Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 7806, 2023 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-37179410

RESUMEN

Biobanks containing formalin-fixed, paraffin-embedded (FFPE) tissues from animals and human atomic-bomb survivors exposed to radioactive particulates remain a vital resource for understanding the molecular effects of radiation exposure. These samples are often decades old and prepared using harsh fixation processes which limit sample imaging options. Optical imaging of hematoxylin and eosin (H&E) stained tissues may be the only feasible processing option, however, H&E images provide no information about radioactive microparticles or radioactive history. Synchrotron X-ray fluorescence microscopy (XFM) is a robust, non-destructive, semi-quantitative technique for elemental mapping and identifying candidate chemical element biomarkers in FFPE tissues. Still, XFM has never been used to uncover distribution of formerly radioactive micro-particulates in FFPE canine specimens collected more than 30 years ago. In this work, we demonstrate the first use of low-, medium-, and high-resolution XFM to generate 2D elemental maps of ~ 35-year-old, canine FFPE lung and lymph node specimens stored in the Northwestern University Radiobiology Archive documenting distribution of formerly radioactive micro-particulates. Additionally, we use XFM to identify individual microparticles and detect daughter products of radioactive decay. The results of this proof-of-principle study support the use of XFM to map chemical element composition in historic FFPE specimens and conduct radioactive micro-particulate forensics.


Asunto(s)
Pulmón , Sincrotrones , Humanos , Animales , Perros , Adulto , Fijación del Tejido , Rayos X , Microscopía Fluorescente/métodos , Adhesión en Parafina , Formaldehído/química
2.
J Med Imaging (Bellingham) ; 9(3): 031504, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35127969

RESUMEN

Purpose: Tomography using diffracted x-rays produces reconstructions mapping quantities such as crystal lattice parameter(s), crystallite size, and crystallographic texture, information quite different from that obtained with absorption or phase contrast. Diffraction tomography is used to map an entire blue shark centrum with its double cone structure (corpora calcerea) and intermedialia (four wedges). Approach: Energy dispersive diffraction (EDD) and polychromatic synchrotron x-radiation at 6-BM-B, the Advanced Photon Source, were used. Different, properly oriented Bragg planes diffract different x-ray energies; these intensities are measured by one of ten energy-sensitive detectors. A pencil beam defines the irradiated volume, and a collimator before each energy-sensitive detector selects which portion of the irradiated column is sampled at any one time. Translating the specimen along X , Y , and Z axes produces a 3D map. Results: We report 3D maps of the integrated intensity of several bioapatite reflections from the mineralized cartilage centrum of a blue shark. The c axis reflection's integrated intensities and those of a reflection with no c axis component reveal that the cone wall's bioapatite is oriented with its c axes lateral, i.e., perpendicular to the backbone's axis, and that the wedges' bioapatite is oriented with its c axes axial. Absorption microcomputed tomography (laboratory and synchrotron) and x-ray excited x-ray fluorescence maps provide higher resolution views. Conclusion: The bioapatite in the cone walls and wedges is oriented to resist lateral and axial deflections, respectively. Mineralized tissue samples can be mapped in 3D with EDD tomography and subsequently studied by destructive methods.

3.
Front Public Health ; 9: 711506, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34490194

RESUMEN

Introduction: TheraSphere® microspheres containing yttrium 90Y are among many radioembolization agents used clinically to reduce liver tumor burden, and their effects on cancer volume reduction are well-established. At the same time, concerns about off target tissue injury often limit their use. Deeper investigation into tissue distribution and long-term impact of these microspheres could inform us about additional ways to use them in practice. Methods: Healthy rat liver and rabbit liver tumor samples from animals treated with TheraSpheres were sectioned and their elemental maps were generated by X-ray fluorescence microscopy (XFM) at the Advanced Photon Source (APS) synchrotron at Argonne National Laboratory (ANL). Results: Elemental imaging allowed us to identify the presence and distribution of TheraSpheres in animal tissues without the need for additional sample manipulation or staining. Ionizing radiation produced by 90Y radioactive contaminants present in these microspheres makes processing TheraSphere treated samples complex. Accumulation of microspheres in macrophages was observed. Conclusions: This is the first study that used XFM to evaluate the location of microspheres and radionuclides in animal liver and tumor samples introduced through radioembolization. XFM has shown promise in expanding our understanding of radioembolization and could be used for investigation of human patient samples in the future.


