Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Animal ; 17(9): 100917, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37573639

RESUMEN

The efficiency with which a dairy cow utilises feed for the various physiological and metabolic processes can be evaluated by metrics that contrast realised feed intake with expected feed intake. In this study, we presented a new metric - regression on expected feed intake (ReFI). This metric is based on the idea of regressing DM intake (DMI) on expected DMI using a random regression model, where energy requirement formulations are applied for the calculation of expected DMI covariables. We compared this new metric with the metrics residual feed intake (RFI) and genetic residual feed intake (gRFI), by applying them on 18 581 feed efficiency records from 654 primiparous Nordic Red dairy cows. We estimated variance components for the three metrics and their respective genetic correlations with intake and production traits. In addition, we examined the phenotypes of superior cows. With ReFI, we estimated for feed efficiency a higher genetic variation (4.7%) and heritability (0.23) compared to applying RFI or gRFI. The ReFI metric was genetically uncorrelated with DMI and negatively correlated within energy-corrected milk (ECM), whereas the RFI metric was genetically positively correlated with DMI and metabolic BW. The gRFI metric was genetically positively correlated with DMI and uncorrelated with energy sink traits. Overall, the estimated SE were large. The ReFI metric resulted in a different ranking of cows compared to those based on RFI or gRFI and was superior in selecting the most efficient animals. When the selection was based on ReFI breeding values, then the 10% most efficient cows produced 12.3% more ECM per unit metabolisable energy intake, whereas the corresponding values were only 4.3 or 5.9% when using RFI or gRFI breeding values, respectively. Based on ReFI, superior cows had also higher milk production, whereas based on RFI or gRFI milk production either decreased or was unaffected, respectively. The superiority of the ReFI metric in selecting efficient cows was due to a better modelling of the expected feed intake. The ReFI metric simplified modelling of feed utilisation efficiency in dairy cattle and resulted in breeding values that are equal to percentages of feed saved.


Asunto(s)
Alimentación Animal , Lactancia , Femenino , Bovinos/genética , Animales , Lactancia/genética , Ingestión de Alimentos/genética , Leche/metabolismo , Ingestión de Energía
2.
J Dairy Sci ; 105(8): 6833-6844, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35773030

RESUMEN

The relationships between dairy cow milk-based energy status (ES) indicators and fertility traits were studied during periods 8 to 21, 22 to 35, 36 to 49, and 50 to 63 d in milk. Commencement of luteal activity (C-LA) and interval from calving to the first heat (CFH), based on frequent measurements of progesterone by the management tool Herd Navigator (DeLaval), were used as fertility traits. Energy status indicator traits were milk ß-hydroxybutyrate (BHB) concentration provided by Herd Navigator and milk fat:protein ratio, concentration of C18:1 cis-9, the ratio of fatty acids (FA) C18:1 cis-9 and C10:0 in test-day milk samples, and predicted plasma concentration of nonesterified fatty acids (NEFA) on test days. Plasma NEFA predictions were based either directly on milk mid-infrared spectra (MIR) or on milk fatty acids based on MIR spectra (NEFAmir and NEFAfa, respectively). The average (standard deviation) C-LA was 39.3 (±16.6) days, and the average CFH was 50.7 (±17.2) days. The correlations between fertility traits and ES indicators tended to be higher for multiparous (r < 0.28) than for primiparous (r < 0.16) cows. All correlations were lower in the last period than in the other periods. In period 1, correlations of C-LA with NEFAfa and BHB, respectively, were 0.15 and 0.14 for primiparous and 0.26 and 0.22 for multiparous cows. The associations between fertility traits and ES indicators indicated that negative ES during the first weeks postpartum may delay the onset of luteal activity. Milk FPR was not as good an indicator for cow ES as other indicators. According to these findings, predictions of plasma NEFA and milk FA based on milk MIR spectra of routine test-day samples and the frequent measurement of milk BHB by Herd Navigator gave equally good predictions of cow ES during the first weeks of lactation. Our results indicate that routinely measured milk traits can be used for ES evaluation in early lactation.


Asunto(s)
Ácidos Grasos no Esterificados , Lactancia , Ácido 3-Hidroxibutírico , Animales , Bovinos , Ácidos Grasos , Femenino , Fertilidad , Leche , Periodo Posparto
3.
Animal ; 15(12): 100398, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34749067

RESUMEN

Improving feed efficiency in dairy cattle by animal breeding has started in the Nordic countries. One of the two traits included in the applied Saved feed index is called maintenance and it is based on the breeding values for metabolic BW (MBW). However, BW recording based on heart girth measurements is decreasing and recording based on scales is increasing only slowly, which may weaken the maintenance index in future. Therefore, the benefit of including correlated traits, like carcass weight and conformation traits, is of interest. In this study, we estimated genetic variation and genetic correlations for eight traits describing the energy requirement for maintenance in dairy cattle including: first, second and third parity MBW based on heart girth measurements, carcass weight (CARW) and predicted MBW (pMBW) based on predicted slaughter weight, and first parity conformation traits stature (ST), chest width (CW) and body depth (BD). The data consisted of 21329 records from Finnish Ayrshire and 9780 records from Holstein cows. Heritability estimates were 0.44, 0.53, 0.56, 0.52, 0.54, 0.60, 0.17 and 0.26 for MBW1, MBW2, MBW3, CARW, pMBW, ST, CW and BD, respectively. Estimated genetic correlations among MBW traits were strong (>0.95). Genetic correlations between slaughter traits (CARW and pMBW) and MBW traits were higher (from 0.77 to 0.90) than between conformation and MBW traits (from 0.47 to 0.70). Our results suggest that including information on carcass weight and body conformation as correlated traits into the maintenance index is beneficial when direct BW measurements are not available or are difficult or expensive to obtain.


