Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Mol Biol Rep ; 51(1): 757, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874856

RESUMEN

BACKGROUND: The Salvia rosmarinus spenn. (rosemary) is considered an economically important ornamental and medicinal plant and is widely utilized in culinary and for treating several diseases. However, the procedure behind synthesizing secondary metabolites-based bioactive compounds at the molecular level in S. rosmarinus is not explored completely. METHODS AND RESULTS: We performed transcriptomic sequencing of the pooled sample from leaf and stem tissues on the Illumina HiSeqTM X10 platform. The transcriptomics analysis led to the generation of 29,523,608 raw reads, followed by data pre-processing which generated 23,208,592 clean reads, and de novo assembly of S. rosmarinus obtained 166,849 unigenes. Among them, nearly 75.1% of unigenes i.e., 28,757 were interpreted against a non-redundant protein database. The gene ontology-based annotation classified them into 3 main categories and 55 sub-categories, and clusters of orthologous genes annotation categorized them into 23 functional categories. The Kyoto Encyclopedia of Genes and Genomes database-based pathway analysis confirmed the involvement of 13,402 unigenes in 183 biochemical pathways, among these unigenes, 1,186 are involved in the 17 secondary metabolite production pathways. Several key enzymes involved in producing aromatic amino acids and phenylpropanoids were identified from the transcriptome database. Among the identified 48 families of transcription factors from coding unigenes, bHLH, MYB, WRKYs, NAC, C2H2, C3H, and ERF are involved in flavonoids and other secondary metabolites biosynthesis. CONCLUSION: The phylogenetic analysis revealed the evolutionary relationship between the phenylpropanoid pathway genes of rosemary with other members of Lamiaceae. Our work reveals a new molecular mechanism behind the biosynthesis of phenylpropanoids and their regulation in rosemary plants.


Asunto(s)
Vías Biosintéticas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Filogenia , Salvia , Transcriptoma , Transcriptoma/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Vías Biosintéticas/genética , Salvia/genética , Salvia/metabolismo , Plantas Medicinales/genética , Plantas Medicinales/metabolismo , Anotación de Secuencia Molecular , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Propanoles/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metabolismo Secundario/genética
2.
Nutr Metab (Lond) ; 21(1): 26, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755627

RESUMEN

Neurodegenerative diseases represent one of the utmost imperative well-being health issues and apprehensions due to their escalating incidence of mortality. Natural derivatives are more efficacious in various preclinical models of neurodegenerative illnesses. These natural compounds include phytoconstituents in herbs, vegetables, fruits, nuts, and marine and freshwater flora, with remarkable efficacy in mitigating neurodegeneration and enhancing cognitive abilities in preclinical models. According to the latest research, the therapeutic activity of natural substances can be increased by adding phytoconstituents in nanocarriers such as nanoparticles, nanogels, and nanostructured lipid carriers. They can enhance the stability and specificity of the bioactive compounds to a more considerable extent. Nanotechnology can also provide targeting, enhancing their specificity to the respective site of action. In light of these findings, this article discusses the biological and therapeutic potential of natural products and their bioactive derivatives to exert neuroprotective effects and some clinical studies assessing their translational potential to treat neurodegenerative disorders.

