Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Sci Rep ; 13(1): 15763, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737478

RESUMEN

Exploiting synthetic lethality is a promising strategy for developing targeted cancer therapies. However, identifying clinically significant synthetic lethal (SL) interactions among a large number of gene combinations is a challenging computational task. In this study, we developed the SL-scan pipeline based on metabolic network modeling to discover SL interaction. The SL-scan pipeline identifies the association between simulated Flux Balance Analysis knockout scores and mutation data across cancer cell lines and predicts putative SL interactions. We assessed the concordance of the SL pairs predicted by SL-scan with those of obtained from analysis of the CRISPR, shRNA, and PRISM datasets. Our results demonstrate that the SL-scan pipeline outperformed existing SL prediction approaches based on metabolic networks in identifying SL pairs in various cancers. This study emphasizes the importance of integrating multiple data sources, particularly mutation data, when identifying SL pairs for targeted cancer therapies. The findings of this study may lead to the development of novel targeted cancer therapies.


Asunto(s)
Traumatismos Craneocerebrales , Neoplasias , Humanos , Neoplasias/genética , Línea Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Redes y Vías Metabólicas
3.
PLoS One ; 18(7): e0288134, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37410787

RESUMEN

In biology, homeostasis is a central cellular phenomenon that plays a crucial role in survival. The central nervous system (CNS) is controlled by exquisitely sensitive homeostatic mechanisms when facing inflammatory or pathological insults. Mast cells and microglia play a crucial role in CNS homeostasis by eliminating damaged or unnecessary neurons and synapses. Therefore, decoding molecular circuits that regulate CNS homeostasis may lead to more effective therapeutic strategies that specifically target particular subsets for better therapy of Alzheimer's disease (AD). Based on a computational analysis of a microarray dataset related to AD, the H2-Ob gene was previously identified as a potential modulator of the homeostatic balance between mast cells and microglia. Specifically, it plays such a role in the presence of a three-way gene interaction in which the H2-Ob gene acts as a switch in the co-expression relationship of two genes, Csf1r and Milr1. Therefore, the importance of the H2-Ob gene as a potential therapeutic target for AD has led us to experimentally validate this relationship using the quantitative real-time PCR technique. In the experimental investigation, we confirmed that a change in the expression levels of the RT1-DOb gene (the rat ortholog of murine H2-Ob) can switch the co-expression relationship between Csf1r and Milr1. Furthermore, since the RT1-DOb gene is up-regulated in AD, the mentioned triplets might be related to triggering AD.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Ratas , Animales , Enfermedad de Alzheimer/patología , Microglía/metabolismo , Genes de Cambio , Mastocitos/metabolismo , Sistema Nervioso Central/metabolismo , Receptores del Factor Estimulante de Colonias/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo
4.
Mol Biotechnol ; 65(9): 1508-1517, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36658293

RESUMEN

Cellular pool of malonyl-CoA in Escherichia coli is small, which impedes its utility for overproduction of natural products such as phenylpropanoids, polyketides, and flavonoids. In this study, we report the use of a new metabolic pathway to increase the malonyl-CoA concentration as a limiting metabolite in E. coli. For this purpose, the malonate/sodium symporter from Malonomonas rubra, and malonyl-CoA synthetase (MCS) from Bradyrhizobium japonicum were co-expressed in E. coli. This new pathway allows the cell to actively import malonate from the culture medium and to convert malonate and CoA to malonyl-CoA via an ATP-dependent ligation reaction. HPLC analysis confirmed elevated levels of malonyl-CoA and (2S)-naringenin as a malonyl-CoA-dependent metabolite, in E. coli. A 6.8-fold and more than 3.5-fold increase in (2S)-naringenin production were achieved in the engineered host in comparison with non-engineered E. coli and previously reported passive transport MatBMatC pathway, respectively. This observation suggests that using active transporters of malonate not only improves malonyl-CoA-dependent production but also makes it possible to harness low concentrations of malonate in culture media.


