Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Res ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38657107

RESUMEN

Tumor cells rewire their metabolism to fulfill the demands of highly proliferative cells. This changes cellular metabolism to adapt to fuel and oxygen availability for energy production and to increase the synthesis capacity of building blocks for cell division and growth. In addition, the metabolic shift also modulates the immunogenicity of the tumor cells. Recently, Mahmood and colleagues reported a connection between mitochondrial DNA mutations in cancer cells and their response to immunotherapy in a mouse model of melanoma.

3.
Semin Immunol ; 69: 101808, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37473558

RESUMEN

Mitochondrial dysfunction is a hallmark of aging that contributes to inflammaging. It is characterized by alterations of the mitochondrial DNA, reduced respiratory capacity, decreased mitochondrial membrane potential and increased reactive oxygen species production. These primary alterations disrupt other interconnected and important mitochondrial-related processes such as metabolism, mitochondrial dynamics and biogenesis, mitophagy, calcium homeostasis or apoptosis. In this review, we gather the current knowledge about the different mitochondrial processes which are altered during aging, with special focus on their contribution to age-associated T cell dysfunction and inflammaging.


Asunto(s)
Mitocondrias , Linfocitos T , Humanos , Especies Reactivas de Oxígeno/metabolismo , Linfocitos T/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Envejecimiento/genética , Senescencia Celular
4.
Nat Aging ; 3(5): 475-476, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37198439
5.
Annu Rev Immunol ; 41: 181-205, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37126417

RESUMEN

There is a dramatic remodeling of the T cell compartment during aging. The most notorious changes are the reduction of the naive T cell pool and the accumulation of memory-like T cells. Memory-like T cells in older people acquire a phenotype of terminally differentiated cells, lose the expression of costimulatory molecules, and acquire properties of senescent cells. In this review, we focus on the different subsets of age-associated T cells that accumulate during aging. These subsets include extremely cytotoxic T cells with natural killer properties, exhausted T cells with altered cytokine production, and regulatory T cells that gain proinflammatory features. Importantly, all of these subsets lose their lymph node homing capacity and migrate preferentially to nonlymphoid tissues, where they contribute to tissue deterioration and inflammaging.


Asunto(s)
Envejecimiento , Subgrupos de Linfocitos T , Humanos , Animales , Linfocitos T Reguladores , Diferenciación Celular
6.
EMBO Mol Med ; 15(1): e16301, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36373340

RESUMEN

During the last decade, the stimulation of T-cell function by the blockage of immunosuppressive checkpoints has experienced an outstanding impact in the treatment of cancer. Development of the chimeric antigen receptor T-cell technology has also emerged as a powerful alternative for patients suffering from oncological processes, especially those affected by hematological neoplasms. Recent evidence suggest that the use of immunotherapy could be extended to non-oncological diseases and could be especially relevant for age-associated disorders, opening exciting therapeutic options for a wide range of diseases of the elderly. Here we comment on the emergence of T-cell-based immunotherapies as feasible approaches that could revolutionize the future of GeroScience.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Anciano , Neoplasias/terapia , Inmunoterapia , Linfocitos T , Envejecimiento , Inmunoterapia Adoptiva
7.
Sci Adv ; 8(11): eabm7322, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35294231

RESUMEN

Pathological vascular remodeling is the underlying cause of atherosclerosis and abdominal aortic aneurysm (AAA). Here, we analyzed the role of galectin-1 (Gal-1), a ß-galactoside-binding protein, as a therapeutic target for atherosclerosis and AAA. Mice lacking Gal-1 (Lgals1-/-) developed severe atherosclerosis induced by pAAV/D377Y-mPCSK9 adenovirus and displayed higher lipid levels and lower expression of contractile markers of vascular smooth muscle cells (VSMCs) in plaques than wild-type mice. Proteomic analysis of Lgals1-/- aortas showed changes in markers of VSMC phenotypic switch and altered composition of mitochondrial proteins. Mechanistically, Gal-1 silencing resulted in increased foam cell formation and mitochondrial dysfunction in VSMCs, while treatment with recombinant Gal-1 (rGal-1) prevented these effects. Furthermore, rGal-1 treatment attenuated atherosclerosis and elastase-induced AAA, leading to higher contractile VSMCs in aortic tissues. Gal-1 expression decreased in human atheroma and AAA compared to control tissue. Thus, Gal-1-driven circuits emerge as potential therapeutic strategies in atherosclerosis and AAA.