3.
Pharm Nanotechnol ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38504570

RESUMEN

The purpose of this review article is to provide a complete overview of the fastdeveloping topic of biobased nanomaterials and the various uses that they have. An extensive study into the utilization of biological resources for nanotechnology has been motivated by the growing demand for materials that are both sustainable and favorable to the environment. In this review, the different uses of biobased nanomaterials across a variety of fields are investigated. When it comes to drug delivery systems, biosensors, nanocarriers, and catalysts, biobased nanomaterials are interesting choices because of their unique qualities. These properties include biocompatibility, programmable surface chemistry, and inherent functionality. Also, in the biomedical field, biobased nanomaterials offer promising prospects for revolutionizing medical diagnostics and therapies. Their biocompatibility, tunable surface chemistry, and inherent functionalities make them attractive candidates for applications such as targeted drug delivery, imaging contrast agents, and tissue engineering scaffolds. In addition, the study discusses the current difficulties and potential future developments in the industry, emphasizing the necessity of interdisciplinary collaboration and ongoing innovation. The incorporation of nanomaterials derived from biological sources into conventional applications holds tremendous potential for the advancement of sustainable development and provides solutions to global concerns. For the purpose of providing researchers, scientists, and professionals with a complete grasp of the synthesis, characterization, and applications of biobased nanomaterials, the purpose of this review is to serve as a helpful resource.

4.
Front Nutr ; 10: 1258516, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38045808

RESUMEN

Cancer, an intricate and multifaceted disease, is characterized by the uncontrolled proliferation of cells that can lead to serious health complications and ultimately death. Conventional therapeutic strategies mainly target rapidly dividing cancer cells, but often indiscriminately harm healthy cells in the process. As a result, there is a growing interest in exploring novel therapies that are both effective and less toxic to normal cells. Herbs have long been used as natural remedies for various diseases and conditions. Some herbal compounds exhibit potent anti-cancer properties, making them potential candidates for nutraceutical-based treatments. However, despite their promising efficacy, there are considerable limitations in utilizing herbal preparations due to their poor solubility, low bioavailability, rapid metabolism and excretion, as well as potential interference with other medications. Nanotechnology offers a unique platform to overcome these challenges by encapsulating herbal compounds within nanoparticles. This approach not only increases solubility and stability but also enhances the cellular uptake of nutraceuticals, allowing for controlled and targeted delivery of therapeutic agents directly at tumor sites. By harnessing the power of nanotechnology-enabled therapy, this new frontier in cancer treatment presents an opportunity to minimize toxicity while maximizing efficacy. In conclusion, this manuscript provides compelling evidence for integrating nanotechnology with nutraceuticals derived from herbal sources to optimize cancer therapy outcomes. We explore the roadblocks associated with traditional herbal treatments and demonstrate how nanotechnology can help circumvent these issues, paving the way for safer and more effective cancer interventions in future oncological practice.

5.
Curr Med Chem ; 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37828674

RESUMEN

Nanomedicine's application of nanotechnology in medicine holds tremendous potential for diagnosing and treating life-threatening diseases such as cancer. Unlike conventional therapies, nanomedicine offers a promising strategy to enhance clinical outcomes while minimizing severe side effects. The principle of drug targeting enables specific delivery of therapeutic agents to their intended sites, making it a more precise and effective therapy. Combination strategies, such as the co-delivery of chemotherapeutic drugs with nucleic acids or receptor-specific molecules, are being employed to enhance therapeutic outcomes. Nanocarriers and drug delivery systems designed using these approaches offer resourceful co-delivery of therapeutic agents for anticancer therapy. Targeted drug delivery via nanotechnology-based techniques has become an urgent need and has shown significant improvements in therapeutic implications, pharmacokinetics, specificity, reduced toxicity, and biocompatibility. This review discusses the extrapolation of nanomaterials for developing innovative and novel drug delivery systems for effective anticancer therapy. Additionally, we explore the role of nanotechnology-based concepts in drug delivery research.