Asunto(s)
Escherichia coli , Malonil Coenzima A , Escherichia coli/genética , Escherichia coli/metabolismo , Malonil Coenzima A/metabolismo , Redes y Vías Metabólicas/genética , Flavonoides/metabolismo , Malonatos/metabolismo , Ingeniería Metabólica
5.
Tissue Eng Part B Rev ; 29(1): 47-61, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35754335

RESUMEN

Mesenchymal stromal cells (MSCs) are considered promising candidates for regenerative medicine applications. Their clinical performance postimplantation, however, has been disappointing. This lack of therapeutic efficacy is most likely due to suboptimal formulations of MSC-containing material constructs. Tissue engineers, therefore, have developed strategies addressing/incorporating optimized cell, microenvironmental, biochemical, and biophysical cues/stimuli to enhance MSC-containing construct performance. Such approaches have had limited success because they overlooked that maintenance of MSC viability after implantation for a sufficient time is necessary for MSCs to develop their regenerative functionalities fully. Following a brief overview of glucose metabolism and regulation in MSCs, the present literature review includes recent pertinent findings that challenge old paradigms and notions. We hereby report that glucose is the primary energy substrate for MSCs, provides precursors for biomass generation, and regulates MSC functions, including proliferation and immunosuppressive properties. More importantly, glucose metabolism is central in controlling in vitro MSC expansion, in vivo MSC viability, and MSC-mediated angiogenesis postimplantation when addressing MSC-based therapies. Meanwhile, in silico models are highlighted for predicting the glucose needs of MSCs in specific regenerative medicine settings, which will eventually enable tissue engineers to design viable and potent tissue constructs. This new knowledge should be incorporated into developing novel effective MSC-based therapies. Impact statement The clinical use of mesenchymal stromal cells (MSCs) has been unsatisfactory due to the inability of MSCs to survive and be functional after implantation for sufficient periods to mediate directly or indirectly a successful regenerative tissue response. The present review summarizes the endeavors in the past, but, most importantly, reports the latest findings that elucidate underlying mechanisms and identify glucose metabolism as the crucial parameter in MSC survival and the subsequent functions pertinent to new tissue formation of importance in tissue regeneration applications. These latest findings justify further basic research and the impetus for developing new strategies to improve the modalities and efficacy of MSC-based therapies.


Asunto(s)
Células Madre Mesenquimatosas , Humanos , Células Madre Mesenquimatosas/metabolismo , Ingeniería de Tejidos , Medicina Regenerativa
6.
Biotechnol Lett ; 44(10): 1231-1242, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36074282

RESUMEN

PURPOSE: Escherichia coli is an attractive and cost-effective cell factory for producing recombinant proteins such as single-chain variable fragments (scFvs). AntiEpEX-scFv is a small antibody fragment that has received considerable attention for its ability to target the epithelial cell adhesion molecule (EpCAM), a cancer-associated biomarker of solid tumors. Due to its metabolic burden, scFv recombinant expression causes a remarkable decrease in the maximum specific growth rate of the scFv-producing strain. In the present study, a genome-scale metabolic model (GEM)-guided engineering strategy is proposed to identify gene targets for improved antiEpEX-scFv production in E. coli. METHODS: In this study, a genome-scale metabolic model of E. coli (iJO1366) and a metabolic modeling tool (FVSEOF) were employed to find appropriate genes to be amplified in order to improve the strain for incresed production of antiEpEX-scFv. To validate the model predictions, one target gene was overexpressed in the parent strain Escherichia coli BW25113 (DE3). RESULTS: For improving scFv production, we applied the FVSEOF method to identify a number of potential genetic engineering targets. These targets were found to be localized in the glucose uptake system and pentose phosphate pathway. From the predicted targets, the glk gene encoding glucokinase was chosen to be overexpressed in the parent strain Escherichia coli BW25113 (DE3). By overexpressing glk, the growth capacity of the recombinant E. coli strain was recovered. Moreover, the engineered strain with glk overexpression successfully led to increased scFv production. CONCLUSION: The genome-scale metabolic modeling can be considered for the improvement of the production of other recombinant proteins.


