Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem J ; 477(8): 1525-1539, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32242624

RESUMEN

Nek7 is a serine/threonine-protein kinase required for proper spindle formation and cytokinesis. Elevated Nek7 levels have been observed in several cancers, and inhibition of Nek7 might provide a route to the development of cancer therapeutics. To date, no selective and potent Nek7 inhibitors have been identified. Nek7 crystal structures exhibit an improperly formed regulatory-spine (R-spine), characteristic of an inactive kinase. We reasoned that the preference of Nek7 to crystallise in this inactive conformation might hinder attempts to capture Nek7 in complex with Type I inhibitors. Here, we have introduced aromatic residues into the R-spine of Nek7 with the aim to stabilise the active conformation of the kinase through R-spine stacking. The strong R-spine mutant Nek7SRS retained catalytic activity and was crystallised in complex with compound 51, an ATP-competitive inhibitor of Nek2 and Nek7. Subsequently, we obtained the same crystal form for wild-type Nek7WT in apo form and bound to compound 51. The R-spines of the three well-ordered Nek7WT molecules exhibit variable conformations while the R-spines of the Nek7SRS molecules all have the same, partially stacked configuration. Compound 51 bound to Nek2 and Nek7 in similar modes, but differences in the precise orientation of a substituent highlights features that could be exploited in designing inhibitors that are selective for particular Nek family members. Although the SRS mutations are not required to obtain a Nek7-inhibitor structure, we conclude that it is a useful strategy for restraining the conformation of a kinase in order to promote crystallogenesis.


Asunto(s)
Inhibidores Enzimáticos/metabolismo , Quinasas Relacionadas con NIMA/química , Quinasas Relacionadas con NIMA/metabolismo , Catálisis , Inhibidores Enzimáticos/química , Humanos , Cinética , Mutación , Quinasas Relacionadas con NIMA/genética , Unión Proteica , Conformación Proteica , Ingeniería de Proteínas
2.
RSC Med Chem ; 11(6): 707-731, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33479670

RESUMEN

Renewed interest in covalent inhibitors of enzymes implicated in disease states has afforded several agents targeted at protein kinases of relevance to cancers. We now report the design, synthesis and biological evaluation of 6-ethynylpurines that act as covalent inhibitors of Nek2 by capturing a cysteine residue (Cys22) close to the catalytic domain of this protein kinase. Examination of the crystal structure of the non-covalent inhibitor 3-((6-cyclohexylmethoxy-7H-purin-2-yl)amino)benzamide in complex with Nek2 indicated that replacing the alkoxy with an ethynyl group places the terminus of the alkyne close to Cys22 and in a position compatible with the stereoelectronic requirements of a Michael addition. A series of 6-ethynylpurines was prepared and a structure activity relationship (SAR) established for inhibition of Nek2. 6-Ethynyl-N-phenyl-7H-purin-2-amine [IC50 0.15 µM (Nek2)] and 4-((6-ethynyl-7H-purin-2-yl)amino)benzenesulfonamide (IC50 0.14 µM) were selected for determination of the mode of inhibition of Nek2, which was shown to be time-dependent, not reversed by addition of ATP and negated by site directed mutagenesis of Cys22 to alanine. Replacement of the ethynyl group by ethyl or cyano abrogated activity. Variation of substituents on the N-phenyl moiety for 6-ethynylpurines gave further SAR data for Nek2 inhibition. The data showed little correlation of activity with the nature of the substituent, indicating that after sufficient initial competitive binding to Nek2 subsequent covalent modification of Cys22 occurs in all cases. A typical activity profile was that for 2-(3-((6-ethynyl-9H-purin-2-yl)amino)phenyl)acetamide [IC50 0.06 µM (Nek2); GI50 (SKBR3) 2.2 µM] which exhibited >5-10-fold selectivity for Nek2 over other kinases; it also showed > 50% growth inhibition at 10 µM concentration against selected breast and leukaemia cell lines. X-ray crystallographic analysis confirmed that binding of the compound to the Nek2 ATP-binding site resulted in covalent modification of Cys22. Further studies confirmed that 2-(3-((6-ethynyl-9H-purin-2-yl)amino)phenyl)acetamide has the attributes of a drug-like compound with good aqueous solubility, no inhibition of hERG at 25 µM and a good stability profile in human liver microsomes. It is concluded that 6-ethynylpurines are promising agents for cancer treatment by virtue of their selective inhibition of Nek2.

3.
Structure ; 20(12): 2062-75, 2012 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-23063561

RESUMEN

Multidomain proteins incorporating interaction domains are central to regulation of cellular processes. The elucidation of structural organization and mechanistic insights into many of these proteins, however, remain challenging due to their inherent flexibility. Here, we describe the organization and function of four interaction domains in PLCγ1 using a combination of structural biology and biochemical approaches. Intramolecular interactions within the regulatory region center on the cSH2 domain, the only domain that also interacts with the PLC-core. In the context of fibroblast growth-factor receptor signaling, the coordinated involvement of nSH2 and cSH2 domains mediates efficient phosphorylation of PLCγ1 resulting in the interruption of an autoinhibitory interface by direct competition and, independently, dissociation of PLCγ1 from the receptor. Further structural insights into the autoinhibitory surfaces provide a framework to interpret gain-of-function mutations in PLCγ isoforms linked to immune disorders and illustrate a distinct mechanism for regulation of PLC activity by common interaction domains.


