different origin may have a different capacity to transmit enteric pathogens and an important impact on the fitness of the pathogens to sustain and even grow on the leaf surface.


Asunto(s)
Riego Agrícola , Productos Agrícolas/microbiología , Microbiología de Alimentos , Lactuca/microbiología , Microbiología del Agua , Agua/química , Bélgica , Recuento de Colonia Microbiana , Escherichia coli O157/crecimiento & desarrollo , Escherichia coli O157/aislamiento & purificación , Viabilidad Microbiana , Microbiota , Hojas de la Planta/microbiología , Salmonella/crecimiento & desarrollo , Salmonella/aislamiento & purificación , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/aislamiento & purificación , Temperatura
13.
Arch Microbiol ; 196(12): 891-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25178659

RESUMEN

Recent genome analysis of Erwinia amylovora, the causal agent of fire blight disease on Rosaceae, has shown that the chromosome is highly conserved among strains and that plasmids are the principal source of genomic diversity. A new circular plasmid, pEA68, was found in E. amylovora strain 692 (LMG 28361), isolated in Poland from Sorbus (mountain ash) with fire blight symptoms. Annotation of the 68,763-bp IncFIIa-type plasmid revealed that it contains 79 predicted CDS, among which two operons (tra, pil) are associated with mobility. The plasmid is maintained stably in E. amylovora and does not possess genes associated with antibiotic resistance or known virulence genes. Curing E. amylovora strain 692 of pEA68 did not influence its virulence in apple shoots nor amylovoran synthesis. Of 488 strains of E. amylovora from seventeen countries, pEA68 was only found in two additional strains from Belgium. Although the spread of pEA68 is currently limited to Europe, pEA68 comprises, together with pEA72 and pEA78 both found in North America, a new plasmid family that spans two continents.


Asunto(s)
Erwinia amylovora/genética , Plásmidos , Erwinia amylovora/aislamiento & purificación , Erwinia amylovora/patogenicidad , Malus/microbiología , Datos de Secuencia Molecular , Enfermedades de las Plantas/microbiología , Polonia , Polisacáridos Bacterianos/biosíntesis , Análisis de Secuencia de ADN , Virulencia/genética
14.
BMC Genomics ; 15: 392, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24885539

RESUMEN

BACKGROUND: The genus Clavibacter harbors economically important plant pathogens infecting agricultural crops such as potato and tomato. Although the vast majority of Clavibacter strains are pathogenic, there is an increasing number of non-pathogenic isolates reported. Non-pathogenic Clavibacter strains isolated from tomato seeds are particularly problematic because they affect the current detection and identification tests for Clavibacter michiganensis subsp. michiganensis (Cmm), which is regulated with a zero tolerance in tomato seed. Their misidentification as pathogenic Cmm hampers a clear judgment on the seed quality and health. RESULTS: To get more insight in the genetic features linked to the lifestyle of these bacteria, a whole-genome sequence of the tomato seed-borne non-pathogenic Clavibacter LMG 26808 was determined. To gain a better understanding of the molecular determinants of pathogenicity, the genome sequence of LMG 26808 was compared with that of the pathogenic Cmm strain (NCPPB 382). The comparative analysis revealed that LMG 26808 does not contain plasmids pCM1 and pCM2 and also lacks the majority of important virulence factors described so far for pathogenic Cmm. This explains its apparent non-pathogenic nature in tomato plants. Moreover, the genome analysis of LMG 26808 detected sequences from a plasmid originating from a member of Enterobacteriaceae/Klebsiella relative. Genes received that way and coding for antibiotic resistance may provide a competitive advantage for survival of LMG 26808 in its ecological niche. Genetically, LMG 26808 was the most similar to the pathogenic Cmm NCPPB 382 but contained more mobile genetic elements. The genome of this non-pathogenic Clavibacter strain contained also a high number of transporters and regulatory genes. CONCLUSIONS: The genome sequence of the non-pathogenic Clavibacter strain LMG 26808 and the comparative analyses with other pathogenic Clavibacter strains provided a better understanding of the genetic bases of virulence and adaptation mechanisms present in the genus Clavibacter.


