Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
ACS Appl Mater Interfaces ; 16(30): 39631-39641, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39022811

RESUMEN

In response to growing concerns about public safety and environmental conservation, it is essential to develop a precise identification method for trace explosives. To improve the stability and detection sensitivity of perovskite quantum dots (PQDs) and address the issue of low porosity in traditional polymer-based photonic crystals (PhCs), this study proposed a PQD photoluminescence (PL) enhancement strategy based on the slow light effect of ZIF-8 PhCs for highly sensitive, selective, and convenient detection of 2,4,6-trinitrophenol (TNP). The slow light effect at the photonic band gap edge is the basis of amplifying the PL signal. PhCs were fabricated by the evaporation-induced self-assembly method. The diffraction wavelength overlapping the whole visible region was designed to match the emission wavelength of PQDs. Results showed that PhCs matching the PBG edge with PQDs' emission peak amplified the PL signal 11.3 times, significantly improving sensitivity for trace TNP detection with a limit as low as 2.52 nM. Moreover, there was a 13.3-fold enhancement of PQDs' fluorescence lifetime when the emission wavelength fell in the PBG range. The hydrophobic surface of ZIF-8 PhCs enhanced the PQDs' stability and moisture resistance. Furthermore, the selective quenching mechanism of TNP by the sensor was photoinduced electron transfer (PET) verified by DFT calculations and time-resolved PL decay dynamics measurements. This study demonstrated great potential for manipulating light emission enhancement by PhCs in developing efficient fluorescent sensors for trace environmental pollutant detection.

2.
Int J Biol Macromol ; 268(Pt 1): 131600, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631575

RESUMEN

Hereunder, we pioneered the synthesis of Copper Oxide nanoparticles (CuO NPs) utilizing Tragacanth gum (TG). The NPs were characterized using advanced techniques and assessed for different pharmaceutical and environmental perspectives. The successful formation of a colloidal NPs solution was confirmed by the appearance of a distinct black color and a distinct peak at 260 nm in UV-Visible spectrophotometry. The FTIR analysis unveiled a spectrum of functional groups responsible for the reduction and stabilization of CuO NPs. Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM) revealed size of NPs as 36.24 nm and 28 ± 04 nm respectively. Energy Dispersive X-ray (EDX) Analysis indicated weight percentages of 70.38 % for Cu and 18.88 % for O, with corresponding atomic percentages. The X-ray Diffraction (XRD) analysis revealed the orthorhombic crystal structure of the prepared CuO NPs. Antimicrobial assessments through disc-diffusion assays demonstrated significant zones of inhibition (ZOI) against gram-positive bacterial strains (Bacillus Halodurans and Micrococcus leutus) and a gram-negative bacterial strain (E. coli). Against the fungal strain Aspergillus niger, a ZOI of 18.5 ± 0.31 mm was observed. The NPs exhibited remarkable antioxidant potential determined through 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and H2O2 scavenging assays. At a concentration of 3 mg/mL, the NPs demonstrated biofilm inhibition rates of 96 %, 90 %, 89.60 %, and 72.10 % against Micrococcus luteus, Bacillus halodurans, MRSA and E.coli respectively. Furthermore, the CuO NPs showed a high photocatalytic potential towards the degradation of safranin dye under sunlight irradiation. In conclusion, the findings underline the promising multifunctional properties of TG-based CuO NPs for different practical applications.


Asunto(s)
Biopelículas , Cobre , Nanopartículas del Metal , Tragacanto , Cobre/química , Tragacanto/química , Biopelículas/efectos de los fármacos , Catálisis , Nanopartículas del Metal/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Aspergillus niger/efectos de los fármacos , Procesos Fotoquímicos
3.
J Colloid Interface Sci ; 666: 639-647, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38615403