Asunto(s)
Modelos Moleculares , Fosfolipasa C gamma/química , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Animales , Dominio Catalítico , Línea Celular , Cristalografía por Rayos X , Activación Enzimática , Humanos , Fosfatos de Inositol/química , Cinética , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Fosfolipasa C gamma/genética , Fosfolipasa C gamma/metabolismo , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/fisiología , Transducción de Señal , Sus scrofa , Termodinámica
4.
J Med Chem ; 55(7): 3228-41, 2012 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-22404346
5.
Mol Cell ; 44(6): 997-1004, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22195972

RESUMEN

The posttranslational modification of C-terminal CAAX motifs in proteins such as Ras, most Rho GTPases, and G protein γ subunits, plays an essential role in determining their subcellular localization and correct biological function. An integral membrane methyltransferase, isoprenylcysteine carboxyl methyltransferase (ICMT), catalyzes the final step of CAAX processing after prenylation of the cysteine residue and endoproteolysis of the -AAX motif. We have determined the crystal structure of a prokaryotic ICMT ortholog, revealing a markedly different architecture from conventional methyltransferases that utilize S-adenosyl-L-methionine (SAM) as a cofactor. ICMT comprises a core of five transmembrane α helices and a cofactor-binding pocket enclosed within a highly conserved C-terminal catalytic subdomain. A tunnel linking the reactive methyl group of SAM to the inner membrane provides access for the prenyl lipid substrate. This study explains how an integral membrane methyltransferase achieves recognition of both a hydrophilic cofactor and a lipophilic prenyl group attached to a polar protein substrate.


Asunto(s)
Proteína Metiltransferasas/química , Proteína Metiltransferasas/metabolismo , Membrana Celular/metabolismo , Cristalografía por Rayos X , Citosol/metabolismo , Metabolismo de los Lípidos , Methanosarcina/enzimología , Metilación , Modelos Moleculares , Mutación , Proteína Metiltransferasas/genética , Estructura Terciaria de Proteína , S-Adenosilmetionina/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato
6.
J Med Chem ; 54(6): 1626-39, 2011 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-21366329

RESUMEN

We describe herein the structure-activity relationship (SAR) and cocrystal structures of a series of Nek2 inhibitors derived from the published polo-like kinase 1 (Plk1) inhibitor (R)-1. Our studies reveal a nonlinear SAR for Nek2 and our cocrystal structures show that compounds in this series bind to a DFG-out conformation of Nek2 without extending into the enlarged back pocket commonly found in this conformation. These observations were further investigated, and structure-based design led to Nek2 inhibitors derived from (R)-1 with more than a hundred-fold selectivity against Plk1.


Asunto(s)
Benzamidas/síntesis química , Bencimidazoles/síntesis química , Modelos Moleculares , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Benzamidas/química , Benzamidas/farmacología , Bencimidazoles/química , Bencimidazoles/farmacología , Sitios de Unión , Cristalografía por Rayos X , Femenino , Humanos , Técnicas In Vitro , Masculino , Ratones , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/enzimología , Quinasas Relacionadas con NIMA , Fosforilación , Unión Proteica , Conformación Proteica , Proteínas Serina-Treonina Quinasas/química , Estereoisomerismo , Relación Estructura-Actividad
7.
J Med Chem ; 53(21): 7682-98, 2010 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-20936789

RESUMEN

We report herein the first systematic exploration of inhibitors of the mitotic kinase Nek2. Starting from HTS hit aminopyrazine 2, compounds with improved activity were identified using structure-based design. Our structural biology investigations reveal two notable observations. First, 2 and related compounds bind to an unusual, inactive conformation of the kinase which to the best of our knowledge has not been reported for other types of kinase inhibitors. Second, a phenylalanine residue at the center of the ATP pocket strongly affects the ability of the inhibitor to bind to the protein. The implications of these observations are discussed, and the work described here defines key features for potent and selective Nek2 inhibition, which will aid the identification of more advanced inhibitors of Nek2.


Asunto(s)
Modelos Moleculares , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Pirazinas/síntesis química , Cristalografía por Rayos X , Humanos , Quinasas Relacionadas con NIMA , Fosforilación , Unión Proteica , Conformación Proteica , Proteínas Serina-Treonina Quinasas/química , Pirazinas/química , Estereoisomerismo , Relación Estructura-Actividad
8.
Mol Cell ; 36(4): 560-70, 2009 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-19941817

RESUMEN

Mitosis is controlled by multiple protein kinases, many of which are abnormally expressed in human cancers. Nek2, Nek6, Nek7, and Nek9 are NIMA-related kinases essential for proper mitotic progression. We determined the atomic structure of Nek7 and discovered an autoinhibited conformation that suggests a regulatory mechanism not previously described in kinases. Additionally, Nek2 adopts the same conformation when bound to a drug-like molecule. In both structures, a tyrosine side chain points into the active site, interacts with the activation loop, and blocks the alphaC helix. Tyrosine mutants of Nek7 and the related kinase Nek6 are constitutively active. The activity of Nek6 and Nek7, but not the tyrosine mutant, is increased by interaction with the Nek9 noncatalytic C-terminal domain, suggesting a mechanism in which the tyrosine is released from its autoinhibitory position. The autoinhibitory conformation is common to three Neks and provides a potential target for selective kinase inhibitors.