Asunto(s)
Aneurisma de la Aorta Abdominal , Aterosclerosis , Animales , Aneurisma de la Aorta Abdominal/etiología , Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/patología , Aterosclerosis/genética , Aterosclerosis/metabolismo , Modelos Animales de Enfermedad , Galectina 1/genética , Galectina 1/metabolismo , Galectina 1/farmacología , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Proteómica , Remodelación Vascular
8.
Arterioscler Thromb Vasc Biol ; 42(4): 462-469, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35196876

RESUMEN

BACKGROUND: The goal of this study was to determine whether boosting mitochondrial respiration prevents the development of fatal aortic ruptures triggered by atherosclerosis and hypertension. METHODS: Ang-II (angiotensin-II) was infused in ApoE (Apolipoprotein E)-deficient mice fed with a western diet to induce acute aortic aneurysms and lethal ruptures. RESULTS: We found decreased mitochondrial respiration and mitochondrial proteins in vascular smooth muscle cells from murine and human aortic aneurysms. Boosting NAD levels with nicotinamide riboside reduced the development of aortic aneurysms and sudden death by aortic ruptures. CONCLUSIONS: Targetable vascular metabolism is a new clinical strategy to prevent fatal aortic ruptures and sudden death in patients with aortic aneurysms.


Asunto(s)
Rotura de la Aorta , Aterosclerosis , Angiotensina II , Animales , Rotura de la Aorta/genética , Rotura de la Aorta/prevención & control , Aterosclerosis/genética , Aterosclerosis/prevención & control , Muerte Súbita , Humanos , Ratones , Proteínas Mitocondriales
9.
Nat Rev Immunol ; 22(2): 97-111, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34099898

RESUMEN

Age-related T cell dysfunction can lead to failure of immune tolerance mechanisms, resulting in aberrant T cell-driven cytokine and cytotoxic responses that ultimately cause tissue damage. In this Review, we discuss the role of T cells in the onset and progression of age-associated conditions, focusing on cardiovascular disorders, metabolic dysfunction, neuroinflammation and defective tissue repair and regeneration. We present different mechanisms by which T cells contribute to inflammageing and might act as modulators of age-associated diseases, including through enhanced pro-inflammatory and cytotoxic activity, defective clearance of senescent cells or regulation of the gut microbiota. Finally, we propose that 'resetting' immune system tolerance or targeting pathogenic T cells could open up new therapeutic opportunities to boost resilience to age-related diseases.


Asunto(s)
Microbioma Gastrointestinal , Linfocitos T , Envejecimiento , Citocinas , Microbioma Gastrointestinal/fisiología , Humanos , Tolerancia Inmunológica
10.
Br J Pharmacol ; 179(9): 1839-1856, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33817782

RESUMEN

Metabolism is dynamically regulated to accompany immune cell function, and altered immunometabolism can result in impaired immune responses. Concomitantly, the pharmacological manipulation of metabolic processes offers an opportunity for therapeutic intervention in inflammatory disorders. The nicotinamide adenine dinucleotide (NAD+ ) is a critical metabolic intermediate that serves as enzyme cofactor in redox reactions, and is also used as a co-substrate by many enzymes such as sirtuins, adenosine diphosphate ribose transferases and synthases. Through these activities, NAD+ metabolism regulates a broad spectrum of cellular functions such as energy metabolism, DNA repair, regulation of the epigenetic landscape and inflammation. Thus, the manipulation of NAD+ availability using pharmacological compounds such as NAD+ precursors can have immune-modulatory properties in inflammation. Here, we discuss how the NAD+ metabolism contributes to the immune response and inflammatory conditions, with a special focus on multiple sclerosis, inflammatory bowel diseases and inflammageing. LINKED ARTICLES: This article is part of a themed issue on Inflammation, Repair and Ageing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.9/issuetoc.