Asunto(s)
Lactancia , Animales , Peso Corporal , Bovinos/genética , Femenino , Finlandia , Paridad , Fenotipo , Embarazo
4.
J Dairy Sci ; 104(9): 10049-10058, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34099294

RESUMEN

The growing amount of genomic information in dairy cattle has increased computational and modeling challenges in the single-step evaluations. The computational challenges are due to the dense inverses of genomic (G) and pedigree (A22) relationship matrices of genotyped animals in the single-step mixed model equations. An equivalent mixed model equation is given by single-step genomic BLUP that are based on the T matrix (ssGTBLUP), where these inverses are avoided by expressing G-1 through a product of 2 rectangular matrices, and (A22)-1 through sparse matrix blocks of the inverse of full relationship matrix A-1. A proper way to account genetic groups through unknown parent groups (UPG) after the Quaas-Pollak transformation (QP) is one key factor in a single-step model. When the UPG effects are incompletely accounted, the iterative solving method may have convergence problems. In this study, we investigated computational and predictive performance of ssGTBLUP with residual polygenic (RPG) effect and UPG. The QP transformation used A-1 and, in the complete form, T and (A22)-1 matrices as well. The models were tested with official Nordic Holstein milk production test-day data and model. The results show that UPG can be easily implemented in ssGTBLUP having RPG. The complete QP transformation was computationally feasible when preconditioned conjugate gradient iteration and iteration on data without explicitly setting up G or A22 matrices were used. Furthermore, for good convergence of the preconditioned conjugate gradient method, a complete QP transformation was necessary.


Asunto(s)
Genoma , Modelos Genéticos , Animales , Bovinos/genética , Genómica , Genotipo , Linaje , Fenotipo
5.
JDS Commun ; 2(3): 137-141, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-36339497

RESUMEN

Calculation of individual animal reliability of estimated genomic breeding value by SNP-BLUP requires inversion of the mixed model equations (MME). When the SNP-BLUP model includes a residual polygenic (RPG) effect, the size of the MME will be at least the number of genotyped animals (n) plus the number of SNP markers (m). Inversion of the MME in SNP-BLUP involves computations proportional to the cube of the MME size; that is, (n + m)3, which can present a considerable computational burden. We introduce a full Monte Carlo (MC) sampling-based method for approximating reliability in the SNP-BLUP model and compare its performance to the genomic BLUP (GBLUP) model. The performance of the full MC approach was evaluated using 2 data sets, including 19,757 and 222,619 genotyped animals selected from populations with 231,186 and 13.35 million pedigree animals, respectively. Genotypes were available in the data sets for 11,729 and 50,240 SNP markers. An advantage of the full MC approximation method was its low computational demand. A drawback was its tendency to overestimate reliability for animals with low reliability, especially when the weight of the RPG effect was high. The overestimation can be lessened by increasing the number of MC samples.

6.
J Dairy Sci ; 103(7): 6299-6310, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32418688

RESUMEN

Single-step genomic BLUP (ssGBLUP) is a powerful approach for breeding value prediction in populations with a limited number of genotyped animals. However, conflicting genomic (G) and pedigree (A22) relationship matrices complicate the implementation of ssGBLUP into practice. The metafounder (MF) approach is a recently proposed solution for this problem and has been successfully used on simulated and real multi-breed pig data. Advantages of the method are easily seen across breed evaluations, where pedigrees are traced to several pure breeds, which are thereafter used as MF. Application of the MF method to ruminants is complicated due to multi-breed pedigree structures and the inability to transmit existing unknown parent groups (UPG) to MF. In this study, we apply the MF approach for ssGBLUP evaluation of Finnish Red Dairy cattle treated as a single breed. Relationships among MF were accounted for by a (co)variance matrix (Γ) computed using estimated base population allele frequencies. The attained Γ was used to calculate a relationship matrix A22Γ for the genotyped animals. We tested the influence of SNP selection on the Γ matrix by applying a minor allele frequency (MAF) threshold (ΓMAF) where accepted markers had an MAF ≥0.05. Elements in the ΓMAF matrix were slightly lower than in the Γ matrix. Correlation between diagonal elements of the genomic and pedigree relationship matrices increased from 0.53 (A22) to 0.76 ( A22Γ and [Formula: see text] ). Average diagonal elements of A22Γ and [Formula: see text] matrices increased to the same level as in the G matrix. The ssGBLUP breeding values (GEBV) were solved using either the original 236 or redefined 8 UPG, or 8 MF computed with or without the MAF threshold. For bulls, the GEBV validation test results for the 8 UPG and 8 MF gave the same validation reliability (R2; 0.31) and over-dispersion (0.73, measured by regression coefficient b1). No significant R2 increase was observed in cows. Thus, the MF greatly influenced the pedigree relationship matrices but not the GEBV. Selection of SNP according to MAF had a notable effect on the Γ matrix and made the A22 and G matrices more similar.


