Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 38(27): 8324-8333, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35758845

RESUMEN

Bioadsorption is a promising technology to sequester heavy metal ions from water, and brown seaweed has been identified as one of the most appropriate adsorbents as it is abundant, low cost, and efficient at removing various metal ion contaminations. The ability to remove heavy metals from water arises from the high concentration of polysaccharides and phlorotannins in brown seaweed; however, remediation can be hampered by the salinity, location, and coexistence of pollutants in the contaminated water. Maintaining the adsorbent properties of brown seaweed while avoiding the fragility of living organisms could allow for the development of better adsorbents. Herein, we demonstrate that polymerized phlorotannin particles, synthesized from phlorotannins extracted from a species of brown seaweed (Carpophyllum flexuosum), were able to remove 460 mg of Pb2+ from water per gram of adsorbent. Scanning electron microscopy (SEM), attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), and thermogravimetric analysis (TGA) were used to characterize the polymerization process and the polymerized phlorotannin particles. Importantly, there was no direct correlation between the Pb2+ removal capacity and the phlorotannin content of various algal derivatives of three species of brown seaweed, C. flexuosum, Carpophyllum plumosum, and Ecklonia radiata, as all three had similar adsorption capacities despite differences in phlorotannin content. This work shows that naturally abundant, "green" materials can be used to help remediate the environment.


Asunto(s)
Metales Pesados , Algas Marinas , Contaminantes Químicos del Agua , Adsorción , Cinética , Plomo , Polimerizacion , Algas Marinas/química , Agua , Contaminantes Químicos del Agua/química
2.
Chemistry ; 28(40): e202200431, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35385201

RESUMEN

The need for greener compounds able to replace conventional ones with similar reactivity is crucial for the development of sustainable chemistry. Isopropenyl esters (iPEs) represent one eco-friendly alternative to acyl halides and anhydrides. This review provides a comprehensive overview of the preparation methodologies and reported synthetic applications of iPEs and, in particular, of isopropenyl acetate (iPAc). Intriguingly, the presence of a C=C double bond adjacent to the ester functionality makes iPEs appealing in different chemoselective organic synthesis transformations. For instance, the acyl moiety is suitable for transesterification reactions in presence of different heteroatom-based nucleophiles (C-, O-, N-, S-, Se-); these reactions are irreversible thanks to the formation of acetone, obtained upon keto-enol tautomerization of the prop-1-en-2-ol (isopropenyl) leaving group. Similarly, the unsaturation contained in the isopropenyl synthon could be selectively exploited in organic synthesis for electrophilic and/or radical additions as well as in metal-catalyzed cross-coupling reactions. To conclude, iPEs recently found major interest in the direct modification of biomass (i.e. lignin or cellulose) and in the implementation of tandem reactions of esterification-acetalization by exploiting the co-formation of acetone during the reaction.


Asunto(s)
Acetona , Ésteres , Catálisis , Técnicas de Química Sintética , Esterificación
3.
ACS Omega ; 5(13): 7584-7592, 2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32280902

RESUMEN

The synergistic incorporation of anatase TiO2 domains into siliceous TUD-1 was optimized in this work and the resulting sample was implemented as the electrode in lithium-ion batteries. Triethanolamine was used as both the templating and complexing agent, the Si/Ti ratio was controlled, and the formation of Ti-O-Si bridges was optimized, as revealed through Fourier transform infrared spectroscopy, with the porous character of the materials being confirmed with N2 adsorption-desorption isotherms. The controlled formation of Ti-O-Si bridges resulted in attractive specific charge capacities, high rate capability, and a good retention of capacity. The electrochemical performance of the composite material clearly demonstrates a synergistic effect between pure TiO2 in its anatase form and the otherwise inactive siliceous TUD-1 matrix. Specific capacities of 300 mA h g-1 with a retention of 94% were obtained at a current density of 0.1 A g-1 over 100 cycles. This work showcases the use of bifunctional templating agents in the improvement of the performance and the long-term cyclability of composite electrodes, which can be potentially applied in future synthesis of energy materials.