6.
J Biomol Struct Dyn ; : 1-11, 2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37837418

RESUMEN

Breast cancer (BC) accounts for 30% of all diagnosed cases of cancer in women and remains a leading cause of cancer-related deaths among women worldwide. The current study looks for a protein from the anti-apoptotic/pro-survival BCL-2 family whose overexpression reduces survivability in BC patients and a potential inhibitor for the protein. We found BCL-2A1/BFL1 protein with high expression linked to low survivability in BC. The protein shows prognosis in 8 out of 29 categories, whereas no other family member manifests this property. Out of 7379 compounds, three small molecules (CHEMBL9509, CHEMBL2104550 and CHEMBL3545011) form an H-bond with BCL-2A1/BFL1 protein's unique residue Cys55. Of the three small molecules, we found CHEMBL9509 (Silibinin) to be a potent inhibitor. The compound forms a stable H-bond with the residue Cys55 with the lowest binding energy compared to the other two compounds. It remains stable in the BH3 binding region for more than 100 ns, whereas the other two detach from the region. Additionally, the compound is found to be better than Venetoclax and Nematoclax. We firmly believe in the compound CHEMBL9509 potency to halt BC's progression by inhibiting the BCL-2A1/BFL1 protein, increasing patients' survivability.Communicated by Ramaswamy H. Sarma.

7.
Pharmaceuticals (Basel) ; 16(7)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37513820

RESUMEN

The neurodegenerative condition known as Parkinson's disease (PD) is brought on by the depletion of dopaminergic neurons in the basal ganglia, which is the brain region that controls body movement. PD occurs due to many factors, from which one of the acknowledged effects of oxidative stress is pathogenic pathways that play a role in the development of Parkinson's disease. Antioxidants, including flavonoids, vitamins E and C, and polyphenolic substances, help to reduce the oxidative stress brought on by free radicals. Consequently, this lowers the risk of neurodegenerative disorders in the long term. Although there is currently no cure for neurodegenerative illnesses, these conditions can be controlled. The treatment of this disease lessens its symptoms, which helps to preserve the patient's quality of life. Therefore, the use of naturally occurring antioxidants, such as polyphenols, which may be obtained through food or nutritional supplements and have a variety of positive effects, has emerged as an appealing alternative management strategy. This article will examine the extent of knowledge about antioxidants in the treatment of neurodegenerative illnesses, as well as future directions for research. Additionally, an evaluation of the value of antioxidants as neuroprotective agents will be provided.

8.
Front Pharmacol ; 14: 1218625, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37492081

RESUMEN

Objective: To propose a theoretical formulation of engeletin-nanostructured lipid nanocarriers for improved delivery and increased bioavailability in treating Huntington's disease (HD). Methods: We conducted a literature review of the pathophysiology of HD and the limitations of currently available medications. We also reviewed the potential therapeutic benefits of engeletin, a flavanol glycoside, in treating HD through the Keap1/nrf2 pathway. We then proposed a theoretical formulation of engeletin-nanostructured lipid nanocarriers for improved delivery across the blood-brain barrier (BBB) and increased bioavailability. Results: HD is an autosomal dominant neurological illness caused by a repetition of the cytosine-adenine-guanine trinucleotide, producing a mutant protein called Huntingtin, which degenerates the brain's motor and cognitive functions. Excitotoxicity, mitochondrial dysfunction, oxidative stress, elevated concentration of ROS and RNS, neuroinflammation, and protein aggregation significantly impact HD development. Current therapeutic medications can postpone HD symptoms but have long-term adverse effects when used regularly. Herbal medications such as engeletin have drawn attention due to their minimal side effects. Engeletin has been shown to reduce mitochondrial dysfunction and suppress inflammation through the Keap1/NRF2 pathway. However, its limited solubility and permeability hinder it from reaching the target site. A theoretical formulation of engeletin-nanostructured lipid nanocarriers may allow for free transit over the BBB due to offering a similar composition to the natural lipids present in the body a lipid solubility and increase bioavailability, potentially leading to a cure or prevention of HD. Conclusion: The theoretical formulation of engeletin-nanostructured lipid nanocarriers has the potential to improve delivery and increase the bioavailability of engeletin in the treatment of HD, which may lead to a cure or prevention of this fatal illness.