Asunto(s)
Escherichia coli , Ingeniería Metabólica , Anticuerpos de Cadena Única , Biomarcadores/metabolismo , Molécula de Adhesión Celular Epitelial/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glucoquinasa , Glucosa/metabolismo , Ingeniería Metabólica/métodos , Proteínas Recombinantes/metabolismo , Anticuerpos de Cadena Única/biosíntesis , Anticuerpos de Cadena Única/metabolismo
7.
Mol Omics ; 18(4): 328-335, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35081193

RESUMEN

Genome-scale metabolic models (GEMs) have enabled researchers to perform systems-level studies of living organisms. Flux balance analysis (FBA), as a constraint-based technique, enables computation of reaction fluxes and prediction of the metabolic phenotypes of a cell under a set of specified conditions. The quality of a GEM is important for obtaining accurate predictions. In this study, we evaluated the quality of five available GEMs for Arabidopsis thaliana from various points of views. To do this, we inspected some of their important features, including the number of reactions with well-defined gene-protein-reaction rules, number of blocked reactions, mass-unbalanced reactions, prediction accuracy in the simulation of key metabolic functions and existence of erroneous energy generating cycles (EGCs). All of the models were found to include some mass-unbalanced reactions. Moreover, four out of five models were found to include EGCs. However, Aracell includes the maximum number of blocked reactions, which suggests the presence of several incomplete pathways. These results clearly show that simulation by using these models may result in erroneous predictions and all of the publicly available GEMs for A. thaliana require extensive curations before being applied in practice.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Simulación por Computador , Genoma , Péptidos y Proteínas de Señalización Intracelular , Modelos Biológicos
8.
PLoS One ; 16(12): e0261267, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34905555

RESUMEN

Advances in genome-scale metabolic models (GEMs) and computational drug discovery have caused the identification of drug targets at the system-level and inhibitors to combat bacterial infection and drug resistance. Here we report a structural systems pharmacology framework that integrates the GEM and structure-based virtual screening (SBVS) method to identify drugs effective for Escherichia coli infection. The most complete genome-scale metabolic reconstruction integrated with protein structures (GEM-PRO) of E. coli, iML1515_GP, and FDA-approved drugs have been used. FBA was performed to predict drug targets in silico. The 195 essential genes were predicted in the rich medium. The subsystems in which a significant number of these genes are involved are cofactor, lipopolysaccharide (LPS) biosynthesis that are necessary for cell growth. Therefore, some proteins encoded by these genes are responsible for the biosynthesis and transport of LPS which is the first line of defense against threats. So, these proteins can be potential drug targets. The enzymes with experimental structure and cognate ligands were selected as final drug targets for performing the SBVS method. Finally, we have suggested those drugs that have good interaction with the selected proteins as drug repositioning cases. Also, the suggested molecules could be promising lead compounds. This framework may be helpful to fill the gap between genomics and drug discovery. Results show this framework suggests novel antibacterials that can be subjected to experimental testing soon and it can be suitable for other pathogens.


Asunto(s)
Antibacterianos/farmacología , Reposicionamiento de Medicamentos/métodos , Proteínas de Escherichia coli/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Simulación por Computador , Descubrimiento de Drogas , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genes Esenciales , Genómica , Redes y Vías Metabólicas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana/métodos , Farmacología en Red , Relación Estructura-Actividad
9.
NAR Genom Bioinform ; 3(1): lqaa107, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33575649

RESUMEN

Metagenomics is the study of genomic DNA recovered from a microbial community. Both assembly-based and mapping-based methods have been used to analyze metagenomic data. When appropriate gene catalogs are available, mapping-based methods are preferred over assembly based approaches, especially for analyzing the data at the functional level. In this study, we introduce CAMAMED as a composition-aware mapping-based metagenomic data analysis pipeline. This pipeline can analyze metagenomic samples at both taxonomic and functional profiling levels. Using this pipeline, metagenome sequences can be mapped to non-redundant gene catalogs and the gene frequency in the samples are obtained. Due to the highly compositional nature of metagenomic data, the cumulative sum-scaling method is used at both taxa and gene levels for compositional data analysis in our pipeline. Additionally, by mapping the genes to the KEGG database, annotations related to each gene can be extracted at different functional levels such as KEGG ortholog groups, enzyme commission numbers and reactions. Furthermore, the pipeline enables the user to identify potential biomarkers in case-control metagenomic samples by investigating functional differences. The source code for this software is available from https://github.com/mhnb/camamed. Also, the ready to use Docker images are available at https://hub.docker.com.