Asunto(s)
Bovinos/genética , Genómica , Selección Artificial , Animales , Femenino , Alimentos Formulados , Frecuencia de los Genes , Genoma , Genómica/métodos , Genotipo , Masculino , Modelos Genéticos , Linaje , Reproducibilidad de los Resultados
7.
J Dairy Sci ; 103(6): 5314-5326, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32331883

RESUMEN

During the last decade, genomic selection has revolutionized dairy cattle breeding. For example, Nordic dairy cows (Denmark, Finland, and Sweden) born in 2018 were >90% sired by young genomically tested bulls. Thus, the average age of sires for Red Dairy Cattle cows born in 2018 was only 3.1 yr, whereas in 2011 it was 5.7 yr. Earlier the key driver of genetic progress was the selection of progeny-tested sires, but now it is the genomic preselection of young sires. This leads to a biased estimation of genetic progress by the traditional genetic evaluations. When these are used as input for multi-step genomic evaluations also they became distorted. The only long-term solution to maintain unbiasedness is to include the genomic information in evaluations. Although means for single-step evaluation models were introduced in 2010, they have not yet been implemented in large-scale national dairy evaluations. At first, single-step evaluations were hindered by computational cost. This has been largely solved, either by sparse presentations of the inverses of the genomic relationship (G) and pedigree relationship (A22) matrices of genotyped animals needed in the single-step evaluation models based on G (ssGBLUP), or by using the single-step marker models. Approaches for G-1 are the APY-G, where the relationships among "young" animals are completely determined by their relationship to the "core" animals, and single-step evaluations where the G-1 is replaced by a computational formula based on the structure of G (ssGTBLUP). The single-step marker models include the marker effects either directly, as effects in the statistical model, or indirectly, to generate genomic relationships among genotyped animals. Concurrently with development of the algorithm, computing resources have evolved in both availability of computer memory and speed. The problems actively studied now are the same for both of the single-step approaches (GBLUP and marker models). Convergence in iterative solving seems to get worse with an increasing number of genotypes. These problems are more pronounced with low-heritability traits and in multi-trait models with high genetic correlations among traits. Problems are also related to the unbalancedness of pedigrees and diverse genetic groups. In many cases, the problem can be solved by properly accounting for contributions of the genotyped animals to genetic groups. The standard solving approach is preconditioned conjugate gradient iteration, in which the convergence has been improved by better preconditioning matrices. Another difficulty to be considered is inflation in genomic evaluations of candidate animals; genomic models seem to overvalue the genomic information. The problem is usually smaller in single-step evaluations than in multi-step evaluations but is more difficult to mitigate by ad hoc adjustments.


Asunto(s)
Cruzamiento , Bovinos/genética , Genómica , Genotipo , Animales , Industria Lechera , Femenino , Masculino
8.
J Dairy Sci ; 103(6): 5170-5182, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32253036

RESUMEN

An SNP-BLUP model is computationally scalable even for large numbers of genotyped animals. When genetic variation cannot be completely captured by SNP markers, a more accurate model is obtained by fitting a residual polygenic effect (RPG) as well. However, inclusion of the RPG effect increases the size of the SNP-BLUP mixed model equations (MME) by the number of genotyped animals. Consequently, the calculation of model reliabilities requiring elements of the inverted MME coefficient matrix becomes more computationally challenging with increasing numbers of genotyped animals. We present a Monte Carlo (MC)-based sampling method to estimate the reliability of the SNP-BLUP model including the RPG effect, where the MME size depends on the number of markers and MC samples. We compared reliabilities calculated using different RPG proportions and different MC sample sizes in analyzing 2 data sets. Data set 1 (data set 2) contained 19,757 (222,619) genotyped animals, with 11,729 (50,240) SNP markers, and 231,186 (13.35 million) pedigree animals. Correlations between the correct and the MC-calculated reliabilities were above 98% even with 5,000 MC samples and an 80% RPG proportion in both data sets. However, more MC samples were needed to achieve a small maximum absolute difference and mean squared error, particularly when the RPG proportion exceeded 20%. The computing time for MC SNP-BLUP was shorter than for GBLUP. In conclusion, the MC-based approach can be an effective strategy for calculating SNP-BLUP model reliability with an RPG effect included.


Asunto(s)
Genoma/genética , Método de Montecarlo , Herencia Multifactorial/genética , Polimorfismo de Nucleótido Simple/genética , Animales , Cruzamiento , Genotipo , Modelos Genéticos , Linaje , Reproducibilidad de los Resultados
9.
Animal ; : 1-10, 2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32167447