9.
OMICS ; 27(6): 273-280, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37311160

RESUMEN

The Hippo signaling pathway is a master regulator of development, cell proliferation, and apoptosis in particular, and it plays an important role in tissue regeneration, controlling organ size, and cancer suppression. Dysregulation of the Hippo signaling pathway has been implicated in breast cancer, a highly prevalent cancer affecting 1 out of every 15 women worldwide. While the Hippo signaling pathway inhibitors are available, they are suboptimal, for example, due to chemoresistance, mutation, and signal leakage. Inadequate knowledge about the Hippo pathway connections and their regulators limits our ability to uncover novel molecular targets for drug development. We report here novel microRNA (miRNA)-gene and protein-protein interaction networks in the Hippo signaling pathway. We employed the GSE miRNA dataset for the present study. The GSE57897 dataset was normalized and searched for differentially expressed miRNAs, and their targets were searched using the miRWalk2.0 tool. From the upregulated miRNAs, we observed that the hsa-miR-205-5p forms the biggest cluster and targets four genes involved in the Hippo signaling pathway. Interestingly, we found a novel connection between two Hippo signaling pathway proteins, angiomotin (AMOT) and mothers against decapentaplegic homolog 4 (SMAD4). From the downregulated miRNAs, hsa-miR-16-5p, hsa-miR-7g-5p, hsa-miR-141-3p, hsa-miR-103a-3p, hsa-miR-21-5p, and hsa-miR-200c-3p, target genes were present in the pathway. We found that PTEN, EP300, and BTRC were important cancer-inhibiting proteins, form hubs, and their genes interact with downregulating miRNAs. We suggest that targeting proteins from these newly unraveled networks in the Hippo signaling pathway and further research on the interaction of hub-forming cancer-inhibiting proteins can open up new avenues for next-generation breast cancer therapeutics.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Humanos , Femenino , Neoplasias de la Mama/genética , Vía de Señalización Hippo , Mapas de Interacción de Proteínas , MicroARNs/genética , Apoptosis
10.
J Midwifery Womens Health ; 68(4): 466-472, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37057730

RESUMEN

INTRODUCTION: Black pregnant individuals endure a disproportionate burden of preventable morbidity and mortality due to persistent, racially mediated social and systemic inequities. As patient advocates, Black community-based doulas help address these disparities via unique services not provided by conventional doulas. However, Black doulas themselves may encounter obstacles when providing care to Black perinatal clients. We characterized the barriers encountered by Black community-based doulas in Los Angeles, California. METHODS: We partnered with a Black community-based doula program to conduct semistructured interviews with its community doulas and program directors, covering the following topics: motivations for becoming a doula, services provided, and challenges faced as a Black doula in perinatal settings. Interview transcripts were reviewed via directed content analysis, with attention to the influence of systemic racism on service provision. Additionally, our research team used Camara Jones' Levels of Racism, which describes race-associated differences in health outcomes to code data. RESULTS: We interviewed 5 Black community-based doulas and 2 program directors, who all shared experiences of inequitable care and bias against Black clients that could be addressed with the support and advocacy of culturally congruent doulas. The community doulas shared experiences of stigma as Black doulas, compounded by racial prejudice. Interviewees noted sources of structural racism affecting program development, instances of interpersonal racism as they interacted with the health care system, and internalized racism that was revealed during culturally based doula trainings. Additionally, the doulas emphasized the importance of cultural concordance, or a shared identity with clients, which they considered integral to providing equitable care. CONCLUSION: Despite facing institutionalized, interpersonal, and internalized forms of racism, Black community-based doulas provide avenues for Black birthing individuals to navigate systemic racism experienced during the perinatal process. However, these forms of racism need to be addressed for Black community doulas to flourish.