10.
J Biomol Struct Dyn ; 39(11): 3900-3911, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32615050

RESUMEN

In present work, we describe a methodology for prediction of an enzymatic reaction for which no experimental data are available except for a gene sequence. As a challenging case, we have developed the method for identifying the putative substrates of monoester phosphatases, commonly known as acid phosphatase enzymes, which have no strong substrate specificity. Finding a preferable substrate for each one is an important task to unravel pathways involved in plant phosphate metabolism. Having used an Arabidopsis thaliana haloacid dehalogenase (HAD)-related acid phosphatases, HRP9, with an experimentally known structure and preferred substrate as an instance, we firstly predicted the 3 D-structure of HRP1 for subsequent analysis. Then, molecular docking was used to find the best protein interaction with a ligand existing in a set of possible substrates compiled from genome scale metabolic networks of A. thaliana based on binding energy, binding mode as well as the distance between phosphoric ester and cofactor, Mg2+, localized in the active site of HRP1. Molecular dynamics simulation ratified stable protein-ligand complex model. Our analysis predicted HRP1 preferably bind to pyridoxamine-5'-phosphate (PMP). Thus, it is deduced that the conversion of PMP to pyridoxamine must be catalyzed by HRP1. This procedure is expected to make a reliable pipeline to predict the enzymatic reactions catalyzed by acid phosphatases. Taken as a whole, it could be applicable for discovery of the interacting ligands, inhibitors as well as interacting proteins which limits lab works or used for gap filling in biosystems.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fosfatasa Ácida , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Catálisis , Simulación del Acoplamiento Molecular , Especificidad por Sustrato
11.
Biotechnol Lett ; 43(1): 73-87, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33040240

RESUMEN

OBJECTIVE: Chinese hamster ovary (CHO) cells are the leading cell factories for producing recombinant proteins in the biopharmaceutical industry. In this regard, constraint-based metabolic models are useful platforms to perform computational analysis of cell metabolism. These models need to be regularly updated in order to include the latest biochemical data of the cells, and to increase their predictive power. Here, we provide an update to iCHO1766, the metabolic model of CHO cells. RESULTS: We expanded the existing model of Chinese hamster metabolism with the help of four gap-filling approaches, leading to the addition of 773 new reactions and 335 new genes. We incorporated these into an updated genome-scale metabolic network model of CHO cells, named iCHO2101. In this updated model, the number of reactions and pathways capable of carrying flux is substantially increased. CONCLUSIONS: The present CHO model is an important step towards more complete metabolic models of CHO cells.


Asunto(s)
Células CHO/metabolismo , Genoma/genética , Redes y Vías Metabólicas/genética , Modelos Biológicos , Biología de Sistemas/métodos , Animales , Cricetinae , Cricetulus , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
PLoS One ; 15(10): e0240330, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33035245

RESUMEN

Zymomonas mobilis, as an ethanologenic microorganism with many desirable industrial features, faces crucial obstacles in the lignocellulosic ethanol production process. A significant hindrance occurs during the pretreatment procedure that not only produces fermentable sugars but also releases severe toxic compounds. As diverse parts of regulation networks are involved in different aspects of complicated tolerance to inhibitors, we developed ZM4-hfq and ZM4-sigE strains, in which hfq and sigE genes were overexpressed, respectively. ZM4-hfq is a transcription regulator and ZM4-sigE is a transcription factor that are involved in multiple stress responses. In the present work, by overexpressing these two genes, we evaluated their impact on the Z. mobilis tolerance to furfural, acetic acid, and sugarcane bagasse hydrolysates. Both recombinant strains showed increased growth rates and ethanol production levels compared to the parental strain. Under a high concentration of furfural, the growth rate of ZM4-hfq was more inhibited compared to ZM4-sigE. More precisely, fermentation performance of ZM4-hfq revealed that the yield of ethanol production was less than that of ZM4-sigE, because more unused sugar had remained in the medium. In the case of acetic acid, ZM4-sigE was the superior strain and produced four and two-fold more ethanol compared to the parental strain and ZM4-hfq, respectively. Comparison of inhibitor tolerance between single and multiple toxic inhibitors in the fermentation of sugarcane bagasse hydrolysate by ZM4-sigE strain showed similar results. In addition, ethanol production performance was considerably higher in ZM4-sigE as well. Finally, the results of the qPCR analysis suggested that under both furfural and acetic acid treatment experiments, overproduction of both hfq and sigE improves the Z. mobilis tolerance and its ethanol production capability. Overall, our study showed the vital role of the regulatory elements to overcome the obstacles in lignocellulosic biomass-derived ethanol and provide a platform for further improvement by directed evolution or systems metabolic engineering tools.