Asunto(s)
NAD , Sirtuinas , Autoinmunidad , Metabolismo Energético , Inmunidad , NAD/metabolismo , Sirtuinas/metabolismo
11.
Dis Model Mech ; 14(8)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34312668

RESUMEN

Mitochondrial dysfunction associates with several pathological processes and contributes to chronic inflammatory and ageing-related diseases. Mitochondrial transcription factor A (TFAM) plays a critical role in maintaining mtDNA integrity and function. Taking advantage of Tfamfl/fl UBC-Cre/ERT2+/+ mice to investigate mitochondrial dysfunction in the stromal cell component, we describe an inducible in vitro model of mitochondrial dysfunction by stable depletion of TFAM in primary mouse skin fibroblasts (SK-FBs) after 4-hydroxytamoxifen (4-OHT) administration. Tfam gene deletion caused a sustained reduction in Tfam and mtDNA-encoded mRNA in Cre(+) SK-FBs cultured for low (LP) and high (HP) passages that translated into a loss of TFAM protein. TFAM depletion led to a substantial reduction in mitochondrial respiratory chain complexes that was exacerbated in HP SK-FB cultures. The assembly pattern showed that the respiratory complexes fail to reach the respirasome in 4-OHT-treated Cre(+) SK-FBs. Functionally, mito-stress and glycolysis-stress tests showed that mitochondrial dysfunction developed after long-term 4-OHT treatment in HP Cre(+) SK-FBs and was compensated by an increase in the glycolytic capacity. Finally, expression analysis revealed that 4-OHT-treated HP Cre(+) SK-FBs showed a senescent and pro-inflammatory phenotype.


Asunto(s)
ADN Mitocondrial , Proteínas Mitocondriales , Animales , ADN Mitocondrial/genética , Proteínas de Unión al ADN/metabolismo , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Glucólisis , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Ratones , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo
12.
Nat Immunol ; 22(6): 687-698, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33986548

RESUMEN

The aged adaptive immune system is characterized by progressive dysfunction as well as increased autoimmunity. This decline is responsible for elevated susceptibility to infection and cancer, as well as decreased vaccination efficacy. Recent evidence indicates that CD4+ T cell-intrinsic alteratins contribute to chronic inflammation and are sufficient to accelerate an organism-wide aging phenotype, supporting the idea that T cell aging plays a major role in body-wide deterioration. In this Review, we propose ten molecular hallmarks to represent common denominators of T cell aging. These hallmarks are grouped into four primary hallmarks (thymic involution, mitochondrial dysfunction, genetic and epigenetic alterations, and loss of proteostasis) and four secondary hallmarks (reduction of the TCR repertoire, naive-memory imbalance, T cell senescence, and lack of effector plasticity), and together they explain the manifestation of the two integrative hallmarks (immunodeficiency and inflammaging). A major challenge now is weighing the relative impact of these hallmarks on T cell aging and understanding their interconnections, with the final goal of defining molecular targets for interventions in the aging process.


Asunto(s)
Envejecimiento/inmunología , Inmunidad Celular , Linfocitos T/inmunología , Envejecimiento/genética , Autoinmunidad/genética , Plasticidad de la Célula/genética , Plasticidad de la Célula/inmunología , Senescencia Celular/genética , Senescencia Celular/inmunología , Susceptibilidad a Enfermedades/inmunología , Epigénesis Genética/inmunología , Regulación de la Expresión Génica/inmunología , Humanos , Inflamación/genética , Inflamación/inmunología , Proteostasis/genética , Proteostasis/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo , Timo/inmunología , Timo/fisiopatología
13.
Circulation ; 143(21): 2091-2109, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-33709773