Asunto(s)
Doulas , Racismo , Embarazo , Femenino , Humanos , Parto , Atención a la Salud , Investigación Cualitativa
11.
Curr Neuropharmacol ; 21(4): 777-786, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36825704

RESUMEN

Phytochemicals or natural products have been studied extensively for their potential in the treatment of neurodegenerative diseases (NDs) like Parkinson's disease, Alzheimer's disease, etc. The neuronal structure loss and progressive dysfunction are the main characteristics of these diseases. In spite of impressive and thorough knowledge of neurodegenerative molecular pathways, little advancement has been found in the treatment of the same. Moreover, it was proved that natural products can be used efficiently in the treatment of NDs while certain issues regarding the patient's safety and clinical data are still existing. As ND is a bunch of diseases and it will start the myriad of pathological processes, active targeting of the molecular pathway behind ND will be the most efficient strategy to treat all ND-related diseases. The targeting pathway must prevent cell death and should restore the damaged neurons. In the treatment of ND and related diseases, natural products are playing the role of neuroprotective agents. This review will target the therapeutic potential of various phytochemicals which shows neuroprotective action.


Asunto(s)
Enfermedad de Alzheimer , Productos Biológicos , Fármacos Neuroprotectores , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Alzheimer/tratamiento farmacológico , Fitoquímicos/química , Fitoquímicos/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/química , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico
12.
Brief Funct Genomics ; 22(2): 123-142, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36003055

RESUMEN

Activin A receptor type I (ACVR1), a transmembrane serine/threonine kinase, belongs to the transforming growth factor-ß superfamily, which signals via phosphorylating the downstream effectors and SMAD transcription factors. Its central role in several biological processes and intracellular signaling is well known. Genetic variation in ACVR1 has been associated with a rare disease, fibrodysplasia ossificans progressive, and its somatic alteration is reported in rare cancer diffuse intrinsic pontine glioma. Furthermore, altered expression or variation of ACVR1 is associated with multiple pathologies such as polycystic ovary syndrome, congenital heart defects, diffuse idiopathic skeletal hyperostosis, posterior fossa ependymoma and other malignancies. Recent advancements have witnessed ACVR1 as a potential pharmacological target, and divergent promising approaches for its therapeutic targeting have been explored. This review highlights the structural and functional characteristics of receptor ACVR1, associated signaling pathways, genetic variants in several diseases and cancers, protein-protein interaction, gene expression, regulatory miRNA prediction and potential therapeutic targeting approaches. The comprehensive knowledge will offer new horizons and insights into future strategies harnessing its therapeutic potential.


Asunto(s)
Miositis Osificante , Femenino , Humanos , Miositis Osificante/genética , Miositis Osificante/tratamiento farmacológico , Miositis Osificante/patología , Multiómica , Mutación , Transducción de Señal/genética , Receptores de Activinas Tipo I/genética , Receptores de Activinas Tipo I/metabolismo , Receptores de Activinas Tipo I/uso terapéutico
13.
Narra J ; 3(2): e147, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38454981

RESUMEN

Celiac disease (CD) is a gluten intolerance autoimmune disorder which its symptoms involve the gastrointestinal tract and sometimes the other organs. It is one of the most prevalent health problems rising in many populations as statistics show that in every 100 people about one person is suffering from CD. It has been observed that the persons who genetically contain the human leukocyte antigen (HLA) DQ2 and HLA DQ8 genes involved in the immune system haplotypes are more prone to develop an allergy to gluten. The only treatment currently available for CD is a strict gluten-free diet. However, recent research has shown promising new insights into the herbal-based treatments of CD. New insight on CD is now offering various prospects to manage its treatment, diagnosis, and serving in the development of advanced therapies. Several herbs and botanical extracts have demonstrated anti-inflammatory, immunomodulatory, and gut-healing properties that make them potential candidates for the management of CD. Here, we provide an updated review on pathogeneses and managements of CD. In particular, we summarize the current understandings of herbal-based treatments for CD and highlights their potential benefits.