RESUMEN

Inclusion of feed efficiency traits into the dairy cattle breeding programmes will require considering early lactation energy status to avoid deterioration in health and fertility of dairy cows. In this regard, energy status indicator (ESI) traits, for example, blood metabolites or milk fatty acids (FAs), are of interest. These indicators can be predicted from routine milk samples by mid-IR reflectance spectroscopy (MIR). In this study, we estimated genetic variation in ESI traits and their genetic correlation with female fertility in early lactation. The data consisted of 37 424 primiparous Nordic Red Dairy cows with milk test-day records between 8 and 91 days in milk (DIM). Routine test-day milk samples were analysed by MIR using previously developed calibration equations for blood plasma non-esterified FA (NEFA), milk FAs, milk beta-hydroxybutyrate (BHB) and milk acetone concentrations. Six ESI traits were considered and included: plasma NEFA concentration (mmol/l) either predicted by multiple linear regression including DIM, milk fat to protein ratio (FPR) and FAs C10:0, C14:0, C18:1 cis-9, C14:0 * C18:1 cis-9 (NEFAFA) or directly from milk MIR spectra (NEFAMIR), C18:1 cis-9 (g/100 ml milk), FPR, BHB (mmol/l milk) and acetone (mmol/l milk). The interval from calving to first insemination (ICF) was considered as the fertility trait. Data were analysed using linear mixed models. Heritability estimates varied during the first three lactation months from 0.13 to 0.19, 0.10 to 0.17, 0.09 to 0.14, 0.07 to 0.10, 0.13 to 0.17 and 0.13 to 0.18 for NEFAMIR, NEFAFA, C18:1 cis-9, FPR, milk BHB and acetone, respectively. Genetic correlations between all ESI traits and ICF were from 0.18 to 0.40 in the first lactation period (8 to 35 DIM), in general somewhat lower (0.03 to 0.43) in the second period (36 to 63 DIM) and decreased clearly (-0.02 to 0.19) in the third period (64 to 91 DIM). Our results indicate that genetic variation in energy status of cows in early lactation can be determined using MIR-predicted indicators. In addition, the markedly lower genetic correlation between ESI traits and fertility in the third lactation month indicated that energy status should be determined from the first test-day milk samples during the first 2 months of lactation.

10.
J Dairy Sci ; 102(9): 7904-7916, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31301831

RESUMEN

The inclusion of feed intake and efficiency traits in dairy cow breeding goals can lead to increased risk of metabolic stress. An easy and inexpensive way to monitor postpartum energy status (ES) of cows is therefore needed. Cows' ES can be estimated by calculating the energy balance from energy intake and output and predicted by indicator traits such as change in body weight (ΔBW), change in body condition score (ΔBCS), milk fat:protein ratio (FPR), or milk fatty acid (FA) composition. In this study, we used blood plasma nonesterified fatty acids (NEFA) concentration as a biomarker for ES. We determined associations between NEFA concentration and ES indicators and evaluated the usefulness of body and milk traits alone, or together, in predicting ES of the cow. Data were collected from 2 research herds during 2013 to 2016 and included 137 Nordic Red dairy cows, all of which had a first lactation and 59 of which also had a second lactation. The data included daily body weight, milk yield, and feed intake and monthly BCS. Plasma samples for NEFA were collected twice in lactation wk 2 and 3 and once in wk 20. Milk samples for analysis of fat, protein, lactose, and FA concentrations were taken on the blood sampling days. Plasma NEFA concentration was higher in lactation wk 2 and 3 than in wk 20 (0.56 ± 0.30, 0.43 ± 0.22, and 0.13 ± 0.06 mmol/L, respectively; all means ± standard deviation). Among individual indicators, C18:1 cis-9 and the sum of C18:1 in milk had the highest correlations (r = 0.73) with NEFA. Seven multiple linear regression models for NEFA prediction were developed using stepwise selection. Of the models that included milk traits (other than milk FA) as well as body traits, the best fit was achieved by a model with milk yield, FPR, ΔBW, ΔBCS, FPR × ΔBW, and days in milk. The model resulted in a cross-validation coefficient of determination (R2cv) of 0.51 and a root mean squared error (RMSE) of 0.196 mmol/L. When only milk FA concentrations were considered in the model, NEFA prediction was more accurate using measurements from evening milk than from morning milk (R2cv = 0.61 vs. 0.53). The best model with milk traits contained FPR, C10:0, C14:0, C18:1 cis-9, C18:1 cis-9 × C14:0, and days in milk (R2cv = 0.62; RMSE = 0.177 mmol/L). The most advanced model using both milk and body traits gave a slightly better fit than the model with only milk traits (R2cv = 0.63; RMSE = 0.176 mmol/L). Our findings indicate that ES of cows in early lactation can be monitored with moderately high accuracy by routine milk measurements.


Asunto(s)
Bovinos/fisiología , Ingestión de Energía , Metabolismo Energético , Ácidos Grasos/análisis , Proteínas de la Leche/análisis , Leche/química , Animales , Peso Corporal , Cruzamiento , Ácidos Grasos no Esterificados/análisis , Femenino , Lactancia , Lactosa/análisis , Leche/metabolismo , Fenotipo , Periodo Posparto
11.
J Dairy Sci ; 102(8): 7248-7262, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31155258

