Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Sci Rep ; 14(1): 856, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195844

RESUMEN

Large-scale short hairpin RNA (shRNA) screens on well-characterized human cancer cell lines have been widely used to identify novel cancer dependencies. However, the off-target effects of shRNA reagents pose a significant challenge in the analysis of these screens. To mitigate these off-target effects, various approaches have been proposed that aggregate different shRNA viability scores targeting a gene into a single gene-level viability score. Most computational methods for discovering cancer dependencies rely on these gene-level scores. In this paper, we propose a computational method, named NBDep, to find cancer self-dependencies by directly analyzing shRNA-level dependency scores instead of gene-level scores. The NBDep algorithm begins by removing known batch effects of the shRNAs and selecting a subset of concordant shRNAs for each gene. It then uses negative binomial random effects models to statistically assess the dependency between genetic alterations and the viabilities of cell lines by incorporating all shRNA dependency scores of each gene into the model. We applied NBDep to the shRNA dependency scores available at Project DRIVE, which covers 26 different types of cancer. The proposed method identified more well-known and putative cancer genes compared to alternative gene-level approaches in pan-cancer and cancer-specific analyses. Additionally, we demonstrated that NBDep controls type-I error and outperforms statistical tests based on gene-level scores in simulation studies.


Asunto(s)
Neoplasias Primarias Desconocidas , Humanos , Oncogenes , Algoritmos , Línea Celular , ARN Interferente Pequeño/genética
2.
Sci Rep ; 13(1): 15763, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737478

RESUMEN

Exploiting synthetic lethality is a promising strategy for developing targeted cancer therapies. However, identifying clinically significant synthetic lethal (SL) interactions among a large number of gene combinations is a challenging computational task. In this study, we developed the SL-scan pipeline based on metabolic network modeling to discover SL interaction. The SL-scan pipeline identifies the association between simulated Flux Balance Analysis knockout scores and mutation data across cancer cell lines and predicts putative SL interactions. We assessed the concordance of the SL pairs predicted by SL-scan with those of obtained from analysis of the CRISPR, shRNA, and PRISM datasets. Our results demonstrate that the SL-scan pipeline outperformed existing SL prediction approaches based on metabolic networks in identifying SL pairs in various cancers. This study emphasizes the importance of integrating multiple data sources, particularly mutation data, when identifying SL pairs for targeted cancer therapies. The findings of this study may lead to the development of novel targeted cancer therapies.


Asunto(s)
Traumatismos Craneocerebrales , Neoplasias , Humanos , Neoplasias/genética , Línea Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Redes y Vías Metabólicas
3.
Nat Commun ; 13(1): 7748, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36517508

RESUMEN

The development of cancer therapies is limited by the availability of suitable drug targets. Potential candidate drug targets can be identified based on the concept of synthetic lethality (SL), which refers to pairs of genes for which an aberration in either gene alone is non-lethal, but co-occurrence of the aberrations is lethal to the cell. Here, we present SLIdR (Synthetic Lethal Identification in R), a statistical framework for identifying SL pairs from large-scale perturbation screens. SLIdR successfully predicts SL pairs even with small sample sizes while minimizing the number of false positive targets. We apply SLIdR to Project DRIVE data and find both established and potential pan-cancer and cancer type-specific SL pairs consistent with findings from literature and drug response screening data. We experimentally validate two predicted SL interactions (ARID1A-TEAD1 and AXIN1-URI1) in hepatocellular carcinoma, thus corroborating the ability of SLIdR to identify potential drug targets.


Asunto(s)
Neoplasias , Mutaciones Letales Sintéticas , Humanos , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Neoplasias/genética
4.
Cell Host Microbe ; 30(10): 1354-1362.e6, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36029764

RESUMEN

The SARS-CoV-2 3CL protease (3CLpro) is an attractive therapeutic target, as it is essential to the virus and highly conserved among coronaviruses. However, our current understanding of its tolerance to mutations is limited. Here, we develop a yeast-based deep mutational scanning approach to systematically profile the activity of all possible single mutants of the 3CLpro and validate a subset of our results within authentic viruses. We reveal that the 3CLpro is highly malleable and is capable of tolerating mutations throughout the protein. Yet, we also identify specific residues that appear immutable, suggesting that these may be targets for future 3CLpro inhibitors. Finally, we utilize our screening as a basis to identify E166V as a resistance-conferring mutation against the clinically used 3CLpro inhibitor, nirmatrelvir. Collectively, the functional map presented herein may serve as a guide to better understand the biological properties of the 3CLpro and for drug development against coronaviruses.