Asunto(s)
Actinomycetales/clasificación , Actinomycetales/genética , Enfermedades de las Plantas/microbiología , Solanum lycopersicum/microbiología , Actinomycetales/fisiología , Adaptación Biológica , Secuencia de Bases , Genoma Bacteriano , Datos de Secuencia Molecular , Plásmidos , Semillas/microbiología , Análisis de Secuencia de ADN , Virulencia
15.
J Food Prot ; 77(4): 549-57, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24680065

RESUMEN

Attachment of enteric pathogens such as Escherichia coli O157:H7 to fresh produce is a crucial first step for contamination to occur, and irrigation water (IW) is considered a potentially important preharvest introduction route. In a natural situation, E. coli O157:H7 may be present in the irrigation water for some time and may, therefore, be starved. Most research, however, is performed with freshly cultured strains. The aim of this study was to examine the behavior of E. coli O157:H7 MB3885 under starvation stress in water used for overhead irrigation in the greenhouse and the consequence on its subsequent ability to attach to butterhead lettuce leaves. E. coli O157:H7 MB3885 was starvation stressed by introducing it at ±7.5 log CFU/ml into phosphate-buffered saline (PBS), sterile distilled water (SDW), or IW. The suspensions were stored at 4 or 20°C and were used after 0, 2, and 6 days for an attachment assay on butterhead lettuce. E. coli O157:H7 MB3885 levels were determined by plating method and live and dead quantitative PCR technique. A decrease in plate counts, an indicator of stress, was observed for most of the conditions, whereas a die-off, as revealed by the live and dead quantitative PCR data, was only observed in IW stored at 20°C. Overall, stress appeared to be highest in IW and lowest in PBS. The stressed cells were still able to recover, even at 4 °C, and to attach to the lettuce. Furthermore, our results show that standard laboratory solutions such as PBS and SDW may not be the best to simulate stressed cells in IW, in which the bacteria may behave significantly differently.


Asunto(s)
Adhesión Bacteriana/fisiología , Escherichia coli O157/fisiología , Lactuca/microbiología , Temperatura , Microbiología del Agua , Recuento de Colonia Microbiana , Escherichia coli O157/crecimiento & desarrollo , Microbiología de Alimentos , Viabilidad Microbiana , Hojas de la Planta/microbiología
16.
Exp Appl Acarol ; 63(3): 389-400, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24509789

RESUMEN

The broad mite, Polyphagotarsonemus latus (Banks), is one of the major pests causing severe economic damage in Rhododendron simsii Planch hybrid production in Belgium. In order to optimize biological control programs and to parameterize warning programs, we studied the effect of environmental temperature on the development of P. latus on R. simsii leaves. In combination with a photoperiod of 16:8 h (L:D) and a relative humidity of 80 ± 5 %, six constant temperatures (15, 17, 20, 25, 30 and 33 ± 1 °C), were studied. Total developmental times of 13.3, 10.5, 6.6, 4.2, 3.5 and 4.0 days were measured, respective to each of the aforementioned temperatures. Development of females took significantly longer than that of males at 15, 17, 20 and 30 °C. Survival rates observed between 17 and 30 °C varied between 43.5 and 96.9 %. Lower survival rates were found at 15 and 33 °C, i.e. 31.8 and 23.6 %, respectively. The lower, optimal and upper developmental threshold (t min , t opt and t max , respectively) and thermal constant (K) of the pest were estimated for each life stage by a linear and two non-linear models. Based on measurements of total development of P. latus thermal thresholds of 10.0, 30.1 and 36.0 °C were calculated for t min , t opt and t max , respectively. The number of degree-days needed to complete immature development when feeding on R. simsii was 66.7.


Asunto(s)
Ácaros/crecimiento & desarrollo , Modelos Teóricos , Rhododendron , Temperatura , Animales , Clima , Estadios del Ciclo de Vida
17.
BMC Genomics ; 14: 829, 2013 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-24274055

RESUMEN

BACKGROUND: Xanthomonas fragariae (Xf) is a bacterial strawberry pathogen and an A2 quarantine organism on strawberry planting stock in the EU. It is taxonomically and metabolically distinct within the genus Xanthomonas, and known for its host specificity. As part of a broader pathogenicity study, the genome of a Belgian, virulent Xf strain (LMG 25863) was assembled to draft status and examined for its pathogenicity related gene content. RESULTS: The Xf draft genome (4.2 Mb) was considerably smaller than most known Xanthomonas genomes (~5 Mb). Only half of the genes coding for TonB-dependent transporters and cell-wall degrading enzymes that are typically present in other Xanthomonas genomes, were found in Xf. Other missing genes/regions with a possible impact on its plant-host interaction were: i) the three loci for xylan degradation and metabolism, ii) a locus coding for a ß-ketoadipate phenolics catabolism pathway, iii) xcs, one of two Type II Secretion System coding regions in Xanthomonas, and iv) the genes coding for the glyoxylate shunt pathway. Conversely, the Xf genome revealed a high content of externally derived DNA and several uncommon, possibly virulence-related features: a Type VI Secretion System, a second Type IV Secretion System and a distinct Type III Secretion System effector repertoire comprised of multiple rare effectors and several putative new ones. CONCLUSIONS: The draft genome sequence of LMG 25863 confirms the distinct phylogenetic position of Xf within the genus Xanthomonas and reveals a patchwork of both lost and newly acquired genomic features. These features may help explain the specific, mostly endophytic association of Xf with the strawberry plant.


