Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Neuroinflammation ; 21(1): 107, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659061

RESUMEN

Neuroinflammation and synaptodendritic damage represent the pathological hallmarks of HIV-1 associated cognitive disorders (HAND). The post-synaptic protein neurogranin (Nrgn) is significantly reduced in the frontal cortex of postmortem brains from people with HIV (PWH) and it is associated with inflammatory factors released by infected microglia/macrophages. However, the mechanism involved in synaptic loss have yet to be elucidated. In this study, we characterized a newly identified long non-coding RNA (lncRNA) transcript (RP11-677M14.2), which is antisense to the NRGN locus and is highly expressed in the frontal cortex of HIV-1 individuals. Further analysis indicates an inverse correlation between the expression of RP11-677M14.2 RNA and Nrgn mRNA. Additionally, the Nrgn-lncRNA axis is dysregulated in neurons exposed to HIV-1 infected microglia conditioned medium enriched with IL-1ß. Moreover, in vitro overexpression of this lncRNA impacts Nrgn expression at both mRNA and protein levels. Finally, we modeled the Nrgn-lncRNA dysregulation within an HIV-1-induced inflammatory environment using brain organoids, thereby corroborating our in vivo and in vitro findings. Together, our study implicates a plausible role for lncRNA RP11-677M14.2 in modulating Nrgn expression that might serve as the mechanistic link between Nrgn loss and cognitive dysfunction in HAND, thus shedding new light on the mechanisms underlying synaptodendritic damage.


Asunto(s)
VIH-1 , Neurogranina , Enfermedades Neuroinflamatorias , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , Neurogranina/metabolismo , Neurogranina/genética , Enfermedades Neuroinflamatorias/metabolismo , Infecciones por VIH/metabolismo , Infecciones por VIH/genética , Infecciones por VIH/patología , Microglía/metabolismo , Masculino , Animales
2.
Res Sq ; 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38260270

RESUMEN

Neuroinflammation and synaptodendritic damage represent the pathological hallmarks of HIV-1 associated cognitive disorders (HAND). The post-synaptic protein neurogranin (Nrgn) is significantly reduced in the frontal cortex of postmortem brains from people with HIV (PWH) and it is associated with inflammatory factors released by infected microglia/macrophages. However, the mechanism involved in synaptic loss have yet to be elucidated. In this study, we characterized a newly identified long non-coding RNA (lncRNA) transcript (RP11-677M14.2), which is antisense to the NRGN locus and is highly expressed in the frontal cortex of HIV-1 individuals. Further analysis indicates an inverse correlation between the expression of RP11-677M14.2 RNA and Nrgn mRNA. Additionally, the Nrgn-lncRNA axis is dysregulated in neurons exposed to HIV-1 infected microglia conditioned medium enriched with IL-1b. Moreover, in vitro overexpression of this lncRNA impact Nrgn expression at both mRNA and protein levels. Finally, we modeled the Nrgn-lncRNA dysregulation within an HIV-1-induced neuroinflammatory environment using brain organoids, thereby corroborating our in vivo and in vitro findings. Together, our study implicates a plausible role for lncRNA RP11-677M14.2 in modulating Nrgn expression that might serve as the mechanistic link between Nrgn loss and cognitive dysfunction in HAND, thus shedding new light on the mechanisms underlying synaptodendritic damage.

3.
Viruses ; 15(9)2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37766322

RESUMEN

Following virus infections, type I interferons are synthesized to induce the expression of antiviral molecules and interfere with virus replication. The importance of early antiviral type I IFN response against virus invasion has been emphasized during COVID-19 as well as in studies on the microbiome. Further, type I IFNs can directly act on various immune cells to enhance protective host immune responses to viral infections. However, accumulating data indicate that IFN responses can be harmful to the host by instigating inflammatory responses or inducing T cell suppression during virus infections. Also, inhibition of lymphocyte and dendritic cell development can be caused by type I IFN, which is independent of the traditional signal transducer and activator of transcription 1 signaling. Additionally, IFNs were shown to impair airway epithelial cell proliferation, which may affect late-stage lung tissue recovery from the infection. As such, type I IFN-virus interaction research is diverse, including host antiviral innate immune mechanisms in cells, viral strategies of IFN evasion, protective immunity, excessive inflammation, immune suppression, and regulation of tissue repair. In this report, these IFN activities are summarized with an emphasis placed on the functions of type I IFNs recently observed during acute or chronic virus infections.


Asunto(s)
COVID-19 , Interferón Tipo I , Virosis , Humanos , Antivirales/uso terapéutico , Replicación Viral
4.
Methods Mol Biol ; 2149: 463-481, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32617951

RESUMEN

Hydroxyproline-rich glycoproteins (HRGPs) are a superfamily of plant cell wall proteins that function in diverse aspects of plant growth and development. This superfamily consists of three members: arabinogalactan-proteins (AGPs), extensins (EXTs), and proline-rich proteins (PRPs). Hybrid and chimeric HRGPs also exist. A bioinformatic software program, BIO OHIO 2.0, was developed to expedite the genome-wide identification and classification of AGPs, EXTs, and PRPs based on characteristic HRGP motifs and biased amino acid compositions. This chapter explains the principles of identifying HRGPs and provides a stepwise tutorial for using the BIO OHIO 2.0 program with genomic/proteomic data. Here, as an example, the genome/proteome of the common bean (Phaseolus vulgaris) is analyzed using the BIO OHIO 2.0 program to identify and characterize its set of HRGPs.