RESUMEN

BACKGROUND: Marfan syndrome (MFS) is an autosomal dominant disorder of the connective tissue caused by mutations in the FBN1 (fibrillin-1) gene encoding a large glycoprotein in the extracellular matrix called fibrillin-1. The major complication of this connective disorder is the risk to develop thoracic aortic aneurysm. To date, no effective pharmacologic therapies have been identified for the management of thoracic aortic disease and the only options capable of preventing aneurysm rupture are endovascular repair or open surgery. Here, we have studied the role of mitochondrial dysfunction in the progression of thoracic aortic aneurysm and mitochondrial boosting strategies as a potential treatment to managing aortic aneurysms. METHODS: Combining transcriptomics and metabolic analysis of aortas from an MFS mouse model (Fbn1c1039g/+) and MFS patients, we have identified mitochondrial dysfunction alongside with mtDNA depletion as a new hallmark of aortic aneurysm disease in MFS. To demonstrate the importance of mitochondrial decline in the development of aneurysms, we generated a conditional mouse model with mitochondrial dysfunction specifically in vascular smooth muscle cells (VSMC) by conditional depleting Tfam (mitochondrial transcription factor A; Myh11-CreERT2Tfamflox/flox mice). We used a mouse model of MFS to test for drugs that can revert aortic disease by enhancing Tfam levels and mitochondrial respiration. RESULTS: The main canonical pathways highlighted in the transcriptomic analysis in aortas from Fbn1c1039g/+ mice were those related to metabolic function, such as mitochondrial dysfunction. Mitochondrial complexes, whose transcription depends on Tfam and mitochondrial DNA content, were reduced in aortas from young Fbn1c1039g/+ mice. In vitro experiments in Fbn1-silenced VSMCs presented increased lactate production and decreased oxygen consumption. Similar results were found in MFS patients. VSMCs seeded in matrices produced by Fbn1-deficient VSMCs undergo mitochondrial dysfunction. Conditional Tfam-deficient VSMC mice lose their contractile capacity, showed aortic aneurysms, and died prematurely. Restoring mitochondrial metabolism with the NAD precursor nicotinamide riboside rapidly reverses aortic aneurysm in Fbn1c1039g/+ mice. CONCLUSIONS: Mitochondrial function of VSMCs is controlled by the extracellular matrix and drives the development of aortic aneurysm in Marfan syndrome. Targeting vascular metabolism is a new available therapeutic strategy for managing aortic aneurysms associated with genetic disorders.


Asunto(s)
Aneurisma de la Aorta/fisiopatología , Síndrome de Marfan/genética , Mitocondrias/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Síndrome de Marfan/fisiopatología , Ratones
14.
Cell Metab ; 33(3): 470-472, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33657392

RESUMEN

When T cells are exposed to continuous antigen stimulation, they become exhausted. Here, we preview findings from Scharping et al. (2021), who have illuminated the molecular mechanism by which the persistent antigen stimulation and severe hypoxic conditions in the intratumoral environment drive T cell exhaustion, losing their cytotoxic function and anticancer effects.


Asunto(s)
Linfocitos T CD8-positivos , Mitocondrias , Linfocitos T CD8-positivos/metabolismo
15.
Science ; 368(6497): 1371-1376, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32439659

RESUMEN

The effect of immunometabolism on age-associated diseases remains uncertain. In this work, we show that T cells with dysfunctional mitochondria owing to mitochondrial transcription factor A (TFAM) deficiency act as accelerators of senescence. In mice, these cells instigate multiple aging-related features, including metabolic, cognitive, physical, and cardiovascular alterations, which together result in premature death. T cell metabolic failure induces the accumulation of circulating cytokines, which resembles the chronic inflammation that is characteristic of aging ("inflammaging"). This cytokine storm itself acts as a systemic inducer of senescence. Blocking tumor necrosis factor-α signaling or preventing senescence with nicotinamide adenine dinucleotide precursors partially rescues premature aging in mice with Tfam-deficient T cells. Thus, T cells can regulate organismal fitness and life span, which highlights the importance of tight immunometabolic control in both aging and the onset of age-associated diseases.


Asunto(s)
Envejecimiento Prematuro/inmunología , Proteínas de Unión al ADN/deficiencia , Mitocondrias/metabolismo , Proteínas Mitocondriales/deficiencia , Multimorbilidad , Linfocitos T/metabolismo , Factores de Transcripción/deficiencia , Envejecimiento Prematuro/genética , Envejecimiento Prematuro/prevención & control , Animales , Síndrome de Liberación de Citoquinas/inmunología , Proteínas de Unión al ADN/genética , Femenino , Eliminación de Gen , Inflamación/genética , Inflamación/inmunología , Longevidad , Masculino , Ratones , Ratones Mutantes , Proteínas Mitocondriales/genética , NAD/administración & dosificación , NAD/farmacología , Aptitud Física , Linfocitos T/ultraestructura , Factores de Transcripción/genética , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
16.
FEBS J ; 287(16): 3350-3369, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32255251

RESUMEN

The inflammatory response involves the activation of several cell types to fight insults caused by a plethora of agents, and to maintain the tissue homoeostasis. On the one hand, cells involved in the pro-inflammatory response, such as inflammatory M1 macrophages, Th1 and Th17 lymphocytes or activated microglia, must rapidly provide energy to fuel inflammation, which is essentially accomplished by glycolysis and high lactate production. On the other hand, regulatory T cells or M2 macrophages, which are involved in immune regulation and resolution of inflammation, preferentially use fatty acid oxidation through the TCA cycle as a main source for energy production. Here, we discuss the impact of glycolytic metabolism at the different steps of the inflammatory response. Finally, we review a wide variety of molecular mechanisms which could explain the relationship between glycolytic metabolites and the pro-inflammatory phenotype, including signalling events, epigenetic remodelling, post-transcriptional regulation and post-translational modifications. Inflammatory processes are a common feature of many age-associated diseases, such as cardiovascular and neurodegenerative disorders. The finding that immunometabolism could be a master regulator of inflammation broadens the avenue for treating inflammation-related pathologies through the manipulation of the vascular and immune cell metabolism.


Asunto(s)
Ciclo del Ácido Cítrico/inmunología , Glucólisis/inmunología , Inflamación/inmunología , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Linfocitos T Reguladores/inmunología , Animales , Humanos , Inflamación/metabolismo , Macrófagos/clasificación , Macrófagos/metabolismo , Enfermedades Neurodegenerativas/inmunología , Enfermedades Neurodegenerativas/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Linfocitos T Reguladores/metabolismo
17.
Int J Mol Sci ; 20(11)2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31195626

RESUMEN

Extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, are cell-derived membranous structures that were originally catalogued as a way of releasing cellular waste products. Since the discovery of their function in intercellular communication as carriers of proteins, lipids, and DNA and RNA molecules, numerous therapeutic approaches have focused on the use of EVs, in part because of their minimized risk compared to cell-based therapies. The skin is the organ with the largest surface in the body. Besides the importance of its body barrier function, much attention has been paid to the skin in regenerative medicine because of its cosmetic aspect, which is closely related to disorders affecting pigmentation and the presence or absence of hair follicles. The use of exosomes in therapeutic approaches for cutaneous wound healing has been reported and is briefly reviewed here. However, less attention has been paid to emerging interest in the potential capacity of EVs as modulators of hair follicle dynamics. Hair follicles are skin appendices that mainly comprise an epidermal and a mesenchymal component, with the former including a major reservoir of epithelial stem cells but also melanocytes and other cell types. Hair follicles continuously cycle, undergoing consecutive phases of resting, growing, and regression. Many biomolecules carried by EVs have been involved in the control of the hair follicle cycle and stem cell function. Thus, investigating the role of either naturally produced or therapeutically delivered EVs as signaling vehicles potentially involved in skin homeostasis and hair cycling may be an important step in the attempt to design future strategies towards the efficient treatment of several skin disorders.


Asunto(s)
Vesículas Extracelulares/metabolismo , Folículo Piloso/metabolismo , Piel/metabolismo , Animales , Humanos , Modelos Biológicos , Medicina Regenerativa , Transducción de Señal
18.
Cells ; 9(1)2019 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-31905682

RESUMEN

Mitochondrial metabolism and autophagy are two of the most metabolically active cellular processes, playing a crucial role in regulating organism longevity. In fact, both mitochondrial dysfunction or autophagy decline compromise cellular homeostasis and induce inflammation. Calorie restriction (CR) is the oldest strategy known to promote healthspan, and a plethora of CR mimetics have been used to emulate its beneficial effects. Herein, we discuss how CR and CR mimetics, by modulating mitochondrial metabolism or autophagic flux, prevent inflammatory processes, protect the intestinal barrier function, and dampen both inflammaging and neuroinflammation. We outline the effects of some compounds classically known as modulators of autophagy and mitochondrial function, such as NAD+ precursors, metformin, spermidine, rapamycin, and resveratrol, on the control of the inflammatory cascade and how these anti-inflammatory properties could be involved in their ability to increase resilience to age-associated diseases.


Asunto(s)
Autofagia , Biomimética , Restricción Calórica , Inflamación/metabolismo , Mitocondrias/metabolismo , Animales , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Autofagia/efectos de los fármacos , Susceptibilidad a Enfermedades , Metabolismo Energético , Homeostasis , Humanos , Inflamación/tratamiento farmacológico , Inflamación/etiología , Mitocondrias/efectos de los fármacos
19.
PLoS Biol ; 16(10): e2006247, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30346946

RESUMEN

Different microRNAs (miRNAs), including miR-29 family, may play a role in the development of heart failure (HF), but the underlying molecular mechanisms in HF pathogenesis remain unclear. We aimed at characterizing mice deficient in miR-29 in order to address the functional relevance of this family of miRNAs in the cardiovascular system and its contribution to heart disease. In this work, we show that mice deficient in miR-29a/b1 develop vascular remodeling and systemic hypertension, as well as HF with preserved ejection fraction (HFpEF) characterized by myocardial fibrosis, diastolic dysfunction, and pulmonary congestion, and die prematurely. We also found evidence that the absence of miR-29 triggers the up-regulation of its target, the master metabolic regulator PGC1α, which in turn generates profound alterations in mitochondrial biogenesis, leading to a pathological accumulation of small mitochondria in mutant animals that contribute to cardiac disease. Notably, we demonstrate that systemic hypertension and HFpEF caused by miR-29 deficiency can be rescued by PGC1α haploinsufficiency, which reduces cardiac mitochondrial accumulation and extends longevity of miR-29-mutant mice. In addition, PGC1α is overexpressed in hearts from patients with HF. Collectively, our findings demonstrate the in vivo role of miR-29 in cardiovascular homeostasis and unveil a novel miR-29/PGC1α regulatory circuitry of functional relevance for cell metabolism under normal and pathological conditions.


Asunto(s)
Insuficiencia Cardíaca/genética , MicroARNs/genética , MicroARNs/fisiología , Animales , Fibrosis , Corazón/fisiología , Humanos , Hipertensión/genética , Ratones , Ratones Endogámicos C57BL , Mitocondrias , Miocardio/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/fisiología , Regulación hacia Arriba , Remodelación Vascular/genética
20.
Nat Commun ; 9(1): 2658, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29985392

RESUMEN

Interaction of T cell with antigen-bearing dendritic cells (DC) results in T cell activation, but whether this interaction has physiological consequences on DC function is largely unexplored. Here we show that when antigen-bearing DCs contact T cells, DCs initiate anti-pathogenic programs. Signals of this interaction are transmitted from the T cell to the DC, through extracellular vesicles (EV) that contain genomic and mitochondrial DNA, to induce antiviral responses via the cGAS/STING cytosolic DNA-sensing pathway and expression of IRF3-dependent interferon regulated genes. Moreover, EV-treated DCs are more resistant to subsequent viral infections. In summary, our results show that T cells prime DCs through the transfer of exosomal DNA, supporting a specific role for antigen-dependent contacts in conferring protection to DCs against pathogen infection. The reciprocal communication between innate and adaptive immune cells thus allow efficacious responses to unknown threats.


Asunto(s)
Antígenos/inmunología , Células Dendríticas/inmunología , Vesículas Extracelulares/inmunología , Activación de Linfocitos/inmunología , Linfocitos T/inmunología , Animales , Antígenos/metabolismo , Línea Celular Tumoral , Células Cultivadas , Células Dendríticas/metabolismo , Células Dendríticas/virología , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Expresión Génica/inmunología , Células HEK293 , Humanos , Interferones/inmunología , Interferones/metabolismo , Células Jurkat , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T/metabolismo , Linfocitos T/virología , Virus/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...