Asunto(s)
Evolución Molecular , Genes Bacterianos , Xanthomonas/genética , Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos/genética , Toxinas Bacterianas/genética , Secuencia de Bases , Genoma Bacteriano , Proteínas de Transporte de Membrana/genética , Anotación de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Virulencia/genética , Factores de Virulencia/genética , Xanthomonas/patogenicidad
18.
Genome Announc ; 1(4)2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23887905

RESUMEN

Dickeya dianthicola and "Dickeya solani" are currently the dominant bacterial pathogens of potatoes in Europe. Here, we present the draft genome sequences of four strains of each pathogen.

19.
BMC Microbiol ; 13: 126, 2013 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-23738754

RESUMEN

BACKGROUND: Clavibacter michiganensis subsp. michiganensis (Cmm) causes bacterial wilt and canker in tomato. Cmm is present nearly in all European countries. During the last three years several local outbreaks were detected in Belgium. The lack of a convenient high-resolution strain-typing method has hampered the study of the routes of transmission of Cmm and epidemiology in tomato cultivation. In this study the genetic relatedness among a worldwide collection of Cmm strains and their relatives was approached by gyrB and dnaA gene sequencing. Further, we developed and applied a multilocus variable number of tandem repeats analysis (MLVA) scheme to discriminate among Cmm strains. RESULTS: A phylogenetic analysis of gyrB and dnaA gene sequences of 56 Cmm strains demonstrated that Belgian Cmm strains from recent outbreaks of 2010-2012 form a genetically uniform group within the Cmm clade, and Cmm is phylogenetically distinct from other Clavibacter subspecies and from non-pathogenic Clavibacter-like strains. MLVA conducted with eight minisatellite loci detected 25 haplotypes within Cmm. All strains from Belgian outbreaks, isolated between 2010 and 2012, together with two French strains from 2010 seem to form one monomorphic group. Regardless of the isolation year, location or tomato cultivar, Belgian strains from recent outbreaks belonged to the same haplotype. On the contrary, strains from diverse geographical locations or isolated over longer periods of time formed mostly singletons. CONCLUSIONS: We hypothesise that the introduction might have originated from one lot of seeds or contaminated tomato seedlings that was the source of the outbreak in 2010 and that these Cmm strains persisted and induced infection in 2011 and 2012. Our results demonstrate that MLVA is a promising typing technique for a local surveillance and outbreaks investigation in epidemiological studies of Cmm.


Asunto(s)
Infecciones por Actinomycetales/microbiología , Actinomycetales/clasificación , Actinomycetales/genética , Repeticiones de Minisatélite , Tipificación Molecular/métodos , Enfermedades de las Plantas/microbiología , Actinomycetales/aislamiento & purificación , Proteínas Bacterianas/genética , Bélgica , Análisis por Conglomerados , Girasa de ADN/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Proteínas de Unión al ADN/genética , Solanum lycopersicum , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN
20.
Syst Appl Microbiol ; 36(6): 426-35, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23768656

RESUMEN

Clavibacter michiganensis subsp. michiganensis (Cmm) is a seed-transmitted, quarantine pathogen which causes bacterial wilt and canker of tomato. Despite efforts to prevent seed contamination, new introductions are regularly detected, associated with new regions of tomato seed production. It seems as if the expanding diversity of Cmm also challenges the limited host range. Clavibacter-like isolates from tomato seed are phenotypically similar to Cmm in the common diagnostic semi-selective media and are identified as Cmm in the customary tests but are not pathogenic to tomato. In our first study four representatives formed a separate cluster in gyrB sequence analysis and in MALDI-TOF MS. Their presence on seed prevents clear judgment on the health status of tomato seeds. As their nature and function are unclear we aimed to investigate and compare them to Cmm. Twenty strains described as Clavibacter-like isolated from tomato seed and not pathogenic to tomato plantlets were selected. Leaf spots, wilting or cankers were not induced after local or systemic inoculation. Tomato stems were not colonized nor was there evidence of survival in tomato stems. Total DNA-DNA hybridization and sequence analysis of gyrB and dnaA proved that they belong to the Cm species but can be unambiguously separated from Cmm. Some of the genes encoding virulence determinants in Cmm strains were also detected in some of the non-pathogenic isolates. Moreover, Cmm strains formed a coherent group, while non-pathogenic Cm strains were heterogenic. The latter was confirmed by BOX-PCR. We speculate that tomato seeds likely represent a larger reservoir of unexplored Clavibacter diversity.


Asunto(s)
Actinomycetales/clasificación , Actinomycetales/aislamiento & purificación , Variación Genética , Semillas/microbiología , Solanum lycopersicum/microbiología , Actinomycetales/genética , Proteínas Bacterianas/genética , Análisis por Conglomerados , Girasa de ADN/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Proteínas de Unión al ADN/genética , Genotipo , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Filogenia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...