Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 62(5): 1000-1011, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36802343

RESUMEN

Light chain amyloidosis is the most common form of systemic amyloidosis. This disease is caused by the formation and deposition of amyloid fibers made from immunoglobulin light chains. Environmental conditions such as pH and temperature can affect protein structure and induce the development of these fibers. Several studies have shed light on the native state, stability, dynamics, and final amyloid state of these proteins; however, the initiation process and the fibril formation pathway remain poorly understood structurally and kinetically. To study this, we analyzed the unfolding and aggregation process of the 6aJL2 protein under acidic conditions, with temperature changes, and upon mutation, using biophysical and computational techniques. Our results suggest that the differences in amyloidogenicity displayed by 6aJL2 under these conditions are caused by traversing different aggregation pathways, including unfolded intermediates and the formation of oligomers.


Asunto(s)
Amiloidosis , Cadenas Ligeras de Inmunoglobulina , Humanos , Cadenas Ligeras de Inmunoglobulina/química , Amiloide/química , Amiloidosis/metabolismo , Proteínas Amiloidogénicas/genética , Mutación
2.
J Biol Chem ; 298(12): 102659, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36328246

RESUMEN

Self-association of WT ß2-microglobulin (WT-ß2m) into amyloid fibrils is associated with the disorder dialysis related amyloidosis. In the familial variant D76N-ß2m, the single amino acid substitution enhances the aggregation propensity of the protein dramatically and gives rise to a disorder that is independent of renal dysfunction. Numerous biophysical and structural studies on WT- and D76N-ß2m have been performed in order to better understand the structure and dynamics of the native proteins and their different potentials to aggregate into amyloid. However, the structural properties of transient D76N-ß2m oligomers and their role(s) in assembly remained uncharted. Here, we have utilized NMR methods, combined with photo-induced crosslinking, to detect, trap, and structurally characterize transient dimers of D76N-ß2m. We show that the crosslinked D76N-ß2m dimers have different structures from those previously characterized for the on-pathway dimers of ΔN6-ß2m and are unable to assemble into amyloid. Instead, the crosslinked D76N-ß2m dimers are potent inhibitors of amyloid formation, preventing primary nucleation and elongation/secondary nucleation when added in substoichiometric amounts with D76N-ß2m monomers. The results highlight the specificity of early protein-protein interactions in amyloid formation and show how mapping these interfaces can inform new strategies to inhibit amyloid assembly.


Asunto(s)
Amiloidosis , Microglobulina beta-2 , Humanos , Microglobulina beta-2/química , Amiloide/química , Proteínas Amiloidogénicas/genética , Sustitución de Aminoácidos , Amiloidosis/genética , Fenómenos Biofísicos , Polímeros
3.
Essays Biochem ; 66(7): 959-975, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-35975807

RESUMEN

The pathological assembly of intrinsically disordered proteins/peptides (IDPs) into amyloid fibrils is associated with a range of human pathologies, including neurodegeneration, metabolic diseases and systemic amyloidosis. These debilitating disorders affect hundreds of millions of people worldwide, and the number of people affected is increasing sharply. However, the discovery of therapeutic agents has been immensely challenging largely because of (i) the diverse number of aggregation pathways and the multi-conformational and transient nature of the related proteins or peptides and (ii) the under-development of experimental pipelines for the identification of disease-modifying molecules and their mode-of-action. Here, we describe current approaches used in the search for small-molecule modulators able to control or arrest amyloid formation commencing from IDPs and review recently reported accelerators and inhibitors of amyloid formation for this class of proteins. We compare their targets, mode-of-action and effects on amyloid-associated cytotoxicity. Recent successes in the control of IDP-associated amyloid formation using small molecules highlight exciting possibilities for future intervention in protein-misfolding diseases, despite the challenges of targeting these highly dynamic precursors of amyloid assembly.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Humanos , Proteínas Intrínsecamente Desordenadas/química , Amiloide/metabolismo , Péptidos
4.
Nat Commun ; 13(1): 4986, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36008493

RESUMEN

Alpha-synuclein (αSyn) is a protein involved in neurodegenerative disorders including Parkinson's disease. Amyloid formation of αSyn can be modulated by the 'P1 region' (residues 36-42). Here, mutational studies of P1 reveal that Y39A and S42A extend the lag-phase of αSyn amyloid formation in vitro and rescue amyloid-associated cytotoxicity in C. elegans. Additionally, L38I αSyn forms amyloid fibrils more rapidly than WT, L38A has no effect, but L38M does not form amyloid fibrils in vitro and protects from proteotoxicity. Swapping the sequence of the two residues that differ in the P1 region of the paralogue γSyn to those of αSyn did not enhance fibril formation for γSyn. Peptide binding experiments using NMR showed that P1 synergises with residues in the NAC and C-terminal regions to initiate aggregation. The remarkable specificity of the interactions that control αSyn amyloid formation, identifies this region as a potential target for therapeutics, despite their weak and transient nature.


Asunto(s)
Amiloidosis , Enfermedad de Parkinson , Amiloide/metabolismo , Proteínas Amiloidogénicas , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
5.
Nat Commun ; 13(1): 1040, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35210421

RESUMEN

Human islet amyloid polypeptide (hIAPP) self-assembles into amyloid fibrils which deposit in pancreatic islets of type 2 diabetes (T2D) patients. Here, we applied chemical kinetics to study the mechanism of amyloid assembly of wild-type hIAPP and its more amyloidogenic natural variant S20G. We show that the aggregation of both peptides involves primary nucleation, secondary nucleation and elongation. We also report the discovery of two structurally distinct small-molecule modulators of hIAPP assembly, one delaying the aggregation of wt hIAPP, but not S20G; while the other enhances the rate of aggregation of both variants at substoichiometric concentrations. Investigation into the inhibition mechanism(s) using chemical kinetics, native mass spectrometry, fluorescence titration, SPR and NMR revealed that the inhibitor retards primary nucleation, secondary nucleation and elongation, by binding peptide monomers. By contrast, the accelerator predominantly interacts with species formed in the lag phase. These compounds represent useful chemical tools to study hIAPP aggregation and may serve as promising starting-points for the development of therapeutics for T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Islotes Pancreáticos , Amiloide/metabolismo , Proteínas Amiloidogénicas/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/metabolismo
6.
J Biol Chem ; 295(35): 12474-12484, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32661194

RESUMEN

The D76N variant of human ß2-microglobulin (ß2m) is the causative agent of a hereditary amyloid disease. Interestingly, D76N-associated amyloidosis has a distinctive pathology compared with aggregation of WT-ß2m, which occurs in dialysis-related amyloidosis. A folding intermediate of WT-ß2m, known as the IT-state, which contains a nonnative trans Pro-32, has been shown to be a key precursor of WT-ß2m aggregation in vitro However, how a single amino acid substitution enhances the rate of aggregation of D76N-ß2m and gives rise to a different amyloid disease remained unclear. Using real-time refolding experiments monitored by CD and NMR, we show that the folding mechanisms of WT- and D76N-ß2m are conserved in that both proteins fold slowly via an IT-state that has similar structural properties. Surprisingly, however, direct measurement of the equilibrium population of IT using NMR showed no evidence for an increased population of the IT-state for D76N-ß2m, ruling out previous models suggesting that this could explain its enhanced aggregation propensity. Producing a kinetically trapped analog of IT by deleting the N-terminal six amino acids increases the aggregation rate of WT-ß2m but slows aggregation of D76N-ß2m, supporting the view that although the folding mechanisms of the two proteins are conserved, their aggregation mechanisms differ. The results exclude the IT-state as the origin of the rapid aggregation of D76N-ß2m, suggesting that other nonnative states must cause its high aggregation rate. The results highlight how a single substitution at a solvent-exposed site can affect the mechanism of aggregation and the resulting disease.


Asunto(s)
Amiloide/química , Simulación de Dinámica Molecular , Agregado de Proteínas , Microglobulina beta-2/química , Sustitución de Aminoácidos , Amiloide/genética , Cristalografía por Rayos X , Humanos , Mutación Missense , Microglobulina beta-2/genética
7.
Nat Struct Mol Biol ; 27(3): 249-259, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32157247

RESUMEN

Aggregation of human α-synuclein (αSyn) is linked to Parkinson's disease (PD) pathology. The central region of the αSyn sequence contains the non-amyloid ß-component (NAC) crucial for aggregation. However, how NAC flanking regions modulate αSyn aggregation remains unclear. Using bioinformatics, mutation and NMR, we identify a 7-residue sequence, named P1 (residues 36-42), that controls αSyn aggregation. Deletion or substitution of this 'master controller' prevents aggregation at pH 7.5 in vitro. At lower pH, P1 synergises with a sequence containing the preNAC region (P2, residues 45-57) to prevent aggregation. Deleting P1 (ΔP1) or both P1 and P2 (ΔΔ) also prevents age-dependent αSyn aggregation and toxicity in C. elegans models and prevents αSyn-mediated vesicle fusion by altering the conformational properties of the protein when lipid bound. The results highlight the importance of a master-controller sequence motif that controls both αSyn aggregation and function-a region that could be targeted to prevent aggregation in disease.


Asunto(s)
Neuronas/química , Enfermedad de Parkinson/metabolismo , Agregado de Proteínas , alfa-Sinucleína/química , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Caenorhabditis elegans , Clonación Molecular , Modelos Animales de Enfermedad , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Genes Reporteros , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Neuronas/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Fosfatidilserinas/química , Multimerización de Proteína , Proteolípidos/química , Proteolípidos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
8.
Int J Mol Sci ; 20(17)2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31438515

RESUMEN

Light-chain amyloidosis (AL) is the most common systemic amyloidosis and is caused by the deposition of mainly insoluble immunoglobulin light chain amyloid fibrils in multiple organs, causing organ failure and eventually death. The germ-line λ6a has been implicated in AL, where a single point mutant at amino acid 24 (6aJL2-R24G) has been observed in around 25% of patient samples. Structural analysis has shown only subtle differences between both proteins; nevertheless, 6aJL2-R24G is more prone to form amyloid fibrils. To improve our understanding of the role of protein flexibility in amyloid fibril formation, we have used a combination of solution nuclear magnetic resonance spectroscopy and molecular dynamics simulations to complement the structural insight with dynamic knowledge. Fast timescale dynamics (ps-ns) were equivalent for both proteins, but suggested exchange events for some residues. Even though most of the intermediate dynamics (µs-ms) occurred at a similar region for both proteins, the specific characteristics are very different. A minor population detected in the dispersion experiments could be associated with the formation of an off-pathway intermediate that protects from fiber formation more efficiently in the germ-line protein. Moreover, we found that the hydrogen bond patterns for both proteins are similar, but the lifetime for the mutant is significantly reduced; as a consequence, there is a decrease in the stability of the tertiary structure that extends throughout the protein and leads to an increase in the propensity to form amyloid fibers.


Asunto(s)
Amiloidosis/metabolismo , Humanos , Cadenas Ligeras de Inmunoglobulina/química , Cadenas Ligeras de Inmunoglobulina/metabolismo , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Pliegue de Proteína , Estructura Secundaria de Proteína
9.
Mol Microbiol ; 110(3): 335-356, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30044025

RESUMEN

Bacteria surround their cytoplasmic membrane with an essential, stress-bearing peptidoglycan (PG) layer consisting of glycan chains linked by short peptides into a mesh-like structure. Growing and dividing cells expand their PG layer using inner-membrane anchored PG synthases, including Penicillin-binding proteins (PBPs), which participate in dynamic protein complexes to facilitate cell wall growth. In Escherichia coli, and presumably other Gram-negative bacteria, growth of the mainly single layered PG is regulated by outer membrane-anchored lipoproteins. The lipoprotein LpoB is required to activate PBP1B, which is a major, bi-functional PG synthase with glycan chain polymerising (glycosyltransferase) and peptide cross-linking (transpeptidase) activities. In this work we show how the binding of LpoB to the regulatory UB2H domain of PBP1B activates both activities. Binding induces structural changes in the UB2H domain, which transduce to the two catalytic domains by distinct allosteric pathways. We also show how an additional regulator protein, CpoB, is able to selectively modulate the TPase activation by LpoB without interfering with GTase activation.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteínas de Unión a las Penicilinas/química , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano Glicosiltransferasa/química , Peptidoglicano Glicosiltransferasa/metabolismo , Peptidoglicano/biosíntesis , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/química , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Regulación Alostérica , Proteínas de la Membrana/metabolismo , Unión Proteica , Conformación Proteica
10.
Biochim Biophys Acta Gen Subj ; 1862(7): 1656-1666, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29669263

RESUMEN

Solvent conditions modulate the expression of the amyloidogenic potential of proteins. In this work the effect of pH on the fibrillogenic behavior and the conformational properties of 6aJL2, a model protein of the highly amyloidogenic variable light chain λ6a gene segment, was examined. Ordered aggregates showing the ultrastructural and spectroscopic properties observed in amyloid fibrils were formed in the 2.0-8.0 pH range. At pH <3.0 a drastic decrease in lag time and an increase in fibril formation rate were found. In the 4.0-8.0 pH range there was no spectroscopic evidence for significant conformational changes in the native state. Likewise, heat capacity measurements showed no evidence for residual structure in the unfolded state. However, at pH <3.0 stability is severely decreased and the protein suffers conformational changes as detected by circular dichroism, tryptophan and ANS fluorescence, as well as by NMR spectroscopy. Molecular dynamics simulations indicate that acid-induced conformational changes involve the exposure of the loop connecting strands E and F. These results are compatible with pH-induced changes in the NMR spectra. Overall, the results indicate that the mechanism involved in the acid-induced increase in the fibrillogenic potential of 6aJL2 is profoundly different to that observed in κ light chains, and is promoted by localized conformational changes in a region of the protein that was previously not known to be involved in acid-induced light chain fibril formation. The identification of this region opens the potential for the design of specific inhibitors.


Asunto(s)
Amiloide/química , Cadenas lambda de Inmunoglobulina/química , Agregado de Proteínas , Ácidos/farmacología , Rastreo Diferencial de Calorimetría , Humanos , Concentración de Iones de Hidrógeno , Cadenas lambda de Inmunoglobulina/genética , Microscopía Electrónica , Modelos Moleculares , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica/efectos de los fármacos , Desnaturalización Proteica/efectos de los fármacos , Pliegue de Proteína , Estabilidad Proteica , Proteínas Recombinantes/química , Espectrometría de Fluorescencia , Urea/farmacología
11.
Front Microbiol ; 9: 3223, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30713527

RESUMEN

Peptidoglycan (PG) is an essential component of the cell envelope, maintaining bacterial cell shape and protecting it from bursting due to turgor pressure. The monoderm bacterium Staphylococcus aureus has a highly cross-linked PG, with ~90% of peptide stems participating in DD-cross-links and up to 15 peptide stems connected with each other. These cross-links are formed in transpeptidation reactions catalyzed by penicillin-binding proteins (PBPs) of classes A and B. Most S. aureus strains have three housekeeping PBPs with this function (PBP1, PBP2, and PBP3) but MRSA strains have acquired a third class B PBP, PBP2a, which is encoded by the mecA gene and required for the expression of high-level resistance to ß-lactams. Another housekeeping PBP of S. aureus is PBP4, which belongs to the class C PBPs, and hence would be expected to have PG hydrolase (DD-carboxypeptidase or DD-endopeptidase) activity. However, previous works showed that, unexpectedly, PBP4 has transpeptidase activity that significantly contributes to both the high level of cross-linking in the PG of S. aureus and to the low level of ß-lactam resistance in the absence of PBP2a. To gain insights into this unusual activity of PBP4, we studied by NMR spectroscopy its interaction in vitro with different substrates, including intact peptidoglycan, synthetic peptide stems, muropeptides, and long glycan chains with uncross-linked peptide stems. PBP4 showed no affinity for the complex, intact peptidoglycan or the smallest isolated peptide stems. Transpeptidase activity of PBP4 was verified with the disaccharide peptide subunits (muropeptides) in vitro, producing cyclic dimer and multimer products; these assays also showed a designed PBP4(S75C) nucleophile mutant to be inactive. Using this inactive but structurally highly similar variant, liquid-state NMR identified two interaction surfaces in close proximity to the central nucleophile position that can accommodate the potential donor and acceptor stems for the transpeptidation reaction. A PBP4:muropeptide model structure was built from these experimental restraints, which provides new mechanistic insights into mecA independent resistance to ß-lactams in S. aureus.

12.
Biochemistry ; 54(32): 4978-86, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26214579

RESUMEN

Light chain amyloidosis (AL) is a deadly disease characterized by the deposition of monoclonal immunoglobulin light chains as insoluble amyloid fibrils in different organs and tissues. Germ line λ VI has been closely related to this condition; moreover, the R24G mutation is present in 25% of the proteins of this germ line in AL patients. In this work, five small molecules were tested as inhibitors of the formation of amyloid fibrils from the 6aJL2-R24G protein. We have found by thioflavin T fluorescence and transmission electron microscopy that EGCG inhibits 6aJL2-R24G fibrillogenesis. Furthermore, using nuclear magnetic resonance spectroscopy, dynamic light scattering, and isothermal titration calorimetry, we have determined that the inhibition is due to binding to the protein in its native state, interacting mainly with aromatic residues.


Asunto(s)
Amiloide/antagonistas & inhibidores , Amiloide/genética , Amiloidosis/tratamiento farmacológico , Amiloidosis/genética , Catequina/análogos & derivados , Cadenas Ligeras de Inmunoglobulina/efectos de los fármacos , Cadenas Ligeras de Inmunoglobulina/genética , Mutación Missense , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Amiloide/biosíntesis , Amiloidosis/metabolismo , Catequina/farmacología , Humanos , Cadenas Ligeras de Inmunoglobulina/biosíntesis , Técnicas In Vitro , Melatonina/farmacología , Microscopía Electrónica de Transmisión , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Quercetina/farmacología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/efectos de los fármacos , Proteínas Recombinantes/genética , Rifampin/farmacología , Tetraciclina/farmacología
13.
Biochem Biophys Res Commun ; 456(2): 695-9, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25522882

RESUMEN

AL amyloidosis is the most common amyloid systemic disease and it is characterized by the deposition of immunoglobulin light chain amyloid fibers in different organs, causing organ failure. The immunoglobulin light chain germinal line 6a has been observed to over-express in AL patients, moreover, it was observed that, out of these amyloidogenic proteins, 25% present a mutation of an Arg to Gly in position 24. In vitro studies have shown that this mutation produces proteins with a higher amyloid fiber propensity. It was proposed that this difference was due, in part, to the formation of a non-canonical structural element. In order to get a more detailed understanding of the structural and dynamic properties that govern the amyloid fibers formation process, we have determined the solution structure by NMR for the two constructs, showing that the difference in amyloid fibril formation is not due to sequence or structure.


Asunto(s)
Amiloide/química , Amiloidosis/metabolismo , Cadenas lambda de Inmunoglobulina/química , Secuencia de Aminoácidos , Amiloide/genética , Amiloidosis/genética , Arginina/química , Arginina/genética , Entropía , Glicina/química , Glicina/genética , Humanos , Cadenas lambda de Inmunoglobulina/genética , Datos de Secuencia Molecular , Mutación Puntual , Pliegue de Proteína , Estructura Secundaria de Proteína , Soluciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...