RESUMEN

Currently, routine recordings of dry matter intake (DMI) in commercial herds are practically nonexistent. Recording DMI from commercial herds is a prerequisite for the inclusion of feed efficiency (FE) traits in dairy cattle breeding goals. To develop future on-farm phenotyping strategies, recording strategies that are low cost and less demanding logistically and that give relatively accurate estimates of the animal's genetic merit are therefore needed. The objectives of this study were (1) to estimate genetic parameters for daily DMI and FE traits and use the estimated parameters to simulate daily DMI phenotypes under different DMI recording scenarios (SCN) and (2) to use the simulated data to estimate for different scenarios the associated reliability of estimated breeding value and accuracies of genomic prediction for varying sizes of reference populations. Five on-farm daily DMI recording scenarios were simulated: once weekly (SCN1), once monthly (SCN2), every 2 mo (SCN3), every 3 mo (SCN4), and every 4 mo (SCN5). To estimate reliability of estimated breeding values, DMI and FE observations and true breeding values were simulated based on variance components estimated for daily observations of Nordic Red cows. To emulate realistic on-farm recording, 5 data set replicates, each with 36,037 DMI and FE records, were simulated for real pedigree and data structure of 789 Holstein cows. Observations for the 5 DMI recording scenarios were generated by discarding data in a step-wise manner from the full simulated data per the scenario's definitions. For each of these scenarios, reliabilities were calculated as correlation between the true and estimated breeding values. Variance components and genetic parameters were estimated for daily DMI, residual feed intake (RFI), and energy conversion efficiency (ECE) fitting the random regression model. Data for variance components were from 227 primiparous Nordic Red dairy cows covering 8 to 280 d in milk. Lactation-wise heritability for DMI, RFI, and ECE was 0.33, 0.12, and 0.32, respectively, and daily heritability estimates during lactation ranged from 0.18 to 0.45, 0.08 to 0.32, and 0.08 to 0.45 for DMI, RFI, and ECE, respectively. Genetic correlations for DMI between different stages of lactation ranged from -0.50 to 0.99. The comparison of different on-farm DMI recording scenarios indicated that adopting a less-frequent recording scenario (SCN3) gave a similar level of accuracy as SCN1 when 17 more daughters are recorded per sire over the 46 needed for SCN1. Such a strategy is less demanding logistically and is low cost because fewer observations need to be collected per animal. The accuracy of genomic predictions associated with the 5 recording scenarios indicated that setting up a relatively larger reference population and adopting a less-frequent DMI sampling scenario (e.g., SCN3) is promising. When the same reference population size was considered, the genomic prediction accuracy of SCN3 was only 5.0 to 7.0 percentage points lower than that for the most expensive DMI recording strategy (SCN1). We concluded that DMI recording strategies that are sparse in terms of records per cow but with slightly more cows recorded per sire are advantageous both in genomic selection and in traditional progeny testing schemes when accuracy, logistics, and cost implications are considered.


Asunto(s)
Bovinos/fisiología , Ingestión de Alimentos/genética , Genómica , Leche/metabolismo , Animales , Cruzamiento , Bovinos/genética , Femenino , Lactancia , Masculino , Fenotipo , Registros/veterinaria , Análisis de Regresión , Reproducibilidad de los Resultados
12.
Animal ; 13(2): 248-255, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29954471

RESUMEN

High-yielding cows may suffer from negative energy balance during early lactation, which can lead to ketosis and delayed ability of returning to cyclicity after calving. Fast recovery after calving is essential when breeding for improved fertility. Traditionally used fertility traits, such as the interval from calving to first insemination (CFI), have low heritabilities and are highly influenced by management decisions. Herd Navigator™ management program samples and analyses milk progesterone and ß-hydroxybutyrate (BHB) automatically during milking. In this study, the genetic parameters of endocrine fertility traits (measured from milk progesterone) and hyperketonemia (measured from milk BHB) in early lactation were evaluated and compared with traditional fertility traits (CFI, interval from calving to the last insemination and interval from first to last insemination) and the milk yield in red dairy cattle herds in Finland. Data included observations from 14 farms from 2014 to 2017. Data were analyzed with linear animal models using DMU software and analyses were done for first parity cows. Heritability estimates for traditional fertility traits were low and varied between 0.03 and 0.07. Estimated heritabilities for endocrine fertility traits (interval from calving to the first heat (CFH) and commencement of luteal activity (C-LA)) were higher than for traditional fertility traits (0.19 to 0.33). Five slightly different hyperketonemia traits divided into two or three classes were studied. Linear model heritability estimates for hyperketonemia traits were low, however, when the threshold model was used for binary traits the estimates became slightly higher (0.07 to 0.15). Genetic correlation between CFH and C-LA for first parity cows was high (0.97) as expected since traits are quite similar. Moderate genetic correlations (0.47 to 0.52) were found between the endocrine fertility traits and early lactation milk yield. Results suggest that the data on endocrine fertility traits measured by automatic systems is a promising tool for improving fertility, specifically when more data is available. For hyperketonemia traits, dividing values into three classes instead of two seemed to work better. Based on the current study and previous studies, where higher heritabilities have been found for milk BHB traits than for clinical ketosis, milk BHB traits are a promising indicator trait for resistance to ketosis and should be studied more. It is important that this kind of data from automatic devices is made available to recording and breeding organizations in the future.