Asunto(s)
Ácido Acético/farmacología , Proteínas Bacterianas/genética , Furaldehído/farmacología , Proteína de Factor 1 del Huésped/genética , Factor sigma/genética , Zymomonas/crecimiento & desarrollo , Proteínas Bacterianas/metabolismo , Celulosa/metabolismo , Etanol/metabolismo , Fermentación , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Proteína de Factor 1 del Huésped/metabolismo , Factor sigma/metabolismo , Estrés Fisiológico , Zymomonas/efectos de los fármacos , Zymomonas/genética
13.
PLoS One ; 15(9): e0239219, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32941527

RESUMEN

Neurodegenerative diseases (NDDs) are increasing serious menaces to human health in the recent years. Despite exhibiting different clinical phenotypes and selective neuronal loss, there are certain common features in these disorders, suggesting the presence of commonly dysregulated pathways. Identifying causal genes and dysregulated pathways can be helpful in providing effective treatment in these diseases. Interestingly, in spite of the considerable researches on NDDs, to the best of our knowledge, no dysregulated genes and/or pathways were reported in common across all the major NDDs so far. In this study, for the first time, we have applied the three-way interaction model, as an approach to unravel sophisticated gene interactions, to trace switch genes and significant pathways that are involved in six major NDDs. Subsequently, a gene regulatory network was constructed to investigate the regulatory communication of statistically significant triplets. Finally, KEGG pathway enrichment analysis was applied to find possible common pathways. Because of the central role of neuroinflammation and immune system responses in both pathogenic and protective mechanisms in the NDDs, we focused on immune genes in this study. Our results suggest that "cytokine-cytokine receptor interaction" pathway is enriched in all of the studied NDDs, while "osteoclast differentiation" and "natural killer cell mediated cytotoxicity" pathways are enriched in five of the NDDs each. The results of this study indicate that three pathways that include "osteoclast differentiation", "natural killer cell mediated cytotoxicity" and "cytokine-cytokine receptor interaction" are common in five, five and six NDDs, respectively. Additionally, our analysis showed that Rps27a as a switch gene, together with the gene pair {Il-18, Cx3cl1} form a statistically significant and biologically relevant triplet in the major NDDs. More specifically, we suggested that Cx3cl1 might act as a potential upstream regulator of Il-18 in microglia activation, and in turn, might be controlled with Rps27a in triggering NDDs.


Asunto(s)
Redes Reguladoras de Genes , Microglía/inmunología , Enfermedades Neurodegenerativas/genética , Proteínas Ribosómicas/genética , Ubiquitinas/genética , Quimiocina CXCL1/genética , Humanos , Interleucina-18/genética
14.
Comput Biol Chem ; 88: 107309, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32650065

RESUMEN

Elementary flux mode (EFM) analysis is a well-studied method in constraint-based modeling of metabolic networks. In EFM analysis, a network is decomposed into minimal functional pathways based on the assumption of balanced metabolic fluxes. In this paper, a system architecture is proposed that approximately models the functionality of metabolic networks. The AND/OR graph model is used to represent the metabolic network and each processing element in the system emulates the functionality of a metabolite. The system is implemented on a graphics processing unit (GPU) as the hardware platform using CUDA environment. The proposed architecture takes advantage of the inherent parallelism in the network structure in terms of both pathway and metabolite traversal. The function of each element is defined such that it can find flux-balanced pathways. Pathways in both small and large metabolic networks are applied to the proposed architecture and the results are discussed.


Asunto(s)
Algoritmos , Análisis de Flujos Metabólicos
15.
Artículo en Inglés | MEDLINE | ID: mdl-32582661