Asunto(s)
Carcinoma Hepatocelular , Embolización Terapéutica , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/radioterapia , Humanos , Neoplasias Hepáticas/radioterapia , Microscopía Fluorescente , Conejos , Rayos X , Radioisótopos de Itrio
4.
ACS Appl Mater Interfaces ; 13(33): 39042-39054, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34375073

RESUMEN

In developing a cluster-nanocarrier design, as a magnetic resonance imaging contrast agent, we have investigated the enhanced relaxivity of a manganese and iron-oxo cluster grafted within a porous polystyrene nanobead with increased relaxivity due to a higher surface area. The synthesis of the cluster-nanocarrier for the cluster Mn8Fe4O12(O2CC6H4CH═CH2)16(H2O)4, cross-linked with polystyrene (the nanocarrier), under miniemulsion conditions is described. By including a branched hydrophobe, iso-octane, the resulting nanobeads are porous and ∼70 nm in diameter. The increased surface area of the nanobeads compared to nonporous nanobeads leads to an enhancement in relaxivity; r1 increases from 3.8 to 5.2 ± 0.1 mM-1 s-1, and r2 increases from 11.9 to 50.1 ± 4.8 mM-1 s-1, at 9.4 teslas, strengthening the potential for T1 and T2 imaging. Several metrics were used to assess stability, and the porosity produced no reduction in metal stability. Synchrotron X-ray fluorescence microscopy was used to demonstrate that the nanobeads remain intact in vivo. In depth, physicochemical characteristics were determined, including extensive pharmacokinetics, in vivo imaging, and systemic biodistribution analysis.


Asunto(s)
Materiales Biocompatibles/química , Medios de Contraste/química , Hierro/química , Manganeso/química , Nanopartículas/química , Compuestos Organometálicos/química , Poliestirenos/química , Animales , Materiales Biocompatibles/farmacocinética , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Supervivencia Celular/efectos de los fármacos , Medios de Contraste/farmacocinética , Reactivos de Enlaces Cruzados/química , Humanos , Imagen por Resonancia Magnética , Ratones Endogámicos BALB C , Imagen Multimodal , Porosidad , Espectrometría por Rayos X , Distribución Tisular
5.
Nano Lett ; 21(14): 5945-5951, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34251215

RESUMEN

Strain is known to enhance the activity of the oxygen reduction reaction in catalytic platinum alloy nanoparticles, whose inactivity is the primary impediment to efficient fuel cells and metal-air batteries. Bragg coherent diffraction imaging (BCDI) was employed to reveal the strain evolution during the voltammetric cycling in Pt-Ni alloy nanoparticles composed of Pt2Ni3, Pt1Ni1, and Pt3Ni2. Analysis of the 3D strain images using a core-shell model shows that the strain as large as 5% is induced on Pt-rich shells due to Ni dissolution. The composition dependency of the strain on the shells is in excellent agreement with that of the catalytic activity. The present study demonstrates that BCDI enables quantitative determination of the strain on alloy nanoparticles during electrochemical reactions, which provides a means to exploit surface strain to design a wide range of electrocatalysts.


Asunto(s)
Aleaciones , Nanopartículas , Catálisis , Oxidación-Reducción , Platino (Metal)
6.
Sci Rep ; 10(1): 19550, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177558

RESUMEN

X-ray ptychography is a rapidly developing coherent diffraction imaging technique that provides nanoscale resolution on extended field-of-view. However, the requirement of coherence and the scanning mechanism limit the throughput of ptychographic imaging. In this paper, we propose X-ray ptychography using multiple illuminations instead of single illumination in conventional ptychography. Multiple locations of the sample are simultaneously imaged by spatially separated X-ray beams, therefore, the obtained field-of-view in one scan can be enlarged by a factor equal to the number of illuminations. We have demonstrated this technique experimentally using two X-ray beams focused by a house-made Fresnel zone plate array. Two areas of the object and corresponding double illuminations were successfully reconstructed from diffraction patterns acquired in one scan, with image quality similar with those obtained by conventional single-beam ptychography in sequence. Multi-beam ptychography approach increases the imaging speed, providing an efficient way for high-resolution imaging of large extended specimens.