Asunto(s)
Biología Computacional/métodos , Glicoproteínas/química , Glicoproteínas/clasificación , Proteínas de Plantas/clasificación , Programas Informáticos , Genoma de Planta , Glicoproteínas/genética , Mucoproteínas/química , Mucoproteínas/clasificación , Mucoproteínas/genética , Phaseolus/química , Phaseolus/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Dominios Proteicos Ricos en Prolina , Proteoma/análisis , Análisis de Secuencia de Proteína/métodos
5.
Arch. endocrinol. metab. (Online) ; 63(6): 557-567, Nov.-Dec. 2019. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1055021

RESUMEN

ABSTRACT In order to provide new insights into the various activities of GH in specific tissues, recent advances have allowed for the generation of tissue-specific GHR knockout mice. To date, 21 distinct tissue-specific mouse lines have been created and reported in 28 publications. Targeted tissues include liver, muscle, fat, brain, bone, heart, intestine, macrophage, pancreatic beta cells, hematopoietic stem cells, and multi-tissue "global". In this review, we provide a brief history and description of the 21 tissue-specific GHR knockout mouse lines. Arch Endocrinol Metab. 2019;63(6):557-67


Asunto(s)
Animales , Ratas , Receptores de Somatotropina/fisiología , Hormona del Crecimiento/fisiología , Transducción de Señal , Ratones Noqueados , Modelos Animales
6.
Endocrinology ; 160(7): 1743-1756, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31099824

RESUMEN

In 1997, our laboratory used targeted gene disruption of the GH receptor (GHR) to generate GHR knockout (GHR-/-) mice, which have been used in >127 published studies to help elucidate GH's numerous activities. However, because GH replacement studies cannot be performed using this line, a GH knockout mouse line via targeted disruption of the GH gene is needed. Therefore, we created and characterized GH gene-disrupted (GH-/-) mice. GH-/- mice have severely decreased IGF-1 levels, small body size, and altered body composition with increased adiposity. GH-/- mice are extremely insulin sensitive but glucose intolerant, with a dramatic reduction in pancreatic islet size. Importantly, disruption of the GH gene had profound and depot-specific effects on white adipose tissue (WAT). Subcutaneous WAT from male and female GH-/- mice have significantly larger adipocytes and reduced fibrosis, neither of which occurred in perigonadal WAT, suggesting that GH has a more pronounced effect on subcutaneous WAT. Comparisons of GH-/- mice to previously published data on GHR-/- mice show a remarkably similar phenotype. Finally, we demonstrate that GH-/- mice are responsive to GH treatment, as shown by changes to serum IGF-1 levels; body length, weight, and composition; and insulin sensitivity. This study not only provides characterization of the first mouse line with targeted mutation of the GH gene but also indicates that GH gene disruption dramatically influences fibrosis of subcutaneous WAT.


Asunto(s)
Adipocitos/metabolismo , Hormona del Crecimiento/genética , Resistencia a la Insulina/fisiología , Grasa Subcutánea/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Composición Corporal/fisiología , Femenino , Fibrosis/genética , Fibrosis/metabolismo , Hormona del Crecimiento/metabolismo , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Ratones Noqueados
7.
Arch Endocrinol Metab ; 63(6): 557-567, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31939480

RESUMEN

In order to provide new insights into the various activities of GH in specific tissues, recent advances have allowed for the generation of tissue-specific GHR knockout mice. To date, 21 distinct tissue-specific mouse lines have been created and reported in 28 publications. Targeted tissues include liver, muscle, fat, brain, bone, heart, intestine, macrophage, pancreatic beta cells, hematopoietic stem cells, and multi-tissue "global". In this review, we provide a brief history and description of the 21 tissue-specific GHR knockout mouse lines. Arch Endocrinol Metab. 2019;63(6):557-67.


Asunto(s)
Hormona del Crecimiento/fisiología , Receptores de Somatotropina/fisiología , Animales , Ratones , Ratones Noqueados , Modelos Animales , Transducción de Señal
8.
Endocrinology ; 160(1): 68-80, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30462209

RESUMEN

Global GH receptor-null or knockout (GHRKO) mice have been extensively studied owing to their unique phenotype (dwarf and obese but remarkably insulin sensitive and long-lived). To better understand the influence of adipose tissue (AT) on the GHRKO phenotype, we previously generated fat-specific GHRKO (FaGHRKO) mice using the adipocyte protein-2 (aP2) promoter driving Cre expression. Unlike global GHRKO mice, FaGHRKO mice are larger than control mice and have an increase in white AT (WAT) mass and adipocyte size as well as an increase in brown AT mass. FaGHRKO mice also have an unexpected increase in IGF-1, decrease in adiponectin, no change in insulin sensitivity or liver triglyceride content, and a decreased lifespan. Extensive analysis of the aP2 promoter/enhancer by multiple laboratories has revealed expression in nonadipose tissues, confounding interpretation of results. In the current study, we used the adiponectin promoter/enhancer to drive Cre expression, which better targets mature adipocytes, and generated a new line of adipocyte-specific GHRKO (AdGHRKO) mice. AdGHRKO mice have an increase in adipocyte size and WAT depot mass in all depots except male perigonadal, a WAT accumulation pattern similar to FaGHRKO mice. Likewise, adiponectin levels and WAT fibrosis are decreased in both tissue-specific mouse lines. However, unlike FaGHRKO mice, AdGHRKO mice have no change in IGF-1 levels, improved glucose homeostasis, and reduced liver triglycerides. Thus, AdGHRKO mice should be valuable for future studies assessing the contribution of adipocyte GHR signaling in long-term health and lifespan.


Asunto(s)
Adipocitos/metabolismo , Proteínas Portadoras/genética , Resistencia a la Insulina , Hígado/metabolismo , Triglicéridos/metabolismo , Adiponectina , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Proteínas Portadoras/metabolismo , Femenino , Humanos , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Ratones , Ratones Noqueados , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...