4.
Chemistry ; 26(31): 7059-7064, 2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32011774

RESUMEN

The unusual combination of characteristics observed for porous liquids, which are typically associated with either porous solids or liquids, has led to considerable interest in this new class of materials. However, these porous liquids have so far only been investigated for their ability to separate and store gases. Herein, the catalytic capability of Pt nanoparticles encapsulated within a Type I porous liquid (Pt@HS-SiO2 PL) is explored for the hydrogenation of several alkenes and nitroarenes under mild conditions (T=40 °C, PH2 =1 atm). The different intermediates in the porous liquid synthesis (i.e., the initial Pt@HS-SiO2 , the organosilane-functionalized intermediate, and the final porous liquid) are employed as catalysts in order to understand the effect of each component of the porous liquid on the catalysis. For the hydrogenation of 1-decene, the Pt@HS-SiO2 PL catalyst in ethanol has the fastest reaction rate if normalized with respect to the concentration of Pt. The reaction rate slows if the reaction is completed in a "neat" porous liquid system, probably because of the high viscosity of the system. These systems may find application in cascade reactions, in particular, for those with mutually incompatible catalysts.

5.
ChemSusChem ; 13(8): 2002-2006, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-31976632

RESUMEN

By using lignin model compounds with relevant key characteristic structural features, the reaction pathways of α-O-4 aryl ether linkages under hydrothermal conditions are elucidated. Experimental results and computational modeling suggest that the α-O-4 linkages in lignin undergo catalyzed hydrolysis and elimination to give phenolic and alkenylbenzene derivatives as major products in subcritical water. The decreased relative permittivity of water at these high temperatures and pressures facilitates the elimination reactions. The alkyl group on the α-carbon and the methoxy groups on the phenyl rings both have positive effects on the rate of conversion of α-O-4 linkages in native lignin.

6.
Molecules ; 24(21)2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31690018

RESUMEN

N,N,N-Trimethyl chitosan (TMC) is one chitosan derivative that, because of its improved solubility, has been studied for industrial and pharmaceutic applications. Conventional methods for the synthesis of TMC involve the use of highly toxic and harmful reagents, such as methyl iodide and dimethyl sulfate (DMS). Although the methylation of dimethylated chitosan to TMC by dimethyl carbonate (DMC, a green and benign methylating agent) was reported recently, it involved a formaldehyde-based procedure. In this paper we report the single-step synthesis of TMC from chitosan using DMC in an ionic liquid. The TMC synthesised was characterised by 1H NMR spectroscopy and a functionally meaningful degree of quaternisation of 9% was demonstrated after a 12-h reaction time.


Asunto(s)
Quitosano/química , Formiatos/química , Líquidos Iónicos/química
7.
Chem Commun (Camb) ; 55(75): 11179-11182, 2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31475994

RESUMEN

Herein, we report the first successful encapsulation of metal nanoparticles within a Type I porous liquid. We found that the presence of thiol groups was critical to both the encapsulation and the stabilisation of the metal nanoparticles.

8.
Angew Chem Int Ed Engl ; 57(23): 6848-6852, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29633493

RESUMEN

Metal-free polymeric carbon nitrides (PCNs) are promising photocatalysts for solar hydrogen production, but their structure-photoactivity relationship remains elusive. Two PCNs were characterized by dynamic-nuclear-polarization-enhanced solid-state NMR spectroscopy, which circumvented the need for specific labeling with either 13 C- or 15 N-enriched precursors. Rapid 1D and 2D data acquisition was possible, providing insights into the structural contrasts between the PCNs. Compared to PCN_B with lower performance, PCN_P is a more porous and more active photocatalyst that is richer in terminal N-H bonds not associated with interpolymer chains. It is proposed that terminal N-H groups act as efficient carrier traps and reaction sites.

9.
Langmuir ; 33(38): 9573-9581, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28829146

RESUMEN

Atom probe tomography was used to analyze self-assembled monolayers of thiophene on different surfaces, including tungsten, platinum, and aluminum, where the tungsten was examined in both pristine and oxidized forms. A glovebag with controlled atmospheres was used to alter the level of oxidation for tungsten. It was shown that different substrates lead to substantial changes in the way thiophene adsorbs on the surface. Furthermore, the oxidation of the surface strongly influenced the adsorption behavior of the thiophene molecules, leading to clear differences in the amounts and compositions of field evaporated ions and molecular ions.

10.
Chem Commun (Camb) ; 53(54): 7438-7446, 2017 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-28627526

RESUMEN

If solar hydrogen production from water is to be a realistic candidate for industrial hydrogen production, the development of photocatalysts, which avoid the use of expensive and/or toxic elements is highly desirable from a scalability, cost and environmental perspective. Metal-free polymeric carbon nitride is an attractive material that can absorb visible light and produce hydrogen from water. This article reviews recent developments in polymeric carbon nitride as used in photocatalysis and then develops the discussion focusing on the three primary processes of a photocatalytic reaction: light-harvesting, carrier generation/separation/transportation and surface reactions.