Asunto(s)
Bovinos/genética , Fertilidad/genética , Leche/metabolismo , Animales , Cruzamiento , Bovinos/fisiología , Glándulas Endocrinas/fisiología , Femenino , Finlandia , Lactancia , Leche/química , Fenotipo
13.
J Dairy Sci ; 101(11): 10082-10088, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30146284

RESUMEN

Single-step genomic prediction models utilizing both genotyped and nongenotyped animals are likely to become the prevailing tool in genetic evaluations of livestock. Various single-step prediction models have been proposed, based either on estimation of individual marker effects or on direct prediction via a genomic relationship matrix. In this study, a classical pedigree-based animal model, a regular single-step genomic BLUP (ssGBLUP) model, algorithm for proven and young (APY) with 2 strategies for choosing core animals, and a single-step Bayesian regression (ssBR) model were compared for 305-d production traits (milk, fat, protein) in the Finnish red dairy cattle population. A residual polygenic effect with 10% of total genetic variance was included in the single-step models to reduce inflation of genomic predictions. Validation reliability was calculated as the squared Pearson correlation coefficient between genomically enhanced breeding value (GEBV) and yield deviation for masked records for 2,056 validation cows from the last year in the data set investigated. The results showed that gains of 0.02 to 0.04 on validation reliability were achieved by using single-step methods compared with the classical animal model. The regular ssGBLUP model and ssBR model with an extra polygenic effect yielded the same results. The APY methods yielded similar reliabilities as the regular ssGBLUP and ssBR. Exact prediction error variance of GEBV could be obtained by ssBR to avoid any approximation methods used for ssGBLUP when inversion left-hand side of mixed model equations is computationally infeasible for large data sets.


Asunto(s)
Algoritmos , Bovinos/genética , Genoma/genética , Genómica , Leche/metabolismo , Animales , Teorema de Bayes , Cruzamiento , Femenino , Finlandia , Genotipo , Linaje , Fenotipo , Reproducibilidad de los Resultados
14.
J Dairy Sci ; 101(5): 4245-4258, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29501343

RESUMEN

The objective of this study was to evaluate the accuracy of fecal output measurements using polyethylene glycol (PEG) as an external marker determined by near-infrared reflectance spectroscopy. In addition, the accuracy of dry matter intake predictions based on fecal output and digestibility estimated using an internal marker [indigestible neutral detergent fiber (iNDF)] was assessed. The experiment was conducted using 6 lactating dairy cows fed 2 different diets. Polyethylene glycol was administered twice daily into the rumen and the diurnal pattern of fecal concentrations and recovery in feces were determined. To evaluate the effects of alternative marker administration and sampling schemes on fecal output estimates, the passage kinetics of PEG in the digestive tract of dairy cows was determined and used for simulation models. The results indicate that PEG was completely recovered in feces and, thus, fecal output was accurately estimated using PEG. Good agreement between measured and predicted dry matter intake (standard error of prediction = 0.86 kg/d, R2 = 0.81) indicates good potential to determine feed intake using PEG in combination with iNDF. The precision of cow-specific digestibility estimates based on iNDF was unsatisfactory, but for a group of cows iNDF provided an accurate estimate of dry matter digestibility. The current study indicated that, to overcome inherent day-to-day variation in feed intake and fecal output, the minimum of 4 fecal spot samples should be collected over 4 d. Preferably, these samples should be distributed evenly over the 12-h marker administration interval to compensate for the circadian variation in fecal PEG concentrations.


Asunto(s)
Bovinos/metabolismo , Heces/química , Polietilenglicoles/análisis , Alimentación Animal/análisis , Animales , Biomarcadores/análisis , Dieta/veterinaria , Fibras de la Dieta/análisis , Fibras de la Dieta/metabolismo , Digestión , Femenino , Lactancia , Polietilenglicoles/metabolismo , Rumen/metabolismo , Espectroscopía Infrarroja Corta/métodos
15.
J Anim Breed Genet ; 135(2): 107-115, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29484731

RESUMEN

The number of genotyped animals has increased rapidly creating computational challenges for genomic evaluation. In animal model BLUP, candidate animals without progeny and phenotype do not contribute information to the evaluation and can be discarded. In theory, genotyped candidate animal without progeny can bring information into single-step BLUP (ssGBLUP) and affect the estimation of other breeding values. We studied the effect of including or excluding genomic information of culled bull calves on genomic breeding values (GEBV) from ssGBLUP. In particular, GEBVs of genotyped bulls with daughters and GEBVs of young bulls selected into AI to be progeny tested (test bulls) were studied. The ssGBLUP evaluation was computed using Nordic test day (TD) model and TD data for the Nordic Red Dairy Cattle. The results indicate that genomic information of culled bull calves does not affect the GEBVs of progeny tested reference animals, but if genotypes of the culled bulls are used in the TD ssGBLUP, the genetic trend in the test bulls is considerably higher compared to the situation when genomic information of the culled bull calves is excluded. It seems that by discarding genomic information of culled bull calves without progeny, upward bias of GEBVs of test bulls is reduced.