RESUMEN

With the constant accumulation of electronic waste, extracting precious metals contained therein is becoming a major challenge for sustainable development. Bacillus megaterium is currently one of the microbes used for the production of cyanide, which is the main leaching agent for gold recovery. The present study aimed to propose a strategy for metabolic engineering of B. megaterium to overproduce cyanide, and thus ameliorate the bioleaching process. For this, we employed constraint-based modeling, running in silico simulations on iJA1121, the genome-scale metabolic model of B. megaterium DSM319. Flux balance analysis (FBA) was initially used to identify amino acids to be added to the culture medium. Considering cyanide as the desired product, we used growth-coupled methods, constrained minimal cut sets (cMCSs) and OptKnock to identify gene inactivation targets. To identify gene overexpression targets, flux scanning based on enforced objective flux (FSEOF) was performed. Further analysis was carried out on the identified targets to determine compounds with beneficial regulatory effects. We have proposed a chemical-defined medium for accelerating cyanide production on the basis of microplate assays to evaluate the components with the greatest improving effects. Accordingly, the cultivation of B. megaterium DSM319 in a chemically-defined medium with 5.56 mM glucose as the carbon source, and supplemented with 413 µM cysteine, led to the production of considerably increased amounts of cyanide. Bioleaching experiments were successfully performed in this medium to recover gold and copper from telecommunication printed circuit boards. The results of inductively coupled plasma (ICP) analysis confirmed that gold recovery peaked out at around 55% after 4 days, whereas copper recovery continued to increase for several more days, peaking out at around 85%. To further validate the bioleaching results, FESEM, XRD, FTIR, and EDAX mapping analyses were performed. We concluded that the proposed strategy represents a viable route for improving the performance of the bioleaching processes.

16.
Sci Rep ; 10(1): 8384, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32433480

RESUMEN

Since the world population is ageing, dementia is going to be a growing concern. Alzheimer's disease is the most common form of dementia. The pathogenesis of Alzheimer's disease is extensively studied, yet unknown remains. Therefore, we aimed to extract new knowledge from existing data. We analysed about 2700 upregulated genes and 2200 downregulated genes from three studies on the CA1 of the hippocampus of brains with Alzheimer's disease. We found that only the calcium signalling pathway enriched by 48 downregulated genes was consistent between all three studies. We predicted miR-129 to target nine out of 48 genes. Then, we validated miR-129 to regulate six out of nine genes in HEK cells. We noticed that four out of six genes play a role in synaptic plasticity. Finally, we confirmed the upregulation of miR-129 in the hippocampus of brains of rats with scopolamine-induced amnesia as a model of Alzheimer's disease. We suggest that future research should investigate the possible role of miR-129 in synaptic plasticity and Alzheimer's disease. This paper presents a novel framework to gain insight into potential biomarkers and targets for diagnosis and treatment of diseases.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Encéfalo/metabolismo , Encéfalo/fisiopatología , Hipocampo/fisiología , Plasticidad Neuronal/fisiología , Animales , Masculino , Análisis por Micromatrices , Ratas
17.
Sci Rep ; 10(1): 7782, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32385302

RESUMEN

Zymomonas mobilis ZM4 has recently been used for a variety of biotechnological purposes. To rationally enhance its metabolic performance, a reliable genome-scale metabolic network model (GEM) of this organism is required. To this end, we reconstructed a genome-scale metabolic model (iHN446) for Z. mobilis, which involves 446 genes, 859 reactions, and 894 metabolites. We started by first reconciling the existing GEMs previously constructed for Z. mobilis to obtain a draft network. Next, recent gene annotations, up-to-date literature, physiological data and biochemical databases were used to upgrade the network. Afterward, the draft network went through a curative and iterative process of gap-filling by computational tools and manual refinement. The final model was evaluated using experimental data and literature information. We next applied this model as a platform for analyzing the links between transcriptome-flux and transcriptome-metabolome. We found that experimental observations were in agreement with the predicted results from our final GEM. Taken together, this comprehensive model (iHN446) can be utilized for studying metabolism in Z. mobilis and finding rational targets for metabolic engineering applications.


Asunto(s)
Genoma Bacteriano , Genómica , Redes y Vías Metabólicas , Modelos Biológicos , Zymomonas/genética , Zymomonas/metabolismo , Biología Computacional , Fermentación , Genómica/métodos , Ingeniería Metabólica , Reproducibilidad de los Resultados , Flujo de Trabajo
18.
Bioprocess Biosyst Eng ; 43(8): 1381-1389, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32211960

RESUMEN

Chinese hamster ovary (CHO) cells are the main workhorse in the biopharmaceutical industry for the production of recombinant proteins, such as monoclonal antibodies. To date, a variety of metabolic engineering approaches have been used to improve the productivity of CHO cells. While genetic manipulations are potentially laborious in mammalian cells, rational design of CHO cell culture medium or efficient fed-batch strategies are more popular approaches for bioprocess optimization. In this study, a genome-scale metabolic network model of CHO cells was used to design feeding strategies for CHO cells to improve monoclonal antibody (mAb) production. A number of metabolites, including threonine and arachidonate, were suggested by the model to be added into cell culture medium. The designed composition has been experimentally validated, and then optimized, using design of experiment methods. About a two-fold increase in the total mAb expression has been observed using this strategy. Our approach can be used in similar bioprocess optimization problems, to suggest new ways of increasing production in different cell factories.


Asunto(s)
Anticuerpos Monoclonales/biosíntesis , Reactores Biológicos , Técnicas de Cultivo de Célula , Animales , Anticuerpos Monoclonales/genética , Células CHO , Cricetulus , Medios de Cultivo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
19.
Sci Rep ; 9(1): 18762, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31822710

RESUMEN

Bacillus megaterium is a microorganism widely used in industrial biotechnology for production of enzymes and recombinant proteins, as well as in bioleaching processes. Precise understanding of its metabolism is essential for designing engineering strategies to further optimize B. megaterium for biotechnology applications. Here, we present a genome-scale metabolic model for B. megaterium DSM319, iJA1121, which is a result of a metabolic network reconciliation process. The model includes 1709 reactions, 1349 metabolites, and 1121 genes. Based on multiple-genome alignments and available genome-scale metabolic models for other Bacillus species, we constructed a draft network using an automated approach followed by manual curation. The refinements were performed using a gap-filling process. Constraint-based modeling was used to scrutinize network features. Phenotyping assays were performed in order to validate the growth behavior of the model using different substrates. To verify the model accuracy, experimental data reported in the literature (growth behavior patterns, metabolite production capabilities, metabolic flux analysis using 13C glucose and formaldehyde inhibitory effect) were confronted with model predictions. This indicated a very good agreement between in silico results and experimental data. For example, our in silico study of fatty acid biosynthesis and lipid accumulation in B. megaterium highlighted the importance of adopting appropriate carbon sources for fermentation purposes. We conclude that the genome-scale metabolic model iJA1121 represents a useful tool for systems analysis and furthers our understanding of the metabolism of B. megaterium.


Asunto(s)
Bacillus megaterium/metabolismo , Genoma Bacteriano , Redes y Vías Metabólicas/genética , Modelos Biológicos , Bacillus megaterium/genética , Ácidos Grasos/biosíntesis , Estudios de Factibilidad , Genómica , Microbiología Industrial , Metabolismo de los Lípidos/genética , Ingeniería Metabólica , Metabolómica
20.
Cell Biosci ; 9: 71, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31485322

RESUMEN

BACKGROUND: Pluripotency is proposed to exist in two different stages: Naive and Primed. Conventional human pluripotent cells are essentially in the primed stage. In recent years, several protocols have claimed to generate naive human embryonic stem cells (hESCs). To the best of our knowledge, none of these protocols is currently recognized as the gold standard method. Furthermore, the consistency of the resulting cells from these diverse protocols at the molecular level is yet to be shown. Additionally, little is known about the principles that govern the metabolic differences between naive and primed pluripotency. In this work, using a computational approach, we tried to shed light on these basic issues. RESULTS: We showed that, after batch effect removal, the transcriptome data of eight different protocols which supposedly produce naive hESCs are clustered consistently when compared to the primed ones. Next, by integrating transcriptomes of all hESCs obtained by these protocols, we reconstructed p-hESCNet and n-hESCNet, the first metabolic network models representing hESCs. By exploiting reporter metabolite analysis we showed that the status of NAD + and the metabolites involved in the TCA cycle are significantly altered between naive and primed hESCs. Furthermore, using flux variability analysis (FVA), the models showed that the kynurenine-mediated metabolism of tryptophan is remarkably downregulated in naive human pluripotent cells. CONCLUSION: The aim of the present paper is twofold. Firstly, our findings confirm the applicability of all these protocols for generating naive hESCs, due to their consistency at the transcriptome level. Secondly, we showed that in silico metabolic models of hESCs can be used to simulate the metabolic states of naive and primed pluripotency. Our models confirmed the OXPHOS activation in naive cells and showed that oxidation-reduction potential vary between naive and primed cells. Tryptophan metabolism is also outlined as a key pathway in primed pluripotency and the models suggest that decrements in the activity of this pathway might be an appropriate marker for naive pluripotency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...