RESUMEN

According to the Fresnel theory, the reflectivity intensity of spherical and cylindrical convex surfaces decreases from their edge to center, and it is noteworthy and interesting for optical gain to study the enhancement of center reflectance. In this paper, a polydimethylsiloxane (PDMS) - encapsulated cylindrical non-closed-packed photonic crystals (NPCs) composite with Bragg-enhanced Fresnel reflectance was designed for spectral selectivity and optical gain. Theoretically and experimentally, the periodically ordered structure of NPCs achieved high-reflection of light in photonic bandgap and high-transmission in other bands, which enhanced Fresnel reflectivity of the convex center to specific bands. Furtherly, the cylindrical NPCs hydrogel with stretchability was applied for the dynamic tuning of optical signals. The reflection peak of the PDMS-encapsulated cylindrical NPCs composite blue-shifted from 608 nm to 413 nm with 50 % tensile strain and achieved a rapid transition of structural color from orange to blue-violet in 60 cycles. The new kind of photonic crystals composite for optical gain and spectral selection broke through the limitations of traditional Fresnel curved mirrors with the lowest central reflectivity and inability to perform spectral selectivity, and have great significance and application prospects in fields of signal transmission, optical measurement, and instrument design.

4.
ACS Appl Mater Interfaces ; 16(10): 13041-13051, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38417142

RESUMEN

Real-time sensing and monitoring of temperature are of great significance for assessing human health. The sensitivity and stability are inevitable issues for thermometers. In this study, a thermometer with the cylindrical thermochromic hydrogel was prepared for real-time visual monitoring of temperature, which had excellent temperature sensitivity, angle-independence axially, and environmental stability. The customization of their initial optical properties depended on the PMMA concentrations and the content of the hydrogel monomer. The glycerol introduced with solvent displacement formed hydrogen bonds with the hydrogel network, which stabilized their mechanical properties, and the reflection peak blue-shifted from 653 to 499 nm when tensile strain was 57.85%. At the same time, the environmental stability originated from the moisturizing properties of the glycerol, which enabled the hydrogel to reliably transmit the information on temperature into the air without losing moisture. The reflection peak of the cylindrical thermochromic hydrogel shifted from 657 to 455 nm when the temperature increased from 22 to 45 °C, which realized temperature visual monitoring in the full-color range. The temperature sensitivity of the glycerol─nonclose-packed photonic crystals remained stable for 1 month, which provided an optimal option for continuous visual temperature monitoring.

5.
J Transl Autoimmun ; 8: 100225, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38292070

RESUMEN

Background: Patients with ulcerative colitis (UC) often exhibit susceptibilities to multiple autoimmune diseases such as Sjogren's syndrome, primary sclerosing cholangitis, systemic lupus erythematosus, and insulin-dependent diabetes mellitus. This propensity likely stems from common pathogenic mechanisms underlying immune-mediated conditions. This report highlights the occurrence of autoimmune thyroid disease during UC exacerbations. Notably, the patient displayed petrified auricles.Case Summary.A 57-year-old male complained of sustained abdominal pain, diarrhea, hematochezia, and mucus for a duration of 20 days. The diagnosis of UC was confirmed via colonoscopy, histopathological examination, and small bowel MRE. Clinical evaluations revealed bilateral ectopic ossification in his ears, which appeared to develop over an unspecified timeframe. Imaging and histological evaluations substantiated the ectopic ossification diagnosis while eliminating the possibility of adrenal insufficiency. The presented case offers a unique instance of bilateral auricular ossification, which is hypothesized to result from hyperthyroidism. Conclusion: Our case report underscores the necessity of enhancing awareness of the rare complications associated with UC. Medical practitioners should recognize the potential overlap of autoimmune thyroid disorders in UC patients. It is imperative to test for thyroid-related antibodies in such individuals, irrespective of overt thyroid dysfunction.

