Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 439, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698307

RESUMEN

BACKGROUND: Chickpea is prone to many abiotic stresses such as heat, drought, salinity, etc. which cause severe loss in yield. Tolerance towards these stresses is quantitative in nature and many studies have been done to map the loci influencing these traits in different populations using different markers. This study is an attempt to meta-analyse those reported loci projected over a high-density consensus map to provide a more accurate information on the regions influencing heat, drought, cold and salinity tolerance in chickpea. RESULTS: A meta-analysis of QTL reported to be responsible for tolerance to drought, heat, cold and salinity stress tolerance in chickpeas was done. A total of 1512 QTL responsible for the concerned abiotic stress tolerance were collected from literature, of which 1189 were projected on a chickpea consensus genetic map. The QTL meta-analysis predicted 59 MQTL spread over all 8 chromosomes, responsible for these 4 kinds of abiotic stress tolerance in chickpea. The physical locations of 23 MQTL were validated by various marker-trait associations and genome-wide association studies. Out of these reported MQTL, CaMQAST1.1, CaMQAST4.1, CaMQAST4.4, CaMQAST7.8, and CaMQAST8.2 were suggested to be useful for different breeding approaches as they were responsible for high per cent variance explained (PVE), had small intervals and encompassed a large number of originally reported QTL. Many putative candidate genes that might be responsible for directly or indirectly conferring abiotic stress tolerance were identified in the region covered by 4 major MQTL- CaMQAST1.1, CaMQAST4.4, CaMQAST7.7, and CaMQAST6.4, such as heat shock proteins, auxin and gibberellin response factors, etc. CONCLUSION: The results of this study should be useful for the breeders and researchers to develop new chickpea varieties which are tolerant to drought, heat, cold, and salinity stresses.


Asunto(s)
Cicer , Sitios de Carácter Cuantitativo , Estrés Fisiológico , Cicer/genética , Estrés Fisiológico/genética , Mapeo Cromosómico , Sequías , Estudio de Asociación del Genoma Completo
2.
Plant Cell Rep ; 43(3): 80, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38411713

RESUMEN

The escalating challenges posed by metal(loid) toxicity in agricultural ecosystems, exacerbated by rapid climate change and anthropogenic pressures, demand urgent attention. Soil contamination is a critical issue because it significantly impacts crop productivity. The widespread threat of metal(loid) toxicity can jeopardize global food security due to contaminated food supplies and pose environmental risks, contributing to soil and water pollution and thus impacting the whole ecosystem. In this context, plants have evolved complex mechanisms to combat metal(loid) stress. Amid the array of innovative approaches, omics, notably transcriptomics, proteomics, and metabolomics, have emerged as transformative tools, shedding light on the genes, proteins, and key metabolites involved in metal(loid) stress responses and tolerance mechanisms. These identified candidates hold promise for developing high-yielding crops with desirable agronomic traits. Computational biology tools like bioinformatics, biological databases, and analytical pipelines support these omics approaches by harnessing diverse information and facilitating the mapping of genotype-to-phenotype relationships under stress conditions. This review explores: (1) the multifaceted strategies that plants use to adapt to metal(loid) toxicity in their environment; (2) the latest findings in metal(loid)-mediated transcriptomics, proteomics, and metabolomics studies across various plant species; (3) the integration of omics data with artificial intelligence and high-throughput phenotyping; (4) the latest bioinformatics databases, tools and pipelines for single and/or multi-omics data integration; (5) the latest insights into stress adaptations and tolerance mechanisms for future outlooks; and (6) the capacity of omics advances for creating sustainable and resilient crop plants that can thrive in metal(loid)-contaminated environments.


Asunto(s)
Ecosistema , Proteómica , Inteligencia Artificial , Perfilación de la Expresión Génica , Metales/toxicidad , Suelo
3.
Plant Biotechnol J ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38206288

RESUMEN

Professor Rajeev K. Varshney's transformative impact on crop genomics, genetics, and agriculture is the result of his passion, dedication, and unyielding commitment to harnessing the potential of genomics to address the most pressing challenges faced by the global agricultural community. Starting from a small town in India and reaching the global stage, Professor Varshney's academic and professional trajectory has inspired many scientists active in research today. His ground-breaking work, especially his effort to list orphan tropical crops to genomic resource-rich entities, has been transformative. Beyond his scientific achievements, Professor Varshney is recognized by his colleagues as an exemplary mentor, fostering the growth of future researchers, building institutional capacity, and strengthening scientific capability. His focus on translational genomics and strengthening seed system in developing countries for the improvement of agriculture has made a tangible impact on farmers' lives. His skills have been best utilized in roles at leading research centres where he has applied his expertise to deliver a new vision for crop improvement. These efforts have now been recognized by the Royal Society with the award of the Fellowship (FRS). As we mark this significant milestone in his career, we not only celebrate Professor Varshney's accomplishments but also his wider contributions that continue to transform the agricultural landscape.

4.
Plant Genome ; 17(1): e20402, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37957947

RESUMEN

Temperatures below or above optimal growth conditions are among the major stressors affecting productivity, end-use quality, and distribution of key staple crops including rice (Oryza sativa), wheat (Triticum aestivum), and maize (Zea mays L.). Among temperature stresses, cold stress induces cellular changes that cause oxidative stress and slowdown metabolism, limit growth, and ultimately reduce crop productivity. Perception of cold stress by plant cells leads to the activation of cold-responsive transcription factors and downstream genes, which ultimately impart cold tolerance. The response triggered in crops to cold stress includes gene expression/suppression, the accumulation of sugars upon chilling, and signaling molecules, among others. Much of the information on the effects of cold stress on perception, signal transduction, gene expression, and plant metabolism are available in the model plant Arabidopsis but somewhat lacking in major crops. Hence, a complete understanding of the molecular mechanisms by which staple crops respond to cold stress remain largely unknown. Here, we make an effort to elaborate on the molecular mechanisms employed in response to low-temperature stress. We summarize the effects of cold stress on the growth and development of these crops, the mechanism of cold perception, and the role of various sensors and transducers in cold signaling. We discuss the progress in cold tolerance research at the genome, transcriptome, proteome, and metabolome levels and highlight how these findings provide opportunities for designing cold-tolerant crops for the future.


Asunto(s)
Proteínas de Plantas , Factores de Transcripción , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Productos Agrícolas/genética , Frío , Respuesta al Choque por Frío
5.
Front Plant Sci ; 14: 1287950, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38093989

RESUMEN

The 26S proteasome is a molecular machine that catalyzes and degrades protein intracellularly with the help of its core complex called 20S proteasome. The 20S proteasomes degrade and cleave denatured, cytotoxic, damaged, and unwanted proteins via proteolysis and impart biotic and abiotic stress tolerance in model plants. This study identified 20 genes, namely, 10 SbPA and 10 SbPB that encode for α- and ß-subunits of the 20S proteasome in Sorghum bicolor (L.) Moench (2n= 20). These genes have been found distributed on the 1st, 2nd, 3rd, 4th, 5th, 7th, and 10th chromosomes. These sorghum genes were orthologous to corresponding rice. Phylogenetic analysis clustered these genes into seven clades, each with one of the seven α-subunits (1 to 7) and one of the seven ß-subunits (1 to 7). In silico gene expression analysis suggested that nine genes were involved in abiotic stress response (cold, drought, and abscisic acid hormone). The expression of these proteasomal genes was studied in shoots and roots exposed to different abiotic stresses (cold, drought, and abscisic acid) by quantitative real-time polymerase chain reaction. A significant increase in the relative fold expression of SbPBA1, SbPAA1, SbPBG1, SbPBE1, and SbPAG1 genes under ABA and drought stress provides an insight into its involvement in abiotic stress. No expression was observed for cold stress of these genes indicating their non-involvement. It is believed that additional investigation into the SbPA/SbPB genes would aid in the creation of S. bicolor cultivars that are resistant to climate change.

6.
Physiol Plant ; 175(6): e14069, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148247

RESUMEN

Wheat is one of the most important cereal crops in the world. Cold stress is a major constraint in production of wheat grown in cold climate regions. In this study, we conducted a comprehensive assessment of cold stress tolerance in wheat genotypes through field screening, cell membrane stability through electrolyte leakage assay and biochemical profiling. A core set comprising 4560 genotypes was evaluated for two years (2021-2022), revealing substantial genetic variation for cold stress tolerance. Most genotypes exhibited moderate tolerance, while a smaller proportion showed susceptibility to cold stress. Based on the cold screening data in the field, a mini-core set of 350 genotypes was selected for membrane stability analysis using electrical conductivity assays. Significant differences were observed in membrane stability among the genotypes, indicating the presence of genetic variation for this trait. Furthermore, a mini-core set was narrowed down to 50 diverse candidate genotypes that were subsequently profiled for various biochemicals, including reactive oxygen species (ROS) like lipid peroxidation (MDA) and hydrogen peroxide (H2 02 ), osmoprotectant (proline) and enzymatic antioxidants including ascorbate peroxidase (APX), superoxide dismutase (SOD), guaiacol peroxidase (GPX), and catalase (CAT). Correlation analysis of the biochemicals revealed negative associations between antioxidants and reactive oxygen species (ROS), highlighting their role in mitigating oxidative damage under cold stress. This study enhances our understanding of the physiological and biochemical mechanisms underlying cold stress tolerance in wheat. The identified genotypes with superior cold stress tolerance can serve as valuable genetic resources for wheat breeding.


Asunto(s)
Respuesta al Choque por Frío , Triticum , Especies Reactivas de Oxígeno/metabolismo , Triticum/metabolismo , Respuesta al Choque por Frío/genética , Himalayas , Fitomejoramiento , Catalasa/genética , Catalasa/metabolismo , Antioxidantes/metabolismo , Estrés Oxidativo , Genotipo , Superóxido Dismutasa/metabolismo
8.
Theor Appl Genet ; 136(12): 247, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37975911

RESUMEN

Wheat, an important cereal crop globally, faces major challenges due to increasing global population and changing climates. The production and productivity are challenged by several biotic and abiotic stresses. There is also a pressing demand to enhance grain yield and quality/nutrition to ensure global food and nutritional security. To address these multifaceted concerns, researchers have conducted numerous meta-QTL (MQTL) studies in wheat, resulting in the identification of candidate genes that govern these complex quantitative traits. MQTL analysis has successfully unraveled the complex genetic architecture of polygenic quantitative traits in wheat. Candidate genes associated with stress adaptation have been pinpointed for abiotic and biotic traits, facilitating targeted breeding efforts to enhance stress tolerance. Furthermore, high-confidence candidate genes (CGs) and flanking markers to MQTLs will help in marker-assisted breeding programs aimed at enhancing stress tolerance, yield, quality and nutrition. Functional analysis of these CGs can enhance our understanding of intricate trait-related genetics. The discovery of orthologous MQTLs shared between wheat and other crops sheds light on common evolutionary pathways governing these traits. Breeders can leverage the most promising MQTLs and CGs associated with multiple traits to develop superior next-generation wheat cultivars with improved trait performance. This review provides a comprehensive overview of MQTL analysis in wheat, highlighting progress, challenges, validation methods and future opportunities in wheat genetics and breeding, contributing to global food security and sustainable agriculture.


Asunto(s)
Fitomejoramiento , Triticum , Triticum/genética , Fitomejoramiento/métodos , Sitios de Carácter Cuantitativo , Fenotipo , Productos Agrícolas/genética , Grano Comestible/genética
9.
Front Plant Sci ; 14: 1274759, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37929162

RESUMEN

The rising global temperatures seriously threaten sustainable crop production, particularly the productivity and production of heat-sensitive crops like chickpeas. Multiple QTLs have been identified to enhance the heat stress tolerance in chickpeas, but their successful use in breeding programs remains limited. Towards this direction, we constructed a high-density genetic map spanning 2233.5 cM with 1069 markers. Using 138 QTLs reported earlier, we identified six Meta-QTL regions for heat tolerance whose confidence interval was reduced by 2.7-folds compared to the reported QTLs. Meta-QTLs identified on CaLG01 and CaLG06 harbor QTLs for important traits, including days to 50% flowering, days to maturity, days to flower initiation, days to pod initiation, number of filled pods, visual score, seed yield per plant, biological yield per plant, chlorophyll content, and harvest index. In addition, key genes identified in Meta-QTL regions like Pollen receptor-like kinase 3 (CaPRK3), Flowering-promoting factor 1 (CaFPF1), Flowering Locus C (CaFLC), Heat stress transcription factor A-5 (CaHsfsA5), and Pollen-specific leucine-rich repeat extensins (CaLRXs) play an important role in regulating the flowering time, pollen germination, and growth. The consensus genomic regions, and the key genes reported in this study can be used in genomics-assisted breeding for enhancing heat tolerance and developing heat-resilient chickpea cultivars.

10.
Plant Genome ; 16(4): e20375, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37641460

RESUMEN

In addition to the challenge of meeting global demand for food production, there are increasing concerns about food safety and the need to protect consumer health from the negative effects of foodborne allergies. Certain bio-molecules (usually proteins) present in food can act as allergens that trigger unusual immunological reactions, with potentially life-threatening consequences. The relentless working lifestyles of the modern era often incorporate poor eating habits that include readymade prepackaged and processed foods, which contain additives such as peanuts, tree nuts, wheat, and soy-based products, rather than traditional home cooking. Of the predominant allergenic foods (soybean, wheat, fish, peanut, shellfish, tree nuts, eggs, and milk), peanuts (Arachis hypogaea) are the best characterized source of allergens, followed by tree nuts (Juglans regia, Prunus amygdalus, Corylus avellana, Carya illinoinensis, Anacardium occidentale, Pistacia vera, Bertholletia excels), wheat (Triticum aestivum), soybeans (Glycine max), and kidney beans (Phaseolus vulgaris). The prevalence of food allergies has risen significantly in recent years including chance of accidental exposure to such foods. In contrast, the standards of detection, diagnosis, and cure have not kept pace and unfortunately are often suboptimal. In this review, we mainly focus on the prevalence of allergies associated with peanut, tree nuts, wheat, soybean, and kidney bean, highlighting their physiological properties and functions as well as considering research directions for tailoring allergen gene expression. In particular, we discuss how recent advances in molecular breeding, genetic engineering, and genome editing can be used to develop potential low allergen food crops that protect consumer health.


Asunto(s)
Hipersensibilidad a los Alimentos , Animales , Nueces , Arachis , Alérgenos , Glycine max , Productos Agrícolas
11.
Plant Genome ; 16(3): e20342, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37328945

RESUMEN

A meta-analysis of quantitative trait loci (QTLs), associated with agronomic traits, fertility restoration, disease resistance, and seed quality traits was conducted for the first time in pigeonpea (Cajanus cajan L.). Data on 498 QTLs was collected from 9 linkage mapping studies (involving 21 biparental populations). Of these 498, 203 QTLs were projected onto "PigeonPea_ConsensusMap_2022," saturated with 10,522 markers, which resulted in the prediction of 34 meta-QTLs (MQTLs). The average confidence interval (CI) of these MQTLs (2.54 cM) was 3.37 times lower than the CI of the initial QTLs (8.56 cM). Of the 34 MQTLs, 12 high-confidence MQTLs with CI (≤5 cM) and a greater number of initial QTLs (≥5) were utilized to extract 2255 gene models, of which 105 were believed to be associated with different traits under study. Furthermore, eight of these MQTLs were observed to overlap with several marker-trait associations or significant SNPs identified in previous genome-wide association studies. Furthermore, synteny and ortho-MQTL analyses among pigeonpea and four related legumes crops, such as chickpea, pea, cowpea, and French bean, led to the identification of 117 orthologous genes from 20 MQTL regions. Markers associated with MQTLs can be employed for MQTL-assisted breeding as well as to improve the prediction accuracy of genomic selection in pigeonpea. Additionally, MQTLs may be subjected to fine mapping, and some of the promising candidate genes may serve as potential targets for positional cloning and functional analysis to elucidate the molecular mechanisms underlying the target traits.


Asunto(s)
Cajanus , Sitios de Carácter Cuantitativo , Cajanus/genética , Estudio de Asociación del Genoma Completo , Resistencia a la Enfermedad/genética , Fitomejoramiento , Semillas/genética
12.
BMC Genomics ; 24(1): 259, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173660

RESUMEN

BACKGROUND: Yellow or stripe rust, caused by the fungus Puccinia striiformis f. sp. tritici (Pst) is an important disease of wheat that threatens wheat production. Since developing resistant cultivars offers a viable solution for disease management, it is essential to understand the genetic basis of stripe rust resistance. In recent years, meta-QTL analysis of identified QTLs has gained popularity as a way to dissect the genetic architecture underpinning quantitative traits, including disease resistance. RESULTS: Systematic meta-QTL analysis involving 505 QTLs from 101 linkage-based interval mapping studies was conducted for stripe rust resistance in wheat. For this purpose, publicly available high-quality genetic maps were used to create a consensus linkage map involving 138,574 markers. This map was used to project the QTLs and conduct meta-QTL analysis. A total of 67 important meta-QTLs (MQTLs) were identified which were refined to 29 high-confidence MQTLs. The confidence interval (CI) of MQTLs ranged from 0 to 11.68 cM with a mean of 1.97 cM. The mean physical CI of MQTLs was 24.01 Mb, ranging from 0.0749 to 216.23 Mb per MQTL. As many as 44 MQTLs colocalized with marker-trait associations or SNP peaks associated with stripe rust resistance in wheat. Some MQTLs also included the following major genes- Yr5, Yr7, Yr16, Yr26, Yr30, Yr43, Yr44, Yr64, YrCH52, and YrH52. Candidate gene mining in high-confidence MQTLs identified 1,562 gene models. Examining these gene models for differential expressions yielded 123 differentially expressed genes, including the 59 most promising CGs. We also studied how these genes were expressed in wheat tissues at different phases of development. CONCLUSION: The most promising MQTLs identified in this study may facilitate marker-assisted breeding for stripe rust resistance in wheat. Information on markers flanking the MQTLs can be utilized in genomic selection models to increase the prediction accuracy for stripe rust resistance. The candidate genes identified can also be utilized for enhancing the wheat resistance against stripe rust after in vivo confirmation/validation using one or more of the following methods: gene cloning, reverse genetic methods, and omics approaches.


Asunto(s)
Basidiomycota , Triticum , Triticum/genética , Triticum/microbiología , Pan , Fitomejoramiento , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Basidiomycota/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
13.
Plant Genome ; 16(4): e20332, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37122189

RESUMEN

In wheat, genomic prediction accuracy (GPA) was assessed for three micronutrient traits (grain iron, grain zinc, and ß-carotenoid concentrations) using eight Bayesian regression models. For this purpose, data on 246 accessions, each genotyped with 17,937 DArT markers, were utilized. The phenotypic data on traits were available for 2013-2014 from Powerkheda (Madhya Pradesh) and for 2014-2015 from Meerut (Uttar Pradesh), India. The accuracy of the models was measured in terms of reliability, which was computed following a repeated cross-validation approach. The predictions were obtained independently for each of the two environments after adjusting for the local effects and across environments after adjusting for the environmental effects. The Bayes ridge regression (BayesRR) model outperformed the other seven models, whereas BayesLASSO (BayesL) was the least efficient. The GPA increased with an increase in the size of the training set as well as with an increase in marker density. The GPA values differed for the three traits and were higher for the best linear unbiased estimate (BLUE) (obtained after adjusting for the environmental effects) relative to those for the two environments. The GPA also remained unaffected after accounting for the population structure. The results of the present study suggest that only the best model should be used for the estimations of genomic estimated breeding values (GEBVs) before their use for genomic selection to improve the grain micronutrient contents.


Asunto(s)
Micronutrientes , Triticum , Triticum/genética , Teorema de Bayes , Reproducibilidad de los Resultados , Pan , Fitomejoramiento , Genómica/métodos , Grano Comestible/genética
14.
Phytopathology ; 113(5): 836-846, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36734935

RESUMEN

Fusarium wilt (FW) caused by Fusarium oxysporum f. sp. ciceri is a devastating disease of chickpea (Cicer arietinum). To identify promising resistant genotypes and genomic loci for FW resistance, a core set of 179 genotypes of chickpea was tested for FW reactions at the seedling and reproductive stages under field conditions and controlled conditions in the greenhouse. Our results revealed that at the seedling stage, most of the genotypes were resistant, whereas at the reproductive stage, most of the genotypes were susceptible. Genotyping using a 50K Axiom® CicerSNP Array and trait data of FW together led to the identification of 26 significant (P ≤ E-05) marker-trait associations (MTAs) for FW resistance. Among the 26 MTAs, 12 were identified using trait data recorded in the field (three at the seedling and nine at the reproductive stage), and 14 were identified using trait data recorded under controlled conditions in the greenhouse (six at the seedling and eight at the reproductive stage). The phenotypic variation explained by these MTAs varied from 11.75 to 15.86%, with an average of 13.77%. Five MTAs were classified as major, explaining more than 15% of the phenotypic variation for FW, and two were declared stable, being identified in two environments. One of the promising stable and major MTAs (Affx_123280060) detected in field conditions at the reproductive stage was also detected in greenhouse conditions at the seedling and reproductive stages. The stable and major (>15% PVE) MTAs can be used in chickpea breeding programs.


Asunto(s)
Cicer , Fusarium , Cicer/genética , Fusarium/genética , Enfermedades de las Plantas/genética , Fitomejoramiento , Fenotipo
15.
Mol Biol Rep ; 50(4): 3885-3901, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36826681

RESUMEN

PURPOSE: Wheat is an important cereal crop that is cultivated in different parts of the world. The biotic stresses are the major concerns in wheat-growing nations and are responsible for production loss globally. The change in climate dynamics makes the pathogen more virulent in foothills and tropical regions. There is growing concern about FHB in major wheat-growing nations, and until now, there has been no known potential source of resistance identified in wheat germplasm. The plant pathogen interaction activates the cascade of pathways, genes, TFs, and resistance genes. Pathogenesis-related genes' role in disease resistance is functionally validated in different plant systems. Similarly, Genomewide association Studies (GWAS) and Genomic selection (GS) are promising tools and have led to the discovery of resistance genes, genomic regions, and novel markers. Fusarium graminearum produces deoxynivalenol (DON) mycotoxins in wheat kernels, affecting wheat productivity globally. Modern technology now allows for detecting and managing DON toxin to reduce the risk to humans and animals. This review offers a comprehensive overview of the roles played by GWAS and Genomic selection (GS) in the identification of new genes, genetic variants, molecular markers and DON toxin management strategies. METHODS: The review offers a comprehensive and in-depth analysis of the function of Fusarium graminearum virulence factors in Durum wheat. The role of GWAS and GS for Fusarium Head Blight (FHB) resistance has been well described. This paper provides a comprehensive description of the various statistical models that are used in GWAS and GS. In this review, we look at how different detection methods have been used to analyze and manage DON toxin exposure. RESULTS: This review highlights the role of virulent genes in Fusarium disease establishment. The role of genome-based selection offers the identification of novel QTLs in resistant wheat germplasm. The role of GWAS and GS selection has minimized the use of population development through breeding technology. Here, we also emphasized the function of recent technological developments in minimizing the impact of DON toxins and their implications for food safety.


Asunto(s)
Fusarium , Triticum , Humanos , Triticum/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Genómica , Enfermedades de las Plantas/genética
16.
Plant Physiol Biochem ; 196: 339-349, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36739841

RESUMEN

Agricultural productivity relies on plant resistance to insect pests, with silicon (Si) being increasingly recognized as an important anti-herbivore defense. However, the processes by which Si works to counteract the effects of insect injury are not completely understood. The role of Si in mitigating the adverse effects of herbivory has been mostly studied at the species level in various crops, ignoring the sensitivity and variability at the genotypic level. Understanding such variation across genotypes is important because Si-derived benefits are associated with the amount of Si accumulated in the plant. Therefore, the present investigation was pursued to study the effect of different Si concentrations (0, 125, and 250 mg L⁻1) on Si accumulation and plant growth using two wheat genotypes (WW-101 and SW-2) under grasshopper herbivory for 48 h. The higher Si absorption increased the concentration of leaf chlorophyll, carotenoids, soluble sugars, and proteins. Silicon application at higher concentrations increased the dry weight, antioxidant enzyme activity, total phenolics, flavonoids and shoot Si concentration, whereas it decreased the electrolyte leakage, hydrogen peroxide (H2O2) and malonaldehyde (MDA) levels, thereby preventing leaf damage. We infer that the higher Si concentration alleviates the adverse effects of herbivory in wheat by improving the accumulation of secondary metabolites and enhancing the antioxidant defense system. The effects were pronounced in the genotype 'WW-101' compared to 'SW-2' for most of the studied traits, indicating overall stress response to be genotype-dependent. Thus, Si acquisition efficiency of genotypes should be considered while developing efficient crop management strategies.


Asunto(s)
Antioxidantes , Silicio , Antioxidantes/metabolismo , Silicio/farmacología , Silicio/metabolismo , Triticum/genética , Triticum/metabolismo , Herbivoria , Peróxido de Hidrógeno/metabolismo , Plantas/metabolismo , Genotipo
17.
Mol Biol Rep ; 50(4): 2975-2990, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36653731

RESUMEN

AIM: Plant metal tolerance proteins (MTPs) are plant membrane divalent cation transporters that specifically contribute to heavy metal stress resistance and mineral uptake. However, little is known about this family's molecular behaviors and biological activities in soybean. METHODS AND RESULTS: A total of 20 potential MTP candidate genes were identified and studied in the soybean genome for phylogenetic relationships, chromosomal distributions, gene structures, gene ontology, cis-elements, and previous gene expression. Furthermore, the expression of MTPs has been investigated under different heavy metals treatments. All identified soybean MTPs (GmaMTPs) contain a cation efflux domain or a ZT dimer and are further divided into three primary cation diffusion facilitator (CDF) groups: Mn-CDFs, Zn-CDFs, and Fe/Zn-CDFs. The developmental analysis reveals that segmental duplication contributes to the GmaMTP family's expansion. Tissue-specific expression profiling revealed comparative expression profiling in similar groups, although gene expression differed between groups. GmaMTP genes displayed biased responses in either plant leaves or roots when treated with heavy metal. In the leaves and roots, nine and ten GmaMTPs responded to at least one metal ion treatment. Furthermore, in most heavy metal treatments, GmaMTP1.1, GmaMTP1.2, GmaMTP3.1, GmaMTP3.2, GmaMTP4.1, and GmaMTP4.3 exhibited significant expression responses. CONCLUSION: Our findings provided insight into the evolution of MTPs in soybean. Overall, our findings shed light on the evolution of the MTP gene family in soybean and pave the path for further functional characterization of this gene family.


Asunto(s)
Glycine max , Metales Pesados , Glycine max/genética , Glycine max/metabolismo , Filogenia , Secuencia de Aminoácidos , Metales Pesados/toxicidad , Metales Pesados/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Estrés Fisiológico/genética
18.
Mol Biol Rep ; 50(4): 3787-3814, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36692674

RESUMEN

Biotic stress is a critical factor limiting soybean growth and development. Soybean responses to biotic stresses such as insects, nematodes, fungal, bacterial, and viral pathogens are governed by complex regulatory and defense mechanisms. Next-generation sequencing has availed research techniques and strategies in genomics and post-genomics. This review summarizes the available information on marker resources, quantitative trait loci, and marker-trait associations involved in regulating biotic stress responses in soybean. We discuss the differential expression of related genes and proteins reported in different transcriptomics and proteomics studies and the role of signaling pathways and metabolites reported in metabolomic studies. Recent advances in omics technologies offer opportunities to reshape and improve biotic stress resistance in soybean by altering gene regulation and/or other regulatory networks. We suggest using 'integrated omics' to precisely understand how soybean responds to different biotic stresses. We also discuss the potential challenges of integrating multi-omics for the functional analysis of genes and their regulatory networks and the development of biotic stress-resistant cultivars. This review will help direct soybean breeding programs to develop resistance against different biotic stresses.


Asunto(s)
Glycine max , Multiómica , Glycine max/genética , Glycine max/metabolismo , Fitomejoramiento , Genómica/métodos , Estrés Fisiológico/genética
19.
Crit Rev Biotechnol ; 43(2): 171-190, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35109728

RESUMEN

Legumes are the most important crop plants in agriculture, contributing 27% of the world's primary food production. However, productivity and production of Legumes is reduced due to increasing environmental stress. Hence, there is a pressing need to understand the molecular mechanism involved in stress response and legumes adaptation. Proteomics provides an important molecular approach to investigate proteins involved in stress response. Both the gel-based and gel-free-based techniques have significantly contributed to understanding the proteome regulatory network in leguminous plants. In the present review, we have discussed the role of different proteomic approaches (2-DE, 2 D-DIGE, ICAT, iTRAQ, etc.) in the identification of various stress-responsive proteins in important leguminous crops, including soybean, chickpea, cowpea, pigeon pea, groundnut, and common bean under variable abiotic stresses including heat, drought, salinity, waterlogging, frost, chilling and metal toxicity. The proteomic analysis has revealed that most of the identified differentially expressed proteins in legumes are involved in photosynthesis, carbohydrate metabolism, signal transduction, protein metabolism, defense, and stress adaptation. The proteomic approaches provide insights in understanding the molecular mechanism of stress tolerance in legumes and have resulted in the identification of candidate genes used for the genetic improvement of plants against various environmental stresses. Identifying novel proteins and determining their expression under different stress conditions provide the basis for effective engineering strategies to improve stress tolerance in crop plants through marker-assisted breeding.


Asunto(s)
Fabaceae , Proteómica , Proteómica/métodos , Fabaceae/genética , Fabaceae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Verduras
20.
Physiol Mol Biol Plants ; 29(12): 2005-2020, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38222272

RESUMEN

Anthracnose (ANT) caused by Colletotrichum lindemuthianum is the most devastating seed-borne fungal disease of common bean. In response to fungal infections, it is hypothesized that pathogen-plant interactions typically cause hypersensitive reactions by producing reactive oxygen species, hydrogen peroxide and lipid peroxidation of cell membranes. esent study was conducted by inoculating susceptible bean genotype "SB174" and resistant bean genotype "E10" with pathogen "C. lindemuthianum". Defense-related enzymes (ascorbate peroxidase, peroxidase, lipid peroxidase, and catalase) and C-based compounds (total phenols and flavonoids) were studied using the detached bean leaf method. Comparative defense response was studied in different plant tissues (pod, stem, and seed) in susceptible and resistant bean genotypes under uninoculated and pathogen-inoculated conditions. The host‒pathogen interaction was studied at mock inoculation, 2, 4 and 6 days after inoculation (dai). Comparing the pathogen-inoculated bean leaves to water-treated bean leaves, defense enzymes as well as total phenols and flavonoids exhibited differential expression. In a comparative study, the enzyme activity also displayed differential biochemical responses in pods, stems and seeds in both contrasting genotypes. For example, 5.1-fold (pod), 1.5-fold (stem) and 1.06-fold (seed) increases in ascorbate peroxidase activity were observed in the susceptible genotype at 6 dai compared to mock inoculation. Similarly, catalase activity in pods was upregulated (1.47-fold) in the resistant genotype and downregulated (1.30-fold) in the susceptible genotype at 6 dai. The study revealed that defense-related antioxidative enzymes, phenols and flavonoids are fine-tuned to detoxify important reactive oxygen species (ROS) molecules, induce systemic resistance and are successfully controlled in common bean plants against pathogen invasion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...