Asunto(s)
Cruzamiento , Bovinos/genética , Industria Lechera/métodos , Genómica/métodos , Modelos Genéticos , Selección Genética , Animales , Femenino , Genoma , Genotipo , Masculino , Linaje , Fenotipo
16.
J Dairy Sci ; 101(5): 4268-4278, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29477533

RESUMEN

The main objective of this study was to assess the genetic differences in metabolizable energy efficiency and efficiency in partitioning metabolizable energy in different pathways: maintenance, milk production, and growth in primiparous dairy cows. Repeatability models for residual energy intake (REI) and metabolizable energy intake (MEI) were compared and the genetic and permanent environmental variations in MEI were partitioned into its energy sinks using random regression models. We proposed 2 new feed efficiency traits: metabolizable energy efficiency (MEE), which is formed by modeling MEI fitting regressions on energy sinks [metabolic body weight (BW0.75), energy-corrected milk, body weight gain, and body weight loss] directly; and partial MEE (pMEE), where the model for MEE is extended with regressions on energy sinks nested within additive genetic and permanent environmental effects. The data used were collected from Luke's experimental farms Rehtijärvi and Minkiö between 1998 and 2014. There were altogether 12,350 weekly MEI records on 495 primiparous Nordic Red dairy cows from wk 2 to 40 of lactation. Heritability estimates for REI and MEE were moderate, 0.33 and 0.26, respectively. The estimate of the residual variance was smaller for MEE than for REI, indicating that analyzing weekly MEI observations simultaneously with energy sinks is preferable. Model validation based on Akaike's information criterion showed that pMEE models fitted the data even better and also resulted in smaller residual variance estimates. However, models that included random regression on BW0.75 converged slowly. The resulting genetic standard deviation estimate from the pMEE coefficient for milk production was 0.75 MJ of MEI/kg of energy-corrected milk. The derived partial heritabilities for energy efficiency in maintenance, milk production, and growth were 0.02, 0.06, and 0.04, respectively, indicating that some genetic variation may exist in the efficiency of using metabolizable energy for different pathways in dairy cows.


Asunto(s)
Bovinos/genética , Bovinos/metabolismo , Metabolismo Energético , Animales , Peso Corporal , Dieta/veterinaria , Ingestión de Energía , Femenino , Lactancia , Leche/metabolismo , Paridad , Fenotipo , Embarazo
17.
J Dairy Sci ; 101(4): 3155-3163, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29397162

RESUMEN

The aim of this simulation study was to investigate whether it is possible to detect the effect of genomic preselection on Mendelian sampling (MS) means or variances obtained by the MS validation test. Genomic preselection of bull calves is 1 additional potential source of bias in international evaluations unless adequately accounted for in national evaluations. Selection creates no bias in traditional breeding value evaluation if the data of all animals are included. However, this is not the case with genomic preselection, as it excludes culled bulls. Genomic breeding values become biased if calculated using a multistep procedure instead of, for example, a single-step method. Currently, about 60% of the countries participating in international bull evaluations have already adopted genomic selection in their breeding schemes. The data sent for multiple across-country evaluation can, therefore, be very heterogeneous, and a proper validation method is needed to ensure a fair comparison of the bulls included in international genetic evaluations. To study the effect of genomic preselection, we generated a total of 50 replicates under control and genomic preselection schemes using the structures of the real data and pedigree from a medium-size cow population. A genetic trend of 15% of the genetic standard deviation was created for both schemes. In carrying out the analyses, we used 2 different heritabilities: 0.25 and 0.10. From the start of genomic preselection, all bulls were genomically preselected. Their MS deviations were inflated with a value corresponding to selection of the best 10% of genomically tested bull calves. For cows, the MS deviations were unaltered. The results revealed a clear underestimation of bulls' breeding values (BV) after genomic preselection started, as well as a notable deviation from zero both in true and estimated MS means. The software developed recently for the MS validation test already produces yearly MS means, and they can be used to devise an appropriate test. Mean squared true MS of genomically preselected bulls was clearly inflated. After correcting for the simulated preselection bias, the true genetic variance was smaller than the parametric value used to simulate BV, and also below the variance based on the estimated BV. Based on this study, the lower the trait's heritability, the stronger the bias in estimated BV and MS means and variances. Daughters of genomically preselected bulls had higher true and estimated BV compared with the control scheme and only slightly elevated MS means, but no effect on genetic variances was observed.


Asunto(s)
Cruzamiento , Bovinos/genética , Variación Genética , Genoma , Animales , Femenino , Masculino , Modelos Genéticos
18.
J Dairy Sci ; 101(3): 2187-2198, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29290441

RESUMEN

Experiences from international sire evaluation indicate that the multiple-trait across-country evaluation method is sensitive to changes in genetic variance over time. Top bulls from birth year classes with inflated genetic variance will benefit, hampering reliable ranking of bulls. However, none of the methods available today enable countries to validate their national evaluation models for heterogeneity of genetic variance. We describe a new validation method to fill this gap comprising the following steps: estimating within-year genetic variances using Mendelian sampling and its prediction error variance, fitting a weighted linear regression between the estimates and the years under study, identifying possible outliers, and defining a 95% empirical confidence interval for a possible trend in the estimates. We tested the specificity and sensitivity of the proposed validation method with simulated data using a real data structure. Moderate (M) and small (S) size populations were simulated under 3 scenarios: a control with homogeneous variance and 2 scenarios with yearly increases in phenotypic variance of 2 and 10%, respectively. Results showed that the new method was able to estimate genetic variance accurately enough to detect bias in genetic variance. Under the control scenario, the trend in genetic variance was practically zero in setting M. Testing cows with an average birth year class size of more than 43,000 in setting M showed that tolerance values are needed for both the trend and the outlier tests to detect only cases with a practical effect in larger data sets. Regardless of the magnitude (yearly increases in phenotypic variance of 2 or 10%) of the generated trend, it deviated statistically significantly from zero in all data replicates for both cows and bulls in setting M. In setting S with a mean of 27 bulls in a year class, the sampling error and thus the probability of a false-positive result clearly increased. Still, overall estimated genetic variance was close to the parametric value. Only rather strong trends in genetic variance deviated statistically significantly from zero in setting S. Results also showed that the new method was sensitive to the quality of the approximated reliabilities of breeding values used in calculating the prediction error variance. Thus, we recommend that only animals with a reliability of Mendelian sampling higher than 0.1 be included in the test and that low heritability traits be analyzed using bull data sets only.