6.
Biomater Sci ; 11(24): 7867-7883, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37902572

RESUMEN

In vitro culture of organoids holds considerable promise for the treatment of diseases or the provision of artificial organs. Traditional 2D differentiation from mesenchymal stem cells (MSCs) faces challenges in replicating the development of embryonic organs at the cellular level; conversely, the cultivation of 3D organoids exhibits potential for application. It is crucial for clinicians and technology researchers to acquire insights into organoid tissue differentiation, autonomous morphogenesis, as well as 3D assembly processes in vitro. In this investigation, novel 3D organoids capable of engendering complex liver-like tissues in vitro were cultured, and a class of high-luminance semiconductor polymer dots (Pdots) was employed to monitor the self-assembly process of 3D liver organoid tissues and cellular interaction and migration dynamics. Three-dimensional liver-bud (3D-LB) organoid tissues were derived through the interplay of induced MSCs, Wharton's Jelly, and human umbilical vein endothelial cells (HUVECs), and their structural characteristics were determined during the liver-bud organoid development; ultimately, the co-cultured organoid spatial cellular clusters resembling a truffle were successfully replicated. Utilizing R8-Pdots with remarkable resolution and biocompatibility, the structural elements of functional and vascularized organs derived from liver organoid tissues were adeptly reconstituted, and this investigation shall contribute to a further understanding of human hepato-developmental physiology and liver-disease modeling.


Asunto(s)
Hígado , Organoides , Humanos , Células Endoteliales de la Vena Umbilical Humana , Técnicas de Cocultivo , Diferenciación Celular
7.
ACS Appl Mater Interfaces ; 15(35): 42046-42055, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37622170

RESUMEN

Nowadays, the sensing of hazardous gases is urgent for the consideration of public safety and human health, especially in extreme conditions of low temperatures. In this study, a photonic crystals (PhCs) sensor with water retention and antifreezing properties was developed and applied to visual hazardous gases sensing at low temperature, passively. The sensor was prepared by dip-coating with poly(methyl methacrylate) (PMMA) colloidal microspheres followed by embedding in k-carrageenan/polyacrylamide-ethylene glycol (k-CA/PAM-EG) hydrogel. The sensor responded to hazardous gases, including ammonia, toluene, xylene, acetone, methanol, ethanol, and 1-propanol, with a change in the reflection wavelength and visible structural color. At room temperature, the reflection wavelength of the sensor blue-shifted 49 nm in ammonia, and the structural color changed from red to yellow. For low temperatures, the sensor showed great water retention and antifreezing properties even at -57 °C due to the double network. The sensor still had a great response to hazardous gases after freezing at -20 °C for 12 h and testing at 0 °C, and the obtained results were similar to those at room temperature. Based on this excellent stability and visual sensing at low temperature, the sensor demonstrates the potential for detection of hazardous vapors in extreme environments.

8.
Ecotoxicol Environ Saf ; 262: 115339, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37572622

RESUMEN

Difenoconazole (DFZ) is a classical triazole fungicide that causes immunosuppression in non-target organisms. Ferulic acid (FA) is a polyphenolic molecule found in nature that has antioxidant and anti-inflammatory activities. The purpose of this investigation was to see if FA could prevent DFZ-induced immunosuppression and to identify the potential mechanisms. Carp were exposed to 1/10 LC50 of DFZ as well as fed normal feed or feed containing dietary additive FA for 30 d. It was found that DFZ-induced immunosuppression could be improved by FA, as evidenced by upregulation of Hb, C3 and IgM and downregulation of LDH. It was then investigated that FA could ameliorate DFZ-induced splenic injury through p53-mediated apoptosis. At the same time, enhancing the levels of CAT, GSH and T-AOC in spleen and transcription levels Nrf2 signaling pathway related genes indicated that FA reduced oxidative damage caused by DFZ by blocking the Nrf2 signaling pathway. In addition, FA inhibited the inflammatory response triggered by TRAF/TAK1/NF-κB signaling pathway, downregulated the transcript levels of pro-inflammatory factors (il-1ß, tnf-α, il-6) and the level of NLRP3 inflammasome (NRLP3, ASC, Caspase 1), and upregulated the transcript levels of anti-inflammatory factors (tgf-ß1, il-10). In conclusion, the above results suggested that FA mediated TRAF/TAK1/NF-κB, Nrf2, and p53 pathways to attenuate DFZ-induced inflammation, oxidative stress, and apoptosis thereby enhancing the immune capacity of carp.