11.
ChemSusChem ; 10(10): 2140-2144, 2017 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-28371419

RESUMEN

Using both experimental and computational methods, focusing on intermediates and model compounds, some of the main features of the reaction mechanisms that operate during the hydrothermal processing of lignin were elucidated. Key reaction pathways and their connection to different structural features of lignin were proposed. Under neutral conditions, subcritical water was demonstrated to act as a bifunctional acid/base catalyst for the dissection of lignin structures. In a complex web of mutually dependent interactions, guaiacyl units within lignin were shown to significantly affect overall lignin reactivity.


Asunto(s)
Lignina/química , Catálisis , Temperatura
12.
Chem Commun (Camb) ; 52(100): 14412-14415, 2016 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-27896338

RESUMEN

Two oxidative redox processes of the neutral cobalt(iii) cubane, [Co4(µ3-O)4(µ-OAc)4(py)4], were investigated by cyclic voltammetry at a glassy carbon electrode in acetonitrile. In addition to the first quasi-reversible one-electron oxidation at E1/2 = 0.283 V vs. Fc0/+, a second quasi-reversible one-electron oxidation was observed at E1/2 = 1.44 V vs. Fc0/+. Oxidation at this potential does not facilitate water oxidation. In the presence of tert-butylhydroperoxide the peak current of this second oxidation increases, suggesting oxidation of the peroxide by the doubly oxidised cubane.

13.
ChemSusChem ; 9(17): 2312-6, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27528488

RESUMEN

An easily prepared masked N-heterocyclic carbene, 1,3-dimethylimidazolium-2-carboxylate (DMI-CO2 ), was investigated as a "green" and inexpensive organocatalyst for the alkylation of phenols. The process made use of various low-toxicity and renewable alkylating agents, such as dimethyl- and diethyl carbonate, in a focused microwave reactor. DMI-CO2 was found to be a very active catalyst and excellent yields of a range of aryl alkyl ethers were obtained under relatively benign conditions. The observed difference in the conversion behavior of phenol methylation, in the presence of either the carbene or 1,8-diazabicycloundec-7-ene (DBU) catalyst, was rationalized on the basis of mechanistic investigations. The primary mode of action for the N-heterocyclic carbene is nucleophilic catalysis. Activation of the dialkyl carbonate electrophile results in concomitant evolution of an organo-soluble alkoxide, which deprotonates the phenolic starting material. In contrast, DBU is initially protonated by the phenol and thus consumed. Subsequent regeneration and participation in nucleophilic catalysis only becomes significant after some phenolate alkylation occurs.


Asunto(s)
Carbonatos/química , Imidazoles/química , Metano/análogos & derivados , Fenoles/química , Alquilación , Catálisis , Tecnología Química Verde , Metano/química
14.
Phys Chem Chem Phys ; 18(10): 7251-60, 2016 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-26890026

RESUMEN

Six different bromide salts - tetraethylammonium bromide ([N2,2,2,2]Br, Br), 1-ethyl-1-methylpiperidinium bromide ([C2MPip]Br, Br), 1-ethyl-1-methylpyrrolidinium bromide ([C2MPyrr]Br, Br), 1-ethyl-3-methylimidazolium bromide ([C2MIm]Br, Br), 1-ethylpyridinium bromide ([C2Py]Br, Br), and 1-(2-hydroxyethyl)pyridinium bromide ([C2OHPy]Br, Br) - were studied in regards to their capacity to form polybromide monoanion products on addition of molecular bromine in acetonitrile solutions. Using complementary spectroscopic and computational methods for the examination of tribromide and pentabromide anion formation, key factors influencing polybromide sequestration were identified. Here, we present criteria for the targeted synthesis of highly efficient bromine sequestration agents.

15.
Chem Asian J ; 11(5): 682-6, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26833846

RESUMEN

The bonding environments of some polybromide monoanions and networks were examined by quantum-chemical methods to investigate electronic interactions between dibromine-dibromine contacts. Examination of thermodynamic parameters and a bond critical point analysis give strong evidence for such bonding modes, which have been previously treated disparately in the literature. The thermodynamic stability of large polybromides up to [Br37 ](-) was also predicted by these methods.

