Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros










Intervalo de año de publicación
1.
Braz J Microbiol ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38802687

RESUMEN

Since the emergence of SARS-CoV-2 in December 2019, more than 12,000 mutations in the virus have been identified. These could cause changes in viral characteristics and directly impact global public health. The emergence of variants is a great concern due to the chance of increased transmissibility and infectivity. Sequencing for surveillance and monitoring circulating strains is extremely necessary as the early identification of new variants allows public health agencies to make faster and more effective decisions to contain the spread of the virus. In the present study, we identified circulating variants in samples collected in Belo Horizonte, Brazil, and detected a recombinant lineage using the Sanger method. The identification of lineages was done through gene amplification of SARS-CoV-2 by Reverse Transcription-Polymerase Chain Reaction (RT-PCR). By using these specific fragments, we were able to differentiate one variant of interest and five circulating variants of concern. We were also able to detect recombinants. Randomly selected samples were sequenced by either Sanger or Next Generation Sequencing (NGS). Our findings validate the effectiveness of Sanger sequencing as a powerful tool for monitoring variants. It is easy to perform and allows the analysis of a larger number of samples in countries that cannot afford NGS.

2.
Drug Dev Res ; 85(3): e22194, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38704828

RESUMEN

The aim the present study was to investigate the impact of novel pentavalent organobismuth and organoantimony complexes on membrane integrity and their interaction with DNA, activity against Sb(III)-sensitive and -resistant Leishmania strains and toxicity in mammalian peritoneal macrophages. Ph3M(L)2 type complexes were synthesized, where M = Sb(V) or Bi(V) and L = deprotonated 3-(dimethylamino)benzoic acid or 2-acetylbenzoic acid. Both organobismuth(V) and organoantimony(V) complexes exhibited efficacy at micromolar concentrations against Leishmania amazonensis and L. infantum but only the later ones demonstrated biocompatibility. Ph3Sb(L1)2 and Ph3Bi(L1)2 demonstrated distinct susceptibility profiles compared to inorganic Sb(III)-resistant strains of MRPA-overexpressing L. amazonensis and AQP1-mutated L. guyanensis. These complexes were able to permeate the cell membrane and interact with the Leishmania DNA, suggesting that this effect may contribute to the parasite growth inhibition via apoptosis. Taken altogether, our data substantiate the notion of a distinct mechanism of uptake pathway and action in Leishmania for these organometallic complexes, distinguishing them from the conventional inorganic antimonial drugs.


Asunto(s)
Antimonio , Antiprotozoarios , Membrana Celular , Resistencia a Medicamentos , Compuestos Organometálicos , Antimonio/farmacología , Antimonio/química , Animales , Compuestos Organometálicos/farmacología , Ratones , Membrana Celular/efectos de los fármacos , Antiprotozoarios/farmacología , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/parasitología , Leishmania/efectos de los fármacos , ADN Protozoario , Leishmania infantum/efectos de los fármacos , Leishmania infantum/genética , Ratones Endogámicos BALB C
3.
Mem Inst Oswaldo Cruz ; 119: e220242, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38198296

RESUMEN

BACKGROUND: Eosinophils are granulocytes that rapidly increase frequency in the bloodstream during helminthic infections and allergic responses. They are found in tissue infected by Leishmania during early disease, but their role during infection is not entirely understood. OBJECTIVES: We aim to compare the disease due to Leishmania amazonensis in BALB/c and Δdbl-GATA1 mice, which lack eosinophils. METHODS: BALB/c and Δdbl-GATA1 mice infected with L. amazonensis were observed for several weeks. The parasite load and dissemination pattern were assessed. FINDINGS: The Δdbl-GATA1 mice developed an anticipated dissemination of L. amazonensis and a worsening disease. No differences were found in the lesion development or the parasite load in the footpad among Δdbl-GATA1 mice and BALB/c eight weeks after infection. However, nine weeks after infection, massive growth of metastatic lesions appeared in several parts of the skin in Δdbl-GATA1 mice, weeks earlier than BALB/c. We observed increased parasites in the bloodstream, probably an essential dissemination route. Thirteen weeks after infection, metastatic lesions were found in all Δdbl-GATA1 mice. MAIN CONCLUSION: These results suggest a protective role of eosinophils in delaying the disease caused by L. amazonensis, although several limitations of this mice strain must be considered.


Asunto(s)
Leishmania mexicana , Leishmania , Animales , Ratones , Eosinófilos , Carga de Parásitos , Piel
4.
Mem. Inst. Oswaldo Cruz ; 119: e220242, 2024. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1529022

RESUMEN

BACKGROUND Eosinophils are granulocytes that rapidly increase frequency in the bloodstream during helminthic infections and allergic responses. They are found in tissue infected by Leishmania during early disease, but their role during infection is not entirely understood. OBJECTIVES We aim to compare the disease due to Leishmania amazonensis in BALB/c and Δdbl-GATA1 mice, which lack eosinophils. METHODS BALB/c and Δdbl-GATA1 mice infected with L. amazonensis were observed for several weeks. The parasite load and dissemination pattern were assessed. FINDINGS The Δdbl-GATA1 mice developed an anticipated dissemination of L. amazonensis and a worsening disease. No differences were found in the lesion development or the parasite load in the footpad among Δdbl-GATA1 mice and BALB/c eight weeks after infection. However, nine weeks after infection, massive growth of metastatic lesions appeared in several parts of the skin in Δdbl-GATA1 mice, weeks earlier than BALB/c. We observed increased parasites in the bloodstream, probably an essential dissemination route. Thirteen weeks after infection, metastatic lesions were found in all Δdbl-GATA1 mice. MAIN CONCLUSION These results suggest a protective role of eosinophils in delaying the disease caused by L. amazonensis, although several limitations of this mice strain must be considered.

5.
Mem Inst Oswaldo Cruz ; 118: e230071, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37729273

RESUMEN

BACKGROUND: Leishmania RNA virus 1 (LRV1) is commonly found in South American Leishmania parasites belonging to the subgenus Viannia, whereas Leishmania RNA virus 2 (LRV2) was previously thought to be restricted to the Old-World pathogens of the subgenus Leishmania. OBJECTIVES: In this study, we investigated the presence of LRV2 in strains of Leishmania (L.) infantum, the causative agent of visceral leishmaniasis (VL), originating from different hosts, clinical forms, and geographical regions. METHODS: A total of seventy-one isolates were screened for LRV2 using semi-nested reverse transcription-polymerase chain reaction (RT-PCR) targeting the RNA-dependent RNA polymerase (RdRp) gene. FINDINGS: We detected LRV2 in two L. infantum isolates (CUR268 and HP-EMO) from canine and human cases, respectively. MAIN CONCLUSIONS: To the best of our knowledge, this is the first detection of LRV2 in the New World.


Asunto(s)
Leishmania infantum , Leishmaniasis Visceral , Humanos , Animales , Perros , Leishmania infantum/genética , Leishmaniasis Visceral/veterinaria , Brasil , ARN Polimerasa Dependiente del ARN
6.
J Inorg Biochem ; 247: 112346, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37536162