9.
Nat Commun ; 14(1): 4505, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37495590

RESUMEN

The therapeutic efficacy of whole tumor cell vaccines (TCVs) is modest, which has delayed their translation into personalized immunotherapies in the clinic. Here, we develop a TCV platform based on photothermal nanoparticle-loaded tumor cells, which can be rationally applied to diverse tumor types to achieve on-demand boost of anti-tumor immune responses for inhibiting tumor growth. During the fabrication process, mild photothermal heating by near-infrared (NIR) laser irradiation induces the nanoparticle-bearing tumor cells to express heat shock proteins as endogenous adjuvants. After a single vaccination at the back of tumor-bearing mice, non-invasive NIR laser irradiation further induces mild hyperthermia at vaccination site, which promotes the recruitment, activation, and antigen presentation by dendritic cells. Using an indicator we term fluctuation of tumor growth rate, we determine appropriate irradiation regimens (including optimized irradiation intervals and times). This TCV platform enables on-demand NIR manipulation of immune responses, and we demonstrate potent therapeutic efficacy against six murine models that mimick a range of clinical scenarios, including a model based on humanized mice and patient-derived tumor xenografts.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Vacunas , Humanos , Animales , Ratones , Línea Celular Tumoral , Fototerapia , Neoplasias/terapia , Presentación de Antígeno , Modelos Animales de Enfermedad , Rayos Láser
10.
Front Microbiol ; 14: 1211831, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37378287

RESUMEN

Introduction: Currently, hyperuricemia has shown a surprisingly rising trend, which attracts widespread attention due to potentially major health risks. Considering the inevitable side effects of long-term medicine, probiotics are emerging as potential therapeutics due to their ability to improve uric acid metabolism and superior safety. Methods: In our study, two strains of probiotics, Lactobacillus gasseri LG08 (LG08) and Leuconostoc mesenteroides LM58 (LM58) isolated from kimchi were evaluated for the prebiotic properties in vitro and uric-lowering effects in vivo. Here, hyperuricemia animal model and 16S rRNA gene amplicons analysis were further studied to investigate whether these probiotics exert different effects in prevention and treatment. Results: In vivo indicators and intestinal flora immunity revealed that both LG08 and LM58 significantly prevent the development and progression of hyperuricemia, repair the antioxidant system and maintain intestinal flora balance in healthy rats, especially LM58. After hyperuricemia was formed, although the effect of LG08 and LM58 could decrease the level of uric acid, the effect to reverse and repair antioxidant levels in the body was limited. Discussion: In our study, these findings have important implications for hyperuricemia prevention and therapy, and provided more mechanistic insights into the effect of probiotics in hyperuricemia.

11.
Molecules ; 28(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36985558

RESUMEN

Controlling the selectivity of a detonation initiation reaction of explosive is essential to reduce sensitivity, and it seems impossible to reduce it by strengthening the external electric field. To verify this, the effects of external electric fields on the initiation reactions in NH2NO2∙∙∙NH3, a model system of the nitroamine explosive with alkaline additive, were investigated at the MP2/6-311++G(2d,p) and CCSD(T)/6-311++G(2d,p) levels. The concerted effect in the intermolecular hydrogen exchange is characterized by an index of the imaginary vibrations. Due to the weakened concerted effects by the electric field along the -x-direction opposite to the "reaction axis", the dominant reaction changes from the intermolecular hydrogen exchange to 1,3-intramolecular hydrogen transference with the increase in the field strengths. Furthermore, the stronger the field strengths, the higher the barrier heights become, indicating the lower sensitivities. Therefore, by increasing the field strength and adjusting the orientation between the field and "reaction axis", not only can the reaction selectivity be controlled, but the sensitivity can also be reduced, in particular under a super-strong field. Thus, a traditional concept, in which the explosive is dangerous under the super-strong external electric field, is theoretically broken. Compared to the neutral medium, a low sensitivity of the explosive with alkaline can be achieved under the stronger field. Employing atoms in molecules, reduced density gradient, and surface electrostatic potentials, the origin of the reaction selectivity and sensitivity change is revealed. This work provides a new idea for the technical improvement regarding adding the external electric field into the explosive system.