Asunto(s)
COVID-19 , SARS-CoV-2 , Antivirales/farmacología , Antivirales/uso terapéutico , Proteasas 3C de Coronavirus , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Humanos , Péptido Hidrolasas/genética , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/uso terapéutico , SARS-CoV-2/genética
6.
bioRxiv ; 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35860222

RESUMEN

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) as the etiologic agent of COVID-19 (coronavirus disease 2019) has drastically altered life globally. Numerous efforts have been placed on the development of therapeutics to treat SARS-CoV-2 infection. One particular target is the 3CL protease (3CL pro ), which holds promise as it is essential to the virus and highly conserved among coronaviruses, suggesting that it may be possible to find broad inhibitors that treat not just SARS-CoV-2 but other coronavirus infections as well. While the 3CL protease has been studied by many groups for SARS-CoV-2 and other coronaviruses, our understanding of its tolerance to mutations is limited, knowledge which is particularly important as 3CL protease inhibitors become utilized clinically. Here, we develop a yeast-based deep mutational scanning approach to systematically profile the activity of all possible single mutants of the SARS-CoV-2 3CL pro , and validate our results both in yeast and in authentic viruses. We reveal that the 3CL pro is highly malleable and is capable of tolerating mutations throughout the protein, including within the substrate binding pocket. Yet, we also identify specific residues that appear immutable for function of the protease, suggesting that these interactions may be novel targets for the design of future 3CL pro inhibitors. Finally, we utilize our screening results as a basis to identify E166V as a resistance-conferring mutation against the therapeutic 3CL pro inhibitor, nirmatrelvir, in clinical use. Collectively, the functional map presented herein may serve as a guide for further understanding of the biological properties of the 3CL protease and for drug development for current and future coronavirus pandemics.

7.
Methods Mol Biol ; 2493: 267-277, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35751821

RESUMEN

SCAN-SNV is a recent computational tool for somatic single-nucleotide variant (SNV) identification from the single-cell DNA sequencing data. The workflow of the SCAN-SNV package is as follows. First, candidate somatic SNVs and credible heterozygous single-nucleotide polymorphisms (hSNP) are obtained by analyzing single-cell and matched bulk sequencing data, respectively. Subsequently, SCAN-SNV estimates genome-wide allele-specific amplification balance (AB) at any position of DNA sequencing data using a probabilistic spatial statistical model. Finally, candidate somatic SNVs that are likely artifacts according to the AB predictions are further removed to obtain putative mutations. This chapter provides a step-by-step practical guide of the package by explaining how to install and use the variance caller in a real-world example.


Asunto(s)
Polimorfismo de Nucleótido Simple , Alelos , Secuencia de Bases , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN
8.
Commun Biol ; 5(1): 373, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440675

RESUMEN

Synthetic lethal interactions, where the simultaneous but not individual inactivation of two genes is lethal to the cell, have been successfully exploited to treat cancer. GATA3 is frequently mutated in estrogen receptor (ER)-positive breast cancers and its deficiency defines a subset of patients with poor response to hormonal therapy and poor prognosis. However, GATA3 is not yet targetable. Here we show that GATA3 and MDM2 are synthetically lethal in ER-positive breast cancer. Depletion and pharmacological inhibition of MDM2 significantly impaired tumor growth in GATA3-deficient models in vitro, in vivo and in patient-derived organoids/xenograft (PDOs/PDX) harboring GATA3 somatic mutations. The synthetic lethality requires p53 and acts via the PI3K/Akt/mTOR pathway. Our results present MDM2 as a therapeutic target in the substantial cohort of ER-positive, GATA3-mutant breast cancer patients. With MDM2 inhibitors widely available, our findings can be rapidly translated into clinical trials to evaluate in-patient efficacy.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Factor de Transcripción GATA3/genética , Humanos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-mdm2/genética , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo
9.
PLoS Comput Biol ; 17(9): e1008363, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34491984