7.
Sci Rep ; 9(1): 16965, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31740720

RESUMEN

Human papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HNSCC) is biologically distinct from HPV-negative HNSCC. Outside of HPV-status, few tumor-intrinsic variables have been identified that correlate to improved survival. As part of exploratory analysis into the trace elemental composition of oropharyngeal squamous cell carcinoma (OPSCC), we performed elemental quanitification by X-ray fluorescence microscopy (XFM) on a small cohort (n = 32) of patients with HPV-positive and -negative OPSCC and identified in HPV-positive cases increased zinc (Zn) concentrations in tumor tissue relative to normal tissue. Subsequent immunohistochemistry of six Zn-binding proteins-zinc-α2-glycoprotein (AZGP1), Lipocalin-1, Albumin, S100A7, S100A8 and S100A9-revealed that only AZGP1 expression significantly correlated to HPV-status (p < 0.001) and was also increased in tumor relative to normal tissue from HPV-positive OPSCC tumor samples. AZGP1 protein expression in our cohort significantly correlated to a prolonged recurrence-free survival (p = 0.029), similar to HNSCC cases from the TCGA (n = 499), where highest AZGP1 mRNA levels correlated to improved overall survival (p = 0.023). By showing for the first time that HPV-positive OPSCC patients have increased intratumoral Zn levels and AZGP1 expression, we identify possible positive prognostic biomarkers in HNSCC as well as possible mechanisms of increased sensitivity to chemoradiation in HPV-positive OPSCC.


Asunto(s)
Neoplasias Orofaríngeas/virología , Infecciones por Papillomavirus/metabolismo , Proteínas de Plasma Seminal/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/virología , Zinc/metabolismo , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Femenino , Humanos , Lipocalina 1/metabolismo , Masculino , Persona de Mediana Edad , Neoplasias Orofaríngeas/metabolismo , Neoplasias Orofaríngeas/mortalidad , Proteína A7 de Unión a Calcio de la Familia S100/metabolismo , Proteínas de Plasma Seminal/genética , Espectrometría por Rayos X , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/mortalidad , Zn-alfa-2-Glicoproteína
8.
J Vis Exp ; (145)2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30907876

RESUMEN

The locus coeruleus (LC) is a major hub of norepinephrine producing neurons that modulate a number of physiological functions. Structural or functional abnormalities of LC impact several brain regions including cortex, hippocampus, and cerebellum and may contribute to depression, bipolar disorder, anxiety, as well as Parkinson disease and Alzheimer disease. These disorders are often associated with metal misbalance, but the role of metals in LC is only partially understood. Morphologic and functional studies of LC are needed to better understand the human pathologies and contribution of metals. Mice are a widely used experimental model, but the mouse LC is small (~0.3 mm diameter) and hard to identify for a non-expert. Here, we describe a step-by-step immunohistochemistry-based protocol to localize the LC in the mouse brain. Dopamine-ß-hydroxylase (DBH), and alternatively, tyrosine hydroxylase (TH), both enzymes highly expressed in the LC, are used as immunohistochemical markers in brain slices. Sections adjacent to LC-containing sections can be used for further analysis, including histology for morphological studies, metabolic testing, as well as metal imaging by X-ray fluorescence microscopy (XFM).


Asunto(s)
Locus Coeruleus/anatomía & histología , Animales , Tronco Encefálico/anatomía & histología , Dopamina beta-Hidroxilasa/metabolismo , Humanos , Imagenología Tridimensional , Masculino , Metales/metabolismo , Ratones , Tirosina 3-Monooxigenasa/metabolismo
9.
J Synchrotron Radiat ; 26(Pt 1): 220-229, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30655488

RESUMEN

Bragg coherent X-ray diffraction imaging has become valuable for visualization of the structural, morphological and strain evolution of crystals in operando electrode materials. As the electrode material particles (either in a single-crystal form or an aggregation form of single crystals) are evenly dispersed and randomly oriented in the electrode laminate, the submicrometer-sized coherentX-ray beam can be used to probe the local properties of electrode material crystals using two approaches. Coherent multi-crystal diffraction provides collective structural information of phase transitions in tens of crystals simultaneously as well as the individual behavior from single crystals, which are oriented at the Bragg condition in the X-ray illumination volume. Bragg coherent diffractive imaging enables one to monitor the evolution of the morphology and strain in individual crystals. This work explores and highlights the Bragg coherent X-ray diffraction measurements of battery electrode materials in operando conditions at the 34-ID-C beamline at the Advanced Photon Source. The experiment is demonstrated with NaNi1/3Fe1/3Mn1/3O2, a sodium-ion cathode material loaded in a half cell. The paper will discuss, in detail, the beamline setup, sample mounting and handling, alignment strategies and the data acquisition protocols.

10.
Nanoscale Adv ; 1(8): 3009-3014, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-36133615

RESUMEN

The chemical properties of materials are dependent on dynamic changes in their three-dimensional (3D) structure as well as on the reactive environment. We report an in situ 3D imaging study of defect dynamics of a single gold nanocrystal. Our findings offer an insight into its dynamic nanostructure and unravel the formation of a nanotwin network under CO oxidation conditions. In situ/operando defect dynamics imaging paves the way to elucidate chemical processes at the single nano-object level towards defect-engineered nanomaterials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA