Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Iran J Basic Med Sci ; 26(6): 708-716, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275753

RESUMEN

Objectives: The main objective of the current assay was to evaluate the antibacterial and regenerative effects of hydrogel nanocomposite containing pure natural zeolite (clinoptilolite) integrated with alginate (Alg) as wound healing/dressing biomaterials. Materials and Methods: The zeolites were size excluded, characterized by SEM, DLS, XRD, FTIR, and XRF, and then integrated into Alg hydrogel followed by calcium chloride crosslinking. The Alg and alginate zeolite (Alg/Zeo) hydrogel was characterized by swelling and weight loss tests, also the antibacterial, hemocompatibility, and cell viability tests were performed. In animal studies, the burn wound was induced on the back of rats and treated with the following groups: control, Alg hydrogel, and Alg/Zeo hydrogel. Results: The results showed that the hydrodynamic diameter of zeolites was 367 ± 0.2 nm. Zeolites did not show any significant antibacterial effect, however, the hydrogel nanocomposite containing zeolite had proper swelling as well as hemocompatibility and no cytotoxicity was observed. Following the creation of a third-degree burn wound on the back of rats, the results indicated that the Alg hydrogel and Alg/Zeo nanocomposite accelerated the wound healing process compared with the control group. Re-epithelialization, granulation tissue thickness, collagenization, inflammatory cell recruitment, and angiogenesis level were not significantly different between Alg and Alg/Zeo nanocomposite. Conclusion: These findings revealed that although the incorporation of zeolites did not induce a significant beneficial effect in comparison with Alg hydrogel, using zeolite capacity in hydrogel for loading the antibiotics or other effective compounds can be considered a promising wound dressing.

2.
Int J Biol Macromol ; 239: 124099, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36948335

RESUMEN

Wound dressing is applied to promote the healing process, wound protection, and additionally regeneration of injured skin. In this study, a bilayer scaffold composed of a hydrogel and nanofibers was fabricated to improve the regeneration of injured skin. To this end, polycaprolactone/gelatin (PCL/Gel) nanofibers were electrospun directly on the prepared collagen/alginate (Col/Alg) hydrogel. The bilayer scaffold was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), mechanical properties, and swelling/degradation time. Cytotoxicity assays were evaluated using MTT assay. Then, the nanofiber and bilayer scaffolds were seeded with Adipose-derived stem cells (ADSCs). ADSCs were isolated from rat adipose tissue and analyzed using flow cytometry, in advance. Full-thickness wounds on the backs of rats were dressed with ADSCs-seeded bilayer scaffolds and nanofibers. Histopathological evaluations were performed after 14 and 21 days using H&E (hematoxylin and eosin) staining. The results indicated that re-epithelialization, angiogenesis, and collagen remodeling were enhanced in ADSCs-seeded bilayer scaffolds and nanofibers in comparison with the control group. In conclusion, the best re-epithelialization, collagen organization, neovascularization, and low presence of inflammation in the wound area were observed in the ADSCs-seeded bilayer scaffolds.


Asunto(s)
Células Madre Mesenquimatosas , Nanofibras , Ratas , Animales , Gelatina , Andamios del Tejido , Hidrogeles , Alginatos , Colágeno , Vendajes
3.
J Pharmacopuncture ; 25(3): 250-257, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36186094

RESUMEN

Objectives: Bee venom (BV) therapy is performed by a bee sting or subcutaneous injection of BV. However, there is not much information on the effect of BV on blood parameters after entering the body. This project aimed to assess the side effects of subcutaneous BV injections in healthy rats by measuring the hematological and biochemical parameters. Methods: Various amounts of BV, including 100, 200, and 500 (µg/day), were subcutaneously injected into rats for 30 days. The results showed that BV affected the metabolism of the liver, kidney, and glands. Results: An increase in blood sugar and a decrease in other biochemical parameters, including cholesterol, triglyceride, urea, creatinine AST, ALT, ALP, and phosphorous, were observed. Results also showed increased counts of white blood cells, neutrophils (%), and platelets and decreased levels of red cells, hemoglobin, and hematocrit. Conclusion: This study demonstrates that BV therapy in medical clinics requires routine care and testing to prevent eventual metabolic and anemia side effects.

4.
Mol Biol Rep ; 49(10): 9963-9973, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35716288

RESUMEN

Despite major advances, breast cancer (BC) is the most commonly diagnosed carcinoma and remains a deadly disease among women worldwide. Many researchers point toward an important role of an epithelial to mesenchymal transition (EMT) in BC development and promoting metastasis. Here, will be discussed that how functional changes of transcription factors, signaling pathways, and microRNAs (miRNA) in BC promote EMT. A thorough understanding the EMT biology can be important to determine reversing the process and design treatment approaches. There are frequent debates as to whether EMT is really relevant to BC in vivo, in which due to the intrinsic heterogeneity and tumor microenvironment. Nevertheless, given the importance of EMT in cancer progression and metastasis, the implementation of therapies against cancer-associated EMT will continue to help us develop and test potential treatments.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Neoplasias de la Mama/metabolismo , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Factores de Transcripción/genética , Microambiente Tumoral/genética
5.
Int J Artif Organs ; 44(3): 199-207, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32807005

RESUMEN

Since collagen is naturally a main extracellular matrix protein, it has been applied widely in skin's tissue engineering scaffolds to mimics the characteristics of extracellular matrix for proper transplantation of living cells. However, there are challenges that come with application of this natural polymer such as high solubility in aqueous environments which requires further consideration such as chemically cross-linking in order to stabilization. But these treatments also affect its functionality and finally cellular behaviors on scaffold. In this research we evaluated the suitability of collagen nanofibers versus collagen nanoparticles for cell adhesion and viability on glutaraldehyde cross-linked scaffolds. Appling a dual-pump electrospining machine a blend PCL-Gelatin from one side and collagen nanofibers or collagen nanoparticles from the other side were collected on the collector. The fabricated scaffolds were characterized by scanning electron microscopy, contact angle, and mechanical analysis. The cell viability, adhesion and morphology were studied respectively using MTT assay, hoechst staining and scanning electron microscopy. The results indicated significantly improvement of cell viability, adhesion and better spreading on scaffolds with collagen nanoparticles than collagen nanofibers. It seems changes in surface morphology, viscoelastic moduli and swelling ability following cross-linking with glutaraldehyde in scaffold with collagen nanoparticles are still favorable for cellular proliferation. Based on these results, in the case of glutaraldehyde cross-linking, application of collagen nanoparticles rather than collagen nanofibers in tissue regeneration scaffolds will better mimic the extracellular matrix characteristics; and preserve the viability and adhesion of seeded cells.


Asunto(s)
Adhesión Celular , Colágeno/farmacología , Nanopartículas/uso terapéutico , Trasplante de Piel , Ingeniería de Tejidos/métodos , Andamios del Tejido , Biomimética , Adhesión Celular/efectos de los fármacos , Adhesión Celular/fisiología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Supervivencia Celular , Humanos , Trasplante de Piel/instrumentación , Trasplante de Piel/métodos
6.
Breast Cancer ; 27(2): 243-251, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31621052

RESUMEN

BACKGROUND: The aim of this study was to develop nonionic surfactant vesicles (niosomes) as a promising nanocarrier to enhance the anticancer activity of artemether. METHODS: The niosomes were prepared by thin-film hydration method containing a mixture of Span, Tween and cholesterol (Chol) in different molar ratios. All formulations were characterized in terms of size, entrapment efficiency (%EE), release profile and morphology. The optimized niosomal formulation (F7), artemether and phosphate buffered saline (PBS) were intratumorally administrated to mice as the nano-niosome group, the free drug group and the control group, respectively (n = 4 per group). Tumor volume was measured during the 12-day experiment, then mice were sacrificed to evaluate the necrosis, angiogenesis, and cell proliferation of tumor tissues by H&E, CD34 and Ki-67 immunostaining, respectively. RESULTS: Both artemether and nano-niosome groups could decrease angiogenesis and proliferation of tumor cells. However, in nano-niosome group superior tumor necrosis and smaller tumor volume were observed compared to both artemether and control groups. CONCLUSIONS: The niosomal formulation could be a promising carrier for breast cancer treatment.


Asunto(s)
Arteméter/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Animales , Arteméter/farmacología , Neoplasias de la Mama/patología , Femenino , Humanos , Irán , Liposomas , Ratones , Ratones Endogámicos BALB C
7.
Cell Tissue Res ; 375(3): 709-721, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30338376

RESUMEN

Full-thickness skin defect is one of the main clinical problems, which cannot be repaired spontaneously. The aim of this study was to evaluate the feasibility of combining nanofibers with ADM as a bilayer scaffold for treatment of full-thickness skin wounds in a single-step procedure. The nanofibrous polycaprolactone/fibrinogen scaffolds were fabricated by electrospinning. Subsequently, mesenchymal stem cells were isolated from rat adipose tissues and characterized by flow cytometry. Cell adhesion, proliferation, and the epidermal differentiation potential of adipose-derived stem cells (ADSCs) on nanofibrous scaffolds were investigated by scanning electron microscopy (SEM), alamarBlue, and real-time PCR, respectively. In animal studies, full-thickness excisional wounds were created on the back of rats and treated with following groups: ADM, ADM-ADSCs, nanofiber, nanofiber-ADSCs, bilayer, and bilayer-ADSCs. In all groups, wounds were harvested on days 14 and 21 after treatment to evaluate re-epithelialization, blood vessel density, and collagen content. The results indicated that ADSCs seeded on ADM, nanofiber, and bilayer scaffolds can promote re-epithelialization, angiogenesis, and collagen remodeling in comparison with cell-free scaffolds. In conclusion, nanofiber-ADSCs showed the best results for re-epithelialization (according to histological scoring), average blood vessel density (92.7 ± 6.8), and collagen density (87.4 ± 4.9%) when compared to the control and other experimental groups.


Asunto(s)
Dermis Acelular/metabolismo , Células Madre Mesenquimatosas/citología , Nanofibras/química , Piel/patología , Andamios del Tejido/química , Cicatrización de Heridas , Dermis Acelular/efectos de los fármacos , Tejido Adiposo/citología , Animales , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Colágeno/metabolismo , Epidermis/efectos de los fármacos , Epidermis/metabolismo , Fibrinógeno/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Poliésteres/farmacología , Ratas Wistar , Ingeniería de Tejidos , Cicatrización de Heridas/efectos de los fármacos
8.
Biomed Mater Eng ; 29(3): 279-287, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29578469

RESUMEN

Fibrinogen plays a necessary role in blood clotting and wound healing. In this study, a new solvent mixture of formic acid/acetic acid with low toxicity was investigated as an alternative solvent for fibrinogen electrospinning. The nanofibers were analyzed by scanning electron microscope (SEM), simultaneous thermal analysis (STA) and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). The results showed that when the ratio of formic acid to acetic acid was 75/25 (v/v) the finest defect-free fibres with diameters ranging from 184 ± 37 to 241 ± 70 nm were obtained. In addition, the average fibre diameters increase with increasing concentration of fibrinogen from 10wt% to 12wt%. It is concluded that solvent mixture consisting of formic acid/acetic acid can be a great solvent for electrospinning of fibrinogen and is able to produce nanofiber structures.


Asunto(s)
Materiales Biocompatibles/química , Fibrinógeno/química , Nanofibras/química , Andamios del Tejido/química , Ácido Acético/química , Técnicas Electroquímicas , Fibrinógeno/ultraestructura , Formiatos/química , Humanos , Nanofibras/ultraestructura , Solventes/química , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...