16.
Chemistry ; 21(46): 16578-84, 2015 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-26404053

RESUMEN

Three cobalt model molecular compounds, Co-cubane ([Co4 (µ3 -O)4 (µ-OAc)4 py4 ]), Co-trimer ([Co3 (µ3 -O)(µ-OAc)6 py3 ]PF6 ), and Co-dimer ([Co2 (µ-OH)2 (µ-OAc)(OAc)2 py4 ]PF6 ), are investigated as water oxidation reaction (WOR) catalysts, using electrochemical, photochemical, and photoelectrochemical methodologies in phosphate electrolyte. The actual species contributing to the catalytic activity observed in the WOR are derived from the transformation of these cobalt compounds. The catalytic activity observed is highly dependent on the initial compound structure and on the particular WOR methodology used. Co-cubane shows no activity in the electrochemical WOR and negligible activity in the photochemical WOR, but is active in the photoelectrochemical WOR, in which it behaves as a precursor to catalytically active species. Co-dimer also shows no activity in the electrochemical WOR, but behaves as a precursor to catalytically active species in both the photochemical and photoelectrochemical WOR experiments. Co-trimer behaves as a precursor to catalytically active species in all three of the WOR methodologies.

17.
ChemSusChem ; 8(21): 3712-7, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26382111

RESUMEN

Cyclohexanone, a model compound chosen to conveniently represent small oxygenates present in the aqueous phase of biomass hydrothermal upgrading streams, was hydrogenated in the presence of electrodeposited iron(0) using aqueous formic or sulfuric acid as a hydrogen donor. Under these conditions, zero-valent iron is consumed stoichiometrically and serves as both a formic acid decomposition site and a hydrogen transfer agent. However, the resulting iron(II) can be used to continuously regenerate iron(0) when a potential is applied to the glassy carbon working electrode. Controlled potential electrolysis experiments show a 17% conversion of cyclohexanone (over 1000 seconds) to cyclohexanol with >80% efficiency of iron deposition from an iron(II) sulfate solution containing formic or sulfuric acid. In the absence of electrodeposited iron, formation of cyclohexanol could not be detected.


Asunto(s)
Ciclohexanoles/química , Ciclohexanonas/química , Formiatos/química , Hierro/química , Ácidos Sulfúricos/química , Agua/química , Catálisis , Electroquímica , Electrodos , Electrólisis , Hidrogenación , Microscopía Electrónica de Rastreo , Propiedades de Superficie
18.
Chemistry ; 21(7): 2961-5, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25487061

RESUMEN

An unprecedented diversity of high-order bromine catenates (anionic polybromides) was generated in a tetraalkylphosphonium-based room temperature ionic liquid system. Raman spectroscopy was used to identify polybromide monoanions ranging from [Br5 ](-) to [Br11 ](-) in the bulk solution, while single-crystal X-ray diffraction identified extended networks of linked [Br11 ](-) units, forming a previously unknown polymeric [Br24 ](2-) dianion. This represents the largest polybromide species identified to date. In combination with recent work, this suggests that other, higher order molecular polybromide ions might be isolated.

19.
Chemistry ; 20(46): 15169-77, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25178182

RESUMEN

Amorphous silica plays an important role in heterogeneous catalysis as a support and is frequently presumed to be "inert". The structure of the supported catalyst is key to understanding the stability and reactivity of catalytic systems. To provide vital insights into the surface reactivity of silica, Polyhedral oligomeric silsesquioxanes (POSSs) can act as realistic homogeneous molecular models for silica surfaces. Here, we report novel reactivities associated with the silica surface, derived from our insights obtained by means of such model systems with potentially significant implications in catalysis when employing silica-supported catalysts. In this work, the gas-phase reactivities of two cyclohexyl-substituted POSSs, namely the completely condensed triganol prism [Si6cy6O9] (a6b0), and the incompletely-condensed partial cube [Si7cy7O9(OH)3] (a7b3), with cy = c-C6H11, were studied by using atmospheric pressure chemical ionisation (APCI) and collision-induced decomposition (CID) spectroscopies. Silsesquioxane a6b0, containing three-membered rings, was found to be much more reactive, undergoing novel CH2-insertion on reaction with gas phase molecules-a reaction not observed for a7b3, containing only four-membered rings. Both silsesquioxanes displayed the ability to trap ammonia formed in situ within the mass spectrometer from N2 in the instrument. This work also demonstrates the applicability of APCI and the role of CID in elucidating reactive POSS structures, highlighting novel gas-phase reactivities of POSS.

20.
Angew Chem Int Ed Engl ; 53(42): 11275-9, 2014 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-25169798

RESUMEN

A robust catalyst for the selective dehydrogenation of formic acid to liberate hydrogen gas has been designed computationally, and also successfully demonstrated experimentally. This is the first such catalyst not based on transition metals, and it exhibits very encouraging performance. It represents an important step towards the use of renewable formic acid as a hydrogen-storage and transport vector in fuel and energy applications.


Asunto(s)
Formiatos/química , Germanio/química , Hidrógeno/química , Catálisis , Hidrogenación , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...