RESUMEN

The limited chemical stability of gold(III)-based compounds in physiological environment has been a challenge in drug discovery, and organometallic chemistry might provide the solution to overcome this issue. In this work, four novel cationic organogold(III)-dithiocarbamate complexes of general structure [(C^N)AuIIIDTC]PF6 (C1a - C4a, DTC = dithiocarbamate, L1 - L4, C^N = 2-anilinopyridine) are presented, and compared to their coordination gold(III)-dithiocarbamate analogues [AuIIIDTCCl2] (C1b - C4b), as potential anti-cancer and anti-leishmanial drugs. Most of the complexes effectively inhibited cancer cell growth, notably C3a presented anti-proliferative effect in the nanomolar range against breast cancer (MCF-7 and MDA-MB-231 cells with moderate selectivity. Pro-apoptotic studies on treated MCF-7 cells showed a high population of cells in early apoptosis. Reactivity studies of C3a towards model thiols (N-acetyl-L-cysteine) refer to a possible mode of action involving bonding between the organogold(III)-core and the thiolate. In the scope of neglected diseases, gold complexes are emerging as promising therapeutic alternatives against leishmaniasis. In this regard, all gold(III)-dithiocarbamate complexes presented anti-leishmanial activity against at least one Leishmania species. Complexes C1a, C4a, C1b, C4b were active against all tested parasites with IC50 values varying between 0.12 and 42 µM, and, overall, organometallic compounds presented more intriguing inhibition profiles. For C4a selectivity over 500-fold for L. braziliensis; even higher than the reference anti-leishmanial drug amphotericin B. Overall, our findings revealed that the organogold(III) moiety significantly amplified the anti-cancer and anti-leishmanial effects with respect to the coordination analogues; thus, showing the great potential of organometallic chemistry in metallodrug-based chemotherapy for cancer and leishmaniasis.


Asunto(s)
Antineoplásicos , Leishmania , Compuestos Organometálicos , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Compuestos Orgánicos de Oro/farmacología , Compuestos Orgánicos de Oro/química , Oro/química , Línea Celular Tumoral
7.
J Infect Public Health ; 16(7): 1081-1088, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37210925

RESUMEN

BACKGROUND: COVID-19 has become a major public health problem after the outbreak caused by SARS-CoV-2 virus. Great efforts to contain COVID-19 transmission have been applied worldwide. In this context, accurate and fast diagnosis is essential. METHODS: In this prospective study, we evaluated the clinical performance of three different RNA-based molecular tests - RT-qPCR (Charité protocol), RT-qPCR (CDC (USA) protocol) and RT-LAMP - and one rapid test for detecting anti-SARS-CoV-2 IgM and IgG antibodies. RESULTS: Our results demonstrate that RT-qPCR using the CDC (USA) protocol is the most accurate diagnostic test among those evaluated, while oro-nasopharyngeal swabs are the most appropriate biological sample. RT-LAMP was the RNA-based molecular test with lowest sensitivity while the serological test presented the lowest sensitivity among all evaluated tests, indicating that the latter test is not a good predictor of disease in the first days after symptoms onset. Additionally, we observed higher viral load in individuals who reported more than 3 symptoms at the baseline. Nevertheless, viral load had not impacted the probability of testing positive for SARS-CoV-2. CONCLUSION: Our data indicates that RT-qPCR using the CDC (USA) protocol in oro-nasopharyngeal swabs samples should be the method of choice to diagnosis COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Prueba de COVID-19 , Estudios Prospectivos , Brasil/epidemiología , Técnicas de Laboratorio Clínico/métodos , Personal de Salud , ARN , Inmunoglobulina G , Inmunoglobulina M , Sensibilidad y Especificidad
8.
Microorganisms ; 11(4)2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37110466

RESUMEN

Despite decades of research devoted to finding a vaccine against leishmaniasis, we are still lacking a safe and effective vaccine for humans. Given this scenario, the search for a new prophylaxis alternative for controlling leishmaniasis should be a global priority. Inspired by leishmanization-a first generation vaccine strategy where live L. major parasites are inoculated in the skin to protect against reinfection-live-attenuated Leishmania vaccine candidates are promising alternatives due to their robust elicited protective immune response. In addition, they do not cause disease and could provide long-term protection upon challenge with a virulent strain. The discovery of a precise and easy way to perform CRISPR/Cas-based gene editing allowed the selection of safer null mutant live-attenuated Leishmania parasites obtained by gene disruption. Here, we revisited molecular targets associated with the selection of live-attenuated vaccinal strains, discussing their function, their limiting factors and the ideal candidate for the next generation of genetically engineered live-attenuated Leishmania vaccines to control leishmaniasis.

9.
Mem. Inst. Oswaldo Cruz ; 118: e230071, 2023. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1514607

RESUMEN

BACKGROUND Leishmania RNA virus