12.
Gels ; 9(2)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36826253

RESUMEN

A photonic crystal material based on ß-cyclodextrin (ß-CD) with adsorption capacity is reported. The materials ((A-ß-CD)-AM PC) consist of 3D poly (methyl methacrylate) (PMMA) colloidal microsphere arrays and hydrogels supplemented with ß-cyclodextrin modified by acryloyl chloride. The prepared materials are then utilized for VOCs gas sensing. The 3D O-(A-ß-CD)-AM PC was used to detect toluene, xylene, and acetone and the response was seen as the red-shift of the reflection peak. The 3D I-(A-ß-CD)-AM PC was used to detect toluene, xylene, and acetone which occurred redshifted, while methanol, ethanol, and propanol and the peaks' red-shifting was observed. However, among these, methanol gave the largest red-shift response The sensor has broad prospects in the detection of alcohol and the detection of alcohol-loaded drug releases in the future.

13.
J Pharm Biomed Anal ; 227: 115104, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36827736

RESUMEN

The detection of the human immunodeficiency virus-1 (HIV) at an early stage is vital and could be realized through its cell surface glycoprotein-120 (gp120) without virus preprocessing. Here, we present an ssDNA-aptamer-linked photonic crystal (APC) hydrogel sensor for HIV detection which is comprised of photonic crystals (PCs) made of polystyrene nanoparticles embedded in the polyacrylamide hydrogel. ssDNA aptamers specific for gp120 are crosslinked in the hydrogel which can selectively bind to gp120 by hydrogen bonding increasing the PCs particle spacing and swelling of the hydrogel. The binding response can be visually monitored as a color change due to the diffraction of light from PCs and can eventually be measured (1-1000 ng mL-1 of gp120) and 100 to 108 VP mL-1 of HIV by the Debye's ring diameter or a UV/Vis spectrometer. APC-hydrogel can be regenerated by Tris-HCl and EDTA washing buffer system. The sensor demonstrates LOD of 7.1 ±â€¯1.55 ng mL-1 for gp120 and 4 VP mL-1 for the whole HIV, a rapid response of 5 min, reusability up to 70 % (in fifth use), and recovery of 95.4 ±â€¯0.1 % to 99.0 ±â€¯0.2 % in plasma samples. The sensor is cost-effect and stable compared to antibody-based sensors and can be utilized to develop point-of-care testing (POCT) devices for HIV diagnosis.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Hidrogeles/química , Sistemas de Atención de Punto , Oligonucleótidos , Infecciones por VIH/diagnóstico
14.
ACS Nano ; 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36633532

RESUMEN

Chiral plasmonic nanostructures have promising applications in optoelectronics due to their chiroptical responses. However, achieving active tuning of optical chirality remains challenging. Here, we develop stretchable chiroptical films with mechanically tunable extrinsic chirality by assembling hexagonal magnetic/plasmonic hybrid nanodisks in magnetic fields. The nanodisks, synthesized using a space-confined growth method, display three distinct plasmonic resonance modes at the UV-vis-NIR region, which red shift with increasing size as demonstrated by simulation and experimental results. The coupled magnetic and plasmonic anisotropy allows convenient control over the plasmonic resonance modes by altering the strength or direction of external magnetic fields. Further, magnetically aligning the nanodisks in a stretchable polymer film produces superstructures with extrinsic chirality, displaying selective absorption of circularly polarized light and inverted circular dichroism due to the linear dichroism-linear birefringence effect. Reversible mechanical stretching allows for continuous switching of circular dichroism in a wide range (from -1° to +1°). The efficient magnetic alignment of hybrid nanodisks in the hydrogel provides a simple and effective strategy for designing stretchable optical devices with tunable extrinsic chirality.