14.
Front Pharmacol ; 13: 925387, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910346

RESUMEN

Fungi are extremely diverse in terms of morphology, ecology, metabolism, and phylogeny. Approximately, 130 medicinal activities like antitumor, immunomodulation, antioxidant, radical scavenging, cardioprotective and antiviral actions are assumed to be produced by the various varieties of medicinal mushrooms. The polysaccharides, present in mushrooms like ß-glucans, micronutrients, antioxidants like glycoproteins, triterpenoids, flavonoids, and ergosterols can help establish natural resistance against infections and toxins.. Clinical trials have been performed on mushrooms like Agaricus blazei Murrill Kyowa for their anticancer effect, A. blazei Murrill for its antihypertensive and cardioprotective effects, and some other mushrooms had also been evaluated for their neurological effects. The human evaluation dose studies had been also performed and the toxicity dose was evaluated from the literature for number of mushrooms. All the mushrooms were found to be safe at a dose of 2000 mg/kg but some with mild side effects. The safety and therapeutic effectiveness of the fungal mushrooms had shifted the interest of biotechnologists toward fungal nanobiotechnology as the drug delivery system due to the vast advantages of nanotechnology systems. In complement to the vital nutritional significance of medicinal mushrooms, numerous species have been identified as sources of bioactive chemicals. Moreover, there are unanswered queries regarding its safety, efficacy, critical issues that affect the future mushroom medicine development, that could jeopardize its usage in the twenty-first century.

16.
Polymers (Basel) ; 14(14)2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35890542

RESUMEN

Background: Extracts of medicinal plant like lemongrass offer a new choice for optional antimicrobial therapy against various oral microorganisms. The objective of this study was to assess, verify, and compare the antimicrobial effectiveness of locally administered 2% lemongrass gel and 10% doxycycline hyclate gel as an adjunct to scaling and root planing (SRP) in treating chronic periodontitis. Method: This is a double-blind parallel arm randomized controlled study. Forty subjects were randomly divided into Group A and B for 2% lemongrass gel and 10% doxycycline hyclate gel, respectively. The clinical assessments of Gingival Index (GI), Plaque Index (PI), Probing Pocket Depth (PPD), and Clinical Attachment Level (CAL) together with microbial colony counts for Porphyromonas gingivalis, Actinomyces naeslundii, and Prevotella intermedia were done at baseline, 1st month, and 3rd month follow-ups. Results: The results showed there was a significant reduction in the mean scores of GI, PPD, and CAL clinical indices from baseline to the 1st and 3rd month follow-ups in both the 2% lemongrass gel and 10% doxycycline gel groups (p < 0.05). Similarly, there was significant reduction in mean CFU scores for all periodontal pathogens from baseline to 1st and 3rd month follow-ups in both the 2% lemongrass gel and 10% doxycycline gel groups (p < 0.05). Conclusions: It could be concluded that the local delivery of 2% lemongrass gel as an adjunct to scaling and root planing is effective and comparable to 10% doxycycline gel in the treatment of chronic periodontitis.

17.
Int J Biol Macromol ; 187: 999-1018, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34339789

RESUMEN

Apoptosis, a major hallmark of cancer cells, regulates cellular fate and homeostasis. BCL-2 (B-cell CLL/Lymphoma 2) protein family is popularly known to mediate the intrinsic mode of apoptosis, of which MCL-1 is a crucial member. Myeloid cell leukemia 1 (MCL-1) is an anti-apoptotic oncoprotein and one of the most investigated members of the BCL-2 family. It is commonly known to be genetically altered, aberrantly overexpressed, and primarily associated with drug resistance in various human cancers. Recent advancements in the development of selective MCL-1 inhibitors and evaluating their effectiveness in cancer treatment establish its popularity as a molecular target. The overall aim is the selective induction of apoptosis in cancer cells by using a single or combination of BCL-2 family inhibitors. Delineating the precise molecular mechanisms associated with MCL-1-mediated cancer progression will certainly improve the efficacy of clinical interventions aimed at MCL-1 and hence patient survival. This review is structured to highlight the structural characteristics of MCL-1, its specific interactions with NOXA, MCL-1-regulatory microRNAs, and at the same time focus on the emerging therapeutic strategies targeting our protein of interest (MCL-1), alone or in combination with other treatments.