RESUMEN

Although combination antiretroviral therapies seem to be effective at controlling HIV-1 infections regardless of the viral subtype, there is increasing evidence for subtype-specific drug resistance mutations. The order and rates at which resistance mutations accumulate in different subtypes also remain poorly understood. Most of this knowledge is derived from studies of subtype B genotypes, despite not being the most abundant subtype worldwide. Here, we present a methodology for the comparison of mutational networks in different HIV-1 subtypes, based on Hidden Conjunctive Bayesian Networks (H-CBN), a probabilistic model for inferring mutational networks from cross-sectional genotype data. We introduce a Monte Carlo sampling scheme for learning H-CBN models for a larger number of resistance mutations and develop a statistical test to assess differences in the inferred mutational networks between two groups. We apply this method to infer the temporal progression of mutations conferring resistance to the protease inhibitor lopinavir in a large cross-sectional cohort of HIV-1 subtype C genotypes from South Africa, as well as to a data set of subtype B genotypes obtained from the Stanford HIV Drug Resistance Database and the Swiss HIV Cohort Study. We find strong support for different initial mutational events in the protease, namely at residue 46 in subtype B and at residue 82 in subtype C. The inferred mutational networks for subtype B versus C are significantly different sharing only five constraints on the order of accumulating mutations with mutation at residue 54 as the parental event. The results also suggest that mutations can accumulate along various alternative paths within subtypes, as opposed to a unique total temporal ordering. Beyond HIV drug resistance, the statistical methodology is applicable more generally for the comparison of inferred mutational networks between any two groups.


Asunto(s)
Farmacorresistencia Viral/genética , Inhibidores de la Proteasa del VIH/farmacología , VIH-1/efectos de los fármacos , Lopinavir/farmacología , Mutación , Teorema de Bayes , Estudios de Cohortes , Infecciones por VIH/virología , VIH-1/clasificación , Humanos
10.
Nucleic Acids Res ; 49(15): 8488-8504, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34313788

RESUMEN

Systematic perturbation screens provide comprehensive resources for the elucidation of cancer driver genes. The perturbation of many genes in relatively few cell lines in such functional screens necessitates the development of specialized computational tools with sufficient statistical power. Here we developed APSiC (Analysis of Perturbation Screens for identifying novel Cancer genes) to identify genetic drivers and effectors in perturbation screens even with few samples. Applying APSiC to the shRNA screen Project DRIVE, APSiC identified well-known and novel putative mutational and amplified cancer genes across all cancer types and in specific cancer types. Additionally, APSiC discovered tumor-promoting and tumor-suppressive effectors, respectively, for individual cancer types, including genes involved in cell cycle control, Wnt/ß-catenin and hippo signalling pathways. We functionally demonstrated that LRRC4B, a putative novel tumor-suppressive effector, suppresses proliferation by delaying cell cycle and modulates apoptosis in breast cancer. We demonstrate APSiC is a robust statistical framework for discovery of novel cancer genes through analysis of large-scale perturbation screens. The analysis of DRIVE using APSiC is provided as a web portal and represents a valuable resource for the discovery of novel cancer genes.


Asunto(s)
Transformación Celular Neoplásica/genética , Genes Relacionados con las Neoplasias/genética , Genómica , Neoplasias/genética , Apoptosis/genética , Línea Celular Tumoral , Amplificación de Genes/genética , Humanos , Neoplasias/patología , ARN Interferente Pequeño/genética , Transducción de Señal/genética
11.
SN Compr Clin Med ; 3(6): 1261-1271, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33748676

RESUMEN

Bacille Calmette-Guérin (BCG) vaccine has been globally used to protect infants against tuberculosis (TB) for about a century. This vaccine has been shown to provide some degree of non-specific protection from other respiratory tract infections. This advantage has encouraged researchers to investigate the potential protection of this vaccine from the coronavirus disease 2019 from different perspectives in the ongoing pandemic. In this study, we have comprehensively reviewed the latest articles on potential vaccine effectiveness of BCG on COVID-19 and summarized the possible impacts of the BCG against SARS-COV-2 in detail.