15.
ACS Appl Mater Interfaces ; 15(1): 2192-2203, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36575052

RESUMEN

Herein, we coalesced a poly(acrylamide-co-N-Acryloyl phenylalanine)/polyacrylamide double-network (P(AM-co-APA)/PAM DN) hydrogel with a photonic crystal array, fabricating a mechanochromic sensor for application in flexible medical instruments by naked eye monitoring. The intensified mechanical properties of the DN hydrogel were proved by the mechanical property tests, which are attributed to the interactions of chemical bonds and hydrogen bonds between the two polymer networks. In the range of stress from 0 to 328 kPa, the reflected light wavelength of this sensor changed from 659 to 480 nm and the color changed from red to blue in response; in the range of pressure from 0 to 85 kPa, the sensor exhibited a spectrum changing from 658 nm to 467 nm, covering almost the whole visible color range. The prepared sensor was incorporated into medical instruments including the femoral artery hemostat and bandage to indicate pressure and tensile stress in practical applications. Within the appropriate pressure for wound recovery, the sensitivity and correlation between the external stimulus of pressure and wavelength of this integrated sensor were 5.58 nm·kPa-1 and over 0.99, respectively. Ultimately, the sensor proved to be tough, sensitive, and durable, showing a broad prospect of a series of future applications.


Asunto(s)
Vendajes , Hidrogeles , Arteria Femoral , Fenómenos Físicos
16.
Anal Chem ; 95(2): 917-923, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36578103

RESUMEN

We present a microplate assay for the detection of HIV and SARS-CoV-2 which involves the preadsorption of carboxy-modified polystyrene microspheres to the microplate wells and their self-assembly leading to the formation of a photonic crystal colloidal array (PCCA). PCCA is then cross-linked with amino-modified aptamers selected for viral cell surface glycoproteins, i.e., S1-protein of SARS-CoV-2 and gp120 of the human immunodeficiency virus (HIV), to develop an aptamer-linked photonic crystal assay (ALPA). ALPA is then utilized as a proof-of-concept method for the detection of S1-protein, gp120, and two whole viruses, i.e., SARS-CoV-2 and HIV, as well. The aptamers are stable at room temperature and can bind with the viruses' proteins via hydrogen bonding. This binding leads to color generation from PCCA, and the signal can easily be measured and quantified by a UV/vis spectrometer. The assay carries the advantage of a two-step detection process by the addition of the virus sample directly to a 96-well microplate and incubation of 5 min followed by convenient detection through a UV/vis-spectrometer. The assay does not require any additional reagents and can be customized for similar viruses utilizing specific aptamers targeting their cell surface receptors.


Asunto(s)
Aptámeros de Nucleótidos , COVID-19 , Infecciones por VIH , Humanos , SARS-CoV-2 , Aptámeros de Nucleótidos/química , VIH , Ensayos Analíticos de Alto Rendimiento , Proteínas Virales
17.
J Mol Model ; 28(11): 375, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36324010

RESUMEN

In order to reduce the vulnerability, the responses to shock waves for booster explosives JO9C, JH14, JH6, and insensitive RDX were evaluated using shock wave partition loading test. To explain the experimental results, molecular dynamics simulation, intermolecular interaction and bond dissociation energy (BDE), and shock initiation pressures were evaluated using the B3LYP, MP2 (full), and M06-2X methods with the 6-311 + + G(2df,2p) basis set. The order of the responsivity is JO9C > JH14 > JH6 > insensitive RDX. The binding energies follow the order of JH14* ≈ JO9C* < insensitive RDX* < JH6*. The interaction energies and BDEs are in RDX∙∙∙(CH3COOCa)+ > RDX∙∙∙CH3COOH > RDX∙∙∙CH2FCH2F. Thus, it can be inferred that for the RDX-based explosives, the stronger the binding energy, intermolecular interaction, and BDE are, the more insensitive the booster is, and thus, the larger energy has to be consumed to overcome the above three kinds of energies during the initiation process, leading to the smaller energy output and weaker response. However, it should be noted that it is mainly the density and the type of explosive that influence the depth of the dent produced on the steel witness block. The essence of the responses to shock waves is revealed by the reduced density gradient, atoms in molecules, and surface electrostatic potentials. HIGHLIGHTS: • Response of booster to shock wave was evaluated by shock wave partition loading test. • Responsivity to shock wave is explained by binding energy, intermolecular interaction, and BDE. • Shock initiation pressures were evaluated. • Essence of responses to shock wave is revealed by RDG, AIM and ESP.