Asunto(s)
Ciclo Celular , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Tirosina/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Dominio Catalítico , Ciclo Celular/efectos de los fármacos , Línea Celular , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Quinasas Relacionadas con NIMA , Unión Proteica/efectos de los fármacos , Relación Estructura-Actividad
9.
Plant Physiol Biochem ; 46(3): 325-39, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18272376

RESUMEN

This review focuses on the allosteric controls in the Aspartate-derived and the branched-chain amino acid biosynthetic pathways examined both from kinetic and structural points of view. The objective is to show the differences that exist among the plant and microbial worlds concerning the allosteric regulation of these pathways and to unveil the structural bases of this diversity. Indeed, crystallographic structures of enzymes from these pathways have been determined in bacteria, fungi and plants, providing a wonderful opportunity to obtain insight into the acquisition and modulation of allosteric controls in the course of evolution. This will be examined using two enzymes, threonine synthase and the ACT domain containing enzyme aspartate kinase. In a last part, as many enzymes in these pathways display regulatory domains containing the conserved ACT module, the organization of ACT domains in this kind of allosteric enzymes will be reviewed, providing explanations for the variety of allosteric effectors and type of controls observed.


Asunto(s)
Aminoácidos/biosíntesis , Enzimas/metabolismo , Proteínas de Plantas/metabolismo , Regulación Alostérica , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Liasas de Carbono-Oxígeno/química , Liasas de Carbono-Oxígeno/metabolismo , Enzimas/química , Modelos Moleculares , Proteínas de Plantas/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
10.
Plant Cell ; 18(7): 1681-92, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16731588

RESUMEN

Asp kinase catalyzes the first step of the Asp-derived essential amino acid pathway in plants and microorganisms. Depending on the source organism, this enzyme contains up to four regulatory ACT domains and exhibits several isoforms under the control of a great variety of allosteric effectors. We report here the dimeric structure of a Lys and S-adenosylmethionine-sensitive Asp kinase isoform from Arabidopsis thaliana in complex with its two inhibitors. This work reveals the structure of an Asp kinase and an enzyme containing two ACT domains cocrystallized with its effectors. Only one ACT domain (ACT1) is implicated in effector binding. A loop involved in the binding of Lys and S-adenosylmethionine provides an explanation for the synergistic inhibition by these effectors. The presence of S-adenosylmethionine in the regulatory domain indicates that ACT domains are also able to bind nucleotides. The organization of ACT domains in the present structure is different from that observed in Thr deaminase and in the regulatory subunit of acetohydroxyacid synthase III.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/enzimología , Aspartato Quinasa/química , Estructura Cuaternaria de Proteína , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Aspartato Quinasa/antagonistas & inhibidores , Aspartato Quinasa/genética , Aspartato Quinasa/metabolismo , Ácido Aspártico/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Dimerización , Isoenzimas/antagonistas & inhibidores , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Lisina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Serina/metabolismo
11.
J Biol Chem ; 281(8): 5188-96, 2006 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-16319072

RESUMEN

Threonine synthase (TS) is a fold-type II pyridoxal phosphate (PLP)-dependent enzyme that catalyzes the ultimate step of threonine synthesis in plants and microorganisms. Unlike the enzyme from microorganisms, plant TS is activated by S-adenosylmethionine (AdoMet). The mechanism of activation has remained unknown up to now. We report here the crystallographic structures of Arabidopsis thaliana TS in complex with PLP (aTS) and with PLP and AdoMet (aTS-AdoMet), which show with atomic detail how AdoMet activates TS. The aTS structure reveals a PLP orientation never previously observed for a type II PLP-dependent enzyme and explains the low activity of plant TS in the absence of its allosteric activator. The aTS-AdoMet structure shows that activation of the enzyme upon AdoMet binding triggers a large reorganization of active site loops in one monomer of the structural dimer and allows the displacement of PLP to its active conformation. Comparison with other TS structures shows that activation of the second monomer may be triggered by substrate binding. This structure also discloses a novel fold for two AdoMet binding sites located at the dimer interface, each site containing two AdoMet effectors bound in tandem. Moreover, aTS-AdoMet is the first structure of an enzyme that uses AdoMet as an allosteric effector.


Asunto(s)
Arabidopsis/enzimología , Liasas de Carbono-Oxígeno/química , Fosfato de Piridoxal/química , S-Adenosilmetionina/química , Sitio Alostérico , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Activación Enzimática , Modelos Moleculares , Conformación Molecular , Unión Proteica , Conformación Proteica , Pliegue de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...