12.
Artículo en Inglés | MEDLINE | ID: mdl-33085643

RESUMEN

Genetic sequence data of pathogens are increasingly used to investigate transmission dynamics in both endemic diseases and disease outbreaks. Such research can aid in the development of appropriate interventions and in the design of studies to evaluate them. Several computational methods have been proposed to infer transmission chains from sequence data; however, existing methods do not generally reliably reconstruct transmission trees because genetic sequence data or inferred phylogenetic trees from such data contain insufficient information for accurate estimation of transmission chains. Here, we show by simulation studies that incorporating infection times, even when they are uncertain, can greatly improve the accuracy of reconstruction of transmission trees. To achieve this improvement, we propose a Bayesian inference methods using Markov chain Monte Carlo that directly draws samples from the space of transmission trees under the assumption of complete sampling of the outbreak. The likelihood of each transmission tree is computed by a phylogenetic model by treating its internal nodes as transmission events. By a simulation study, we demonstrate that accuracy of the reconstructed transmission trees depends mainly on the amount of information available on times of infection; we show superiority of the proposed method to two alternative approaches when infection times are known up to specified degrees of certainty. In addition, we illustrate the use of a multiple imputation framework to study features of epidemic dynamics, such as the relationship between characteristics of nodes and average number of outbound edges or inbound edges, signifying possible transmission events from and to nodes. We apply the proposed method to a transmission cluster in San Diego and to a dataset from the 2014 Sierra Leone Ebola virus outbreak and investigate the impact of biological, behavioral, and demographic factors.

13.
Hepatol Commun ; 3(7): 971-986, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31334445

RESUMEN

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths worldwide. Treatment options for patients with advanced-stage disease are limited. A major obstacle in drug development is the lack of an in vivo model that accurately reflects the broad spectrum of human HCC. Patient-derived xenograft (PDX) tumor mouse models could overcome the limitations of cancer cell lines. PDX tumors maintain the genetic and histologic heterogeneity of the originating tumors and are used for preclinical drug development in various cancers. Controversy exists about their genetic and molecular stability through serial passaging in mice. We aimed to establish PDX models from human HCC biopsies and to characterize their histologic and molecular stability during serial passaging. A total of 54 human HCC needle biopsies that were derived from patients with various underlying liver diseases and tumor stages were transplanted subcutaneously into immunodeficient, nonobese, diabetic/severe combined immunodeficiency gamma-c mice; 11 successfully engrafted. All successfully transplanted HCCs were Edmondson grade III or IV. HCC PDX tumors retained the histopathologic, transcriptomic, and genomic characteristics of the original HCC biopsies over 6 generations of retransplantation. These characteristics included Edmondson grade, expression of tumor markers, tumor gene signature, tumor-associated mutations, and copy number alterations. Conclusion: PDX mouse models can be established from undifferentiated HCCs, with an overall success rate of approximately 20%. The transplanted tumors represent the entire spectrum of the molecular landscape of HCCs and preserve the characteristics of the originating tumors through serial passaging. HCC PDX models are a promising tool for preclinical personalized drug development.

14.
J Mol Diagn ; 21(5): 884-894, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31229654

RESUMEN

The accurate identification of somatic mutations has become a pivotal component of tumor profiling and precision medicine. In molecular diagnostics laboratories, somatic mutation analyses on the Ion Torrent sequencing platform are typically performed on the Ion Reporter platform, which requires extensive manual review of the results and lacks optimized analysis workflows for custom targeted sequencing panels. Alternative solutions that involve custom bioinformatics pipelines involve the sequential execution of software tools with numerous parameters, leading to poor reproducibility and portability. We describe PipeIT, a stand-alone Singularity container of a somatic mutation calling and filtering pipeline for matched tumor-normal Ion Torrent sequencing data. PipeIT is able to identify pathogenic variants in BRAF, KRAS, PIK3CA, CTNNB1, TP53, and other cancer genes that the clinical-grade Oncomine workflow identified. In addition, PipeIT analysis of tumor-normal paired data generated on a custom targeted sequencing panel achieved 100% positive predictive value and 99% sensitivity compared with the 68% to 80% positive predictive value and 92% to 96% sensitivity using the default tumor-normal paired Ion Reporter workflow, substantially reducing the need for manual curation of the results. PipeIT can be rapidly deployed to and ensures reproducible results in any laboratory and can be executed with a single command with minimal input files from the users.


Asunto(s)
Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación , Neoplasias/diagnóstico , Neoplasias/genética , Oncogenes/genética , Programas Informáticos , Estudios de Casos y Controles , Humanos , Técnicas de Diagnóstico Molecular/métodos , Patología Molecular , Reproducibilidad de los Resultados
15.
Bioinformatics ; 34(14): 2441-2448, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29547932

RESUMEN

Motivation: Several molecular events are known to be cancer-related, including genomic aberrations, hypermethylation of gene promoter regions and differential expression of microRNAs. These aberration events are very heterogeneous across tumors and it is poorly understood how they affect the molecular makeup of the cell, including the transcriptome and proteome. Protein interaction networks can help decode the functional relationship between aberration events and changes in gene and protein expression. Results: We developed NetICS (Network-based Integration of Multi-omics Data), a new graph diffusion-based method for prioritizing cancer genes by integrating diverse molecular data types on a directed functional interaction network. NetICS prioritizes genes by their mediator effect, defined as the proximity of the gene to upstream aberration events and to downstream differentially expressed genes and proteins in an interaction network. Genes are prioritized for individual samples separately and integrated using a robust rank aggregation technique. NetICS provides a comprehensive computational framework that can aid in explaining the heterogeneity of aberration events by their functional convergence to common differentially expressed genes and proteins. We demonstrate NetICS' competitive performance in predicting known cancer genes and in generating robust gene lists using TCGA data from five cancer types. Availability and implementation: NetICS is available at https://github.com/cbg-ethz/netics. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional/métodos , Genes Relacionados con las Neoplasias , Neoplasias/genética , Programas Informáticos , Aberraciones Cromosómicas , Metilación de ADN , Regulación de la Expresión Génica , Genómica/métodos , Humanos , MicroARNs/genética , Mutación , Neoplasias/metabolismo , Proteoma , Transcriptoma
16.
Bioinformatics ; 32(17): i727-i735, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27587695

RESUMEN

UNLABELLED: The continuous time conjunctive Bayesian network (CT-CBN) is a graphical model for analyzing the waiting time process of the accumulation of genetic changes (mutations). CT-CBN models have been successfully used in several biological applications such as HIV drug resistance development and genetic progression of cancer. However, current approaches for parameter estimation and network structure learning of CBNs can only deal with a small number of mutations (<20). Here, we address this limitation by presenting an efficient and accurate approximate inference algorithm using a Monte Carlo expectation-maximization algorithm based on importance sampling. The new method can now be used for a large number of mutations, up to one thousand, an increase by two orders of magnitude. In simulation studies, we present the accuracy as well as the running time efficiency of the new inference method and compare it with a MLE method, expectation-maximization, and discrete time CBN model, i.e. a first-order approximation of the CT-CBN model. We also study the application of the new model on HIV drug resistance datasets for the combination therapy with zidovudine plus lamivudine (AZT + 3TC) as well as under no treatment, both extracted from the Swiss HIV Cohort Study database. AVAILABILITY AND IMPLEMENTATION: The proposed method is implemented as an R package available at https://github.com/cbg-ethz/MC-CBN CONTACT: niko.beerenwinkel@bsse.ethz.ch SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Teorema de Bayes , Mutación , Estudios de Cohortes , Humanos , Método de Montecarlo
17.
Biostatistics ; 16(4): 713-26, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25979750

RESUMEN

We introduce a new model called the observed time conjunctive Bayesian network (OT-CBN) that describes the accumulation of genetic events (mutations) under partial temporal ordering constraints. Unlike other CBN models, the OT-CBN model uses sampling time points of genotypes in addition to genotypes themselves to estimate model parameters. We developed an expectation-maximization algorithm to obtain approximate maximum likelihood estimates by accounting for this additional information. In a simulation study, we show that the OT-CBN model outperforms the continuous time CBN (CT-CBN) (Beerenwinkel and Sullivant, 2009. Markov models for accumulating mutations. Biometrika 96: (3), 645-661), which does not take into account individual sampling times for parameter estimation. We also show superiority of the OT-CBN model on several datasets of HIV drug resistance mutations extracted from the Swiss HIV Cohort Study database.


Asunto(s)
Farmacorresistencia Viral , VIH , Modelos Genéticos , Modelos Estadísticos , Acumulación de Mutaciones , Teorema de Bayes , VIH/efectos de los fármacos , VIH/genética , Humanos , Funciones de Verosimilitud
18.
PLoS Comput Biol ; 10(11): e1003886, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25375675

RESUMEN

Despite the success of highly active antiretroviral therapy (HAART) in the management of human immunodeficiency virus (HIV)-1 infection, virological failure due to drug resistance development remains a major challenge. Resistant mutants display reduced drug susceptibilities, but in the absence of drug, they generally have a lower fitness than the wild type, owing to a mutation-incurred cost. The interaction between these fitness costs and drug resistance dictates the appearance of mutants and influences viral suppression and therapeutic success. Assessing in vivo viral fitness is a challenging task and yet one that has significant clinical relevance. Here, we present a new computational modelling approach for estimating viral fitness that relies on common sparse cross-sectional clinical data by combining statistical approaches to learn drug-specific mutational pathways and resistance factors with viral dynamics models to represent the host-virus interaction and actions of drug mechanistically. We estimate in vivo fitness characteristics of mutant genotypes for two antiretroviral drugs, the reverse transcriptase inhibitor zidovudine (ZDV) and the protease inhibitor indinavir (IDV). Well-known features of HIV-1 fitness landscapes are recovered, both in the absence and presence of drugs. We quantify the complex interplay between fitness costs and resistance by computing selective advantages for different mutants. Our approach extends naturally to multiple drugs and we illustrate this by simulating a dual therapy with ZDV and IDV to assess therapy failure. The combined statistical and dynamical modelling approach may help in dissecting the effects of fitness costs and resistance with the ultimate aim of assisting the choice of salvage therapies after treatment failure.


Asunto(s)
Aptitud Genética , Infecciones por VIH/virología , VIH-1/genética , Modelos Biológicos , Fármacos Anti-VIH/farmacología , Estudios Transversales , Farmacorresistencia Viral/genética , Genotipo , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , Humanos , Indinavir/farmacología , Mutación , Resultado del Tratamiento , Zidovudina/farmacología
19.
PLoS Comput Biol ; 9(8): e1003203, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24009493

RESUMEN

The success of combination antiretroviral therapy is limited by the evolutionary escape dynamics of HIV-1. We used Isotonic Conjunctive Bayesian Networks (I-CBNs), a class of probabilistic graphical models, to describe this process. We employed partial order constraints among viral resistance mutations, which give rise to a limited set of mutational pathways, and we modeled phenotypic drug resistance as monotonically increasing along any escape pathway. Using this model, the individualized genetic barrier (IGB) to each drug is derived as the probability of the virus not acquiring additional mutations that confer resistance. Drug-specific IGBs were combined to obtain the IGB to an entire regimen, which quantifies the virus' genetic potential for developing drug resistance under combination therapy. The IGB was tested as a predictor of therapeutic outcome using between 2,185 and 2,631 treatment change episodes of subtype B infected patients from the Swiss HIV Cohort Study Database, a large observational cohort. Using logistic regression, significant univariate predictors included most of the 18 drugs and single-drug IGBs, the IGB to the entire regimen, the expert rules-based genotypic susceptibility score (GSS), several individual mutations, and the peak viral load before treatment change. In the multivariate analysis, the only genotype-derived variables that remained significantly associated with virological success were GSS and, with 10-fold stronger association, IGB to regimen. When predicting suppression of viral load below 400 cps/ml, IGB outperformed GSS and also improved GSS-containing predictors significantly, but the difference was not significant for suppression below 50 cps/ml. Thus, the IGB to regimen is a novel data-derived predictor of treatment outcome that has potential to improve the interpretation of genotypic drug resistance tests.


Asunto(s)
Fármacos Anti-VIH/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , VIH-1 , Modelos Biológicos , Adulto , Teorema de Bayes , Estudios de Cohortes , Farmacorresistencia Viral , Femenino , Infecciones por VIH/virología , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Modelos Genéticos , Modelos Estadísticos , Oportunidad Relativa , Curva ROC , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...