18.
Biosensors (Basel) ; 12(10)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36290978

RESUMEN

Bletilla striata is an herb with a good medicinal value whose main active ingredient is Bletilla striata polysaccharide (BSP) in the tuber of Bletilla striata. In this study, a polysaccharide-based semi-interpenetrating network hydrogel was constructed by introducing BSP into polyacrylamide (PAM) hydrogel. The introduction of the BSP chain no only maintains the excellent mechanical properties of PAM, but also endows it with good biocompatibility. By implanting the colloidal crystal array into the above hydrogels, we obtained a novel biomass-based photonic crystal with good stimulus responsiveness that is sensitive to volatile organic compounds (VOCs), especially alcohol vapor. In addition, due to the scavenging ability of BSP to hydroxyl radicals, the photonic crystal hydrogel also has a good response to hydrogen peroxide (H2O2).


Asunto(s)
Orchidaceae , Compuestos Orgánicos Volátiles , Hidrogeles/química , Peróxido de Hidrógeno , Biomasa , Orchidaceae/química , Polisacáridos/química
19.
Biomacromolecules ; 23(11): 4825-4833, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36301049

RESUMEN

Mesenchymal stem cell-derived exosomes (MSC-Exos) are emerging as a promising platform for treating various intractable diseases and organ injuries. Monitoring their migration, homing, and therapeutic capability in vivo is essential to develop exosome-based theranostics. Here, we designed fluorescent semiconductor polymer dots (Pdots) in the second near-infrared window (NIR-II) for bright labeling and tracking of MSC-Exos. Glucose-coated Pdots (Pdots-Glu) were able to label MSC-Exos without changing their biological properties. The NIR-II fluorescent Pdots allow for high labeling brightness and long-term in vivo tracking of MSC-Exos. We investigated the biodistributions and therapeutic functions of these labeled MSC-Exos in liver-resected mice. In vivo and ex vivo imaging demonstrated that the Pdot-labeled MSC-Exos injected via the tail vein mainly accumulated in the residual liver tissue. In terms of the therapeutic effect, MSC-Exos may accelerate postoperative liver function recovery by inhibiting inflammatory responses, promoting cell proliferation, and resisting apoptosis. Our results indicated that MSC-Exos therapeutic systems hold promising applications in liver regenerative medicine.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Ratones , Animales , Polímeros , Hígado , Proliferación Celular/fisiología
20.
Anal Methods ; 14(37): 3638-3643, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36073356

RESUMEN

Photonic crystals have been widely explored for biosensing. However, the complicated procedure for the self-assembly of multi-dimensional photonic crystals has driven researchers to look for more economical protocols for preparing photonic crystals. Furthermore, in situ monitoring of glucose with photonic crystals is the main technique used for controlling diabetes. A one-dimensional (1-D) photonic crystal gel sensor was prepared with a top-down method using a commercially available CD-R or DVD-R disc as a nanomold. The 1-D photonic structure was cast on a glucose-sensitive hydrogel. It was observed that the 1-D photonic crystal cast by DVD-R has a good response ability to glucose, as well as a good linear response relationship in the range of 0.1-4 mM glucose, with an adjusted R2 of 0.99 of the linear fitting curve. The sensor also has a good response ability to the detection of glucose in urine. The limit of detection (LOD) is 0.1 mM. The 1-D photonic crystal sensor utilizing the existing optical disc microstructure as a template shows the advantages of its simple preparation, short production cycle, and low cost. It also has great application potential in the preparation of point-of-care (POC) sensors.


Asunto(s)
Técnicas Biosensibles , Glucosa , Técnicas Biosensibles/métodos , Hidrogeles/química , Límite de Detección , Fotones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA