Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 23(3): 895-901, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36649590

RESUMEN

Wurtzite AlGaAs is a technologically promising yet unexplored material. Here we study it both experimentally and numerically. We develop a complete numerical model based on an 8-band k→·p→ method, including electromechanical fields, and calculate the optoelectronic properties of wurtzite AlGaAs nanowires with different Al content. We then compare them with our experimental data. Our results strongly suggest that wurtzite AlGaAs is a direct band gap material. Moreover, we have also numerically obtained the band gap of wurtzite AlAs and the valence band offset between AlAs and GaAs in the wurtzite symmetry.

2.
Materials (Basel) ; 15(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36363269

RESUMEN

Lead halide perovskite nanoplatelets (NPls) attract significant attention due to their exceptional and tunable optical properties. Doping is a versatile strategy for modifying and improving the optical properties of colloidal nanostructures. However, the protocols for B-site doping have been rarely reported for 2D perovskite NPls. In this work, we investigated the post-synthetic treatment of CsPbBr3 NPls with different Cd2+ sources. We show that the interplay between Cd2+ precursor, NPl concentrations, and ligands determines the kinetics of the doping process. Optimization of the treatment allows for the boosting of linear and nonlinear optical properties of CsPbBr3 NPls via doping or/and surface passivation. At a moderate doping level, both the photoluminescence quantum yield and two-photon absorption cross section increase dramatically. The developed protocols of post-synthetic treatment with Cd2+ facilitate further utilization of perovskite NPls in nonlinear optics, photonics, and lightning.

3.
Nanomaterials (Basel) ; 13(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36615968

RESUMEN

Zinc oxide (ZnO) nanostructures are widely used in various fields of science and technology due to their properties and ease of fabrication. To achieve the desired characteristics for subsequent device application, it is necessary to develop growth methods allowing for control over the nanostructures' morphology and crystallinity governing their optical and electronic properties. In this work, we grow ZnO nanostructures via hydrothermal synthesis using surfactants that significantly affect the growth kinetics. Nanostructures with geometry from nanowires to hexapods are obtained and studied with photoluminescence (PL) spectroscopy. Analysis of the photoluminescence spectra demonstrates pronounced exciton on a neutral donor UV emission in all of the samples. Changing the growth medium chemical composition affects the emission characteristics sufficiently. Apart the UV emission, nanostructures synthesized without the surfactants demonstrate deep-level emission in the visible range with a peak near 620 nm. Structures synthesized with the use of sodium citrate exhibit emission peak near 520 nm, and those with polyethylenimine do not exhibit the deep-level emission. Thus, we demonstrate the correlation between the hydrothermal growth conditions and the obtained ZnO nanostructures' optical properties, opening up new possibilities for their precise control and application in nanophotonics, UV-Vis and white light sources.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...