Asunto(s)
Cruzamiento/métodos , Bovinos/genética , Variación Genética/genética , Animales , Modelos Lineales , Masculino , Modelos Genéticos , Fenotipo , Densidad de Población , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
19.
J Anim Sci ; 95(9): 3822-3832, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28992029

RESUMEN

The objective of the present study was to estimate genetic co-variance parameters pertaining to live weight, feed intake, and 2 efficiency traits (i.e., residual feed intake and residual daily gain) in a population of pigs over a defined growing phase using Legendre polynomial equations. The data set used consisted of 51,893 live weight records and 903,436 feed intake, residual feed intake (defined as the difference between an animal's actual feed intake and its expected feed intake), and residual daily gain (defined as the difference between an animal's actual growth rate and its expected growth rate) records from 10,201 growing pigs. Genetic co-variance parameters for all traits were estimated using random regression Legendre polynomials. Daily heritability estimates for live weight ranged from 0.25 ± 0.04 (d 73) to 0.50 ± 0.03 (d 122). Low to moderate heritability estimates were evident for feed intake, ranging from 0.07 ± 0.03 (d 66) to 0.25 ± 0.02 (d 170). The estimated heritability for residual feed intake was generally lower than those of both live weight and feed intake and ranged from 0.04 ± 0.01 (d 96) to 0.17 ± 0.02 (d 159). The heritability for feed intake and residual feed intake increased in the early stages of the test period and subsequently sharply declined, coinciding with older ages. Heritability estimates for residual daily gain ranged from 0.26 ± 0.03 (d 188) to 0.42 ± 0.03 (d 101). Genetic correlations within trait were strongest between adjacent ages but weakened as the interval between ages increased; however, the genetic correlations within all traits tended to strengthen between the extremes of the trajectory. Moderate to strong genetic correlations were evident among live weight, feed intake, and the efficiency traits, particularly in the early stage of the trial period (d 66 to 86), but weakened with age. Results from this study could be implemented into the national genetic evaluation for pigs, providing comprehensive information on the profile of growth and efficiency throughout the growing period of the animal's life, thus helping producers identify genetically superior animals.


Asunto(s)
Alimentación Animal/análisis , Ingestión de Alimentos/genética , Variación Genética , Porcinos/genética , Aumento de Peso/genética , Animales , Femenino , Estudios Longitudinales , Masculino , Fenotipo , Análisis de Regresión , Porcinos/crecimiento & desarrollo , Porcinos/fisiología
20.
J Anim Breed Genet ; 134(3): 264-274, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28508482

RESUMEN

Single-step genomic BLUP (ssGBLUP) requires a dense matrix of the size equal to the number of genotyped animals in the coefficient matrix of mixed model equations (MME). When the number of genotyped animals is high, solving time of MME will be dominated by this matrix. The matrix is the difference of two inverse relationship matrices: genomic (G) and pedigree (A22 ). Different approaches were used to ease computations, reduce computing time and improve numerical stability. Inverse of A22 can be computed as A22-1=A22-A21A11-1A12 where Aij , i, j = 1,2, are sparse sub-matrices of A-1 , and numbers 1 and 2 refer to non-genotyped and genotyped animals, respectively. Inversion of A11 was avoided by three alternative approaches: iteration on pedigree (IOP), matrix iteration in memory (IM), and Cholesky decomposition by CHOLMOD library (CM). For the inverse of G, the APY (algorithm for proven and young) approach using Cholesky decomposition was formulated. Different approaches to choose the APY core were compared. These approaches were tested on a joint genetic evaluation of the Nordic Holstein cattle for fertility traits and had 81,031 genotyped animals. Computing time per iteration was 1.19 min by regular ssGBLUP, 1.49 min by IOP, 1.32 min by IM, and 1.21 min by CM. In comparison with the regular ssGBLUP, the total computing time decreased due to omitting the inversion of the relationship matrix A22 . When APY used 10,000 (20,000) animals in the core, the computing time per iteration was at most 0.44 (0.63) min by all the APY alternatives. A core of 10,000 animals in APY gave GEBVs sufficiently close to those by regular ssGBLUP but needed only 25% of the total computing time. The developed approaches to invert the two relationship matrices are expected to allow much higher number of genotyped animals than was used in this study.


Asunto(s)
Algoritmos , Fertilidad , Genómica/métodos , Modelos Lineales , Modelos Genéticos , Animales , Bovinos , Simulación por Computador , Femenino , Genotipo , Masculino , Linaje , Selección Artificial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...