Asunto(s)
Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Resistencia a Antineoplásicos , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Terapia Molecular Dirigida , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Proteolisis , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal
18.
Int J Biol Macromol ; 184: 874-886, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34175340

RESUMEN

Cytochrome P450s (CYPs) are a versatile group of enzymes and one of the largest families of proteins, controlling various physiological processes via biosynthetic and detoxification pathways. CYPs perform multiple roles through a critical irreversible enzymatic reaction in which an oxygen atom is inserted within hydrophobic molecules, converting them into the reactive and hydro soluble components. During evolution, plants have acquired significantly more number of CYPs and represent about 1% of the encoded genes . CYPs are highly conserved proteins involved in growth, development and tolerance against biotic and abiotic stresses. Furthermore, CYPs reinforce plants' molecular and chemical defense mechanisms by regulating the biosynthesis of secondary metabolites, enhancing reactive oxygen species (ROS) scavenging and controlling biosynthesis and homeostasis of phytohormones, including abscisic acid (ABA) and jasmonates. Thus, they are the critical targets of metabolic engineering for enhancing plant defense against environmental stresses. Additionally, CYPs are also used as biocatalysts in the fields of pharmacology and phytoremediation. Herein, we highlight the role of CYPs in plant stress tolerance and their applications for human welfare.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Plantas/enzimología , Humanos , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
19.
Biomed Res Int ; 2021: 8844030, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33644232

RESUMEN

Dendrimers are nanosized, symmetrical molecules in which a small atom or group of atoms is surrounded by the symmetric branches known as dendrons. The structure of dendrimers possesses the greatest impact on their physical and chemical properties. They grow outwards from the core-shell which further reacts with monomers having one reactive or two dormant molecules. Dendrimers' unique characteristics such as hyperbranching, well-defined spherical structure, and high compatibility with the biological systems are responsible for their wide range of applications including medical and biomedical areas. Particularly, the dendrimers' three-dimensional structure can incorporate a wide variety of drugs to form biologically active drug conjugates. In this review, we focus on the synthesis, mechanism of drug encapsulations in dendrimers, and their wide applications in drug delivery.


Asunto(s)
Dendrímeros/química , Dendrímeros/uso terapéutico , Portadores de Fármacos/química , Portadores de Fármacos/uso terapéutico , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Humanos
20.
Curr Pharm Des ; 27(31): 3370-3388, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-33550964

RESUMEN

Coronavirus disease (COVID-19) is caused by a novel severe acute respiratory syndrome coronavirus (SARS-CoV-2), which is a positive single-stranded RNA virus having a large genome ~30 kb. SARSCoV- 2 is zoonotic and highly contagious, causing severe pneumonia-like symptoms. The efficacy of the different potential drug and drug candidates against COVID-19 has been investigated, which are under various stages of clinical trials. The drugs effective against SARS, and Middle east respiratory syndrome (MERS), have been proposed to have a high potential for the treatment of COVID-19. Here, we selected plant-based materials implicated in the prevention and therapy of COVID-19. The plant produces secondary metabolites in response to viral infection. Different classes of secondary metabolites have different mechanisms to counter virus attacks. Many nanomaterials produced by carbohydrates and lipids have been exploited for their in-vitro and in-vivo delivery of antiviral therapeutics. The vaccine has shown impressive results in producing antibodies against SARS-CoV2 and has been evaluated for safety, tolerance, and preliminary immunogenicity. Similarly, DNA/RNA-based therapy has shown high clinical significance. Various forms of vitamins, minerals, herbs, and phytonutrients help to enhance immunity and be implicated in the control of COVID-19. However, such measures should not replace social distancing, quarantine and special care.


Asunto(s)
COVID-19 , Vacunas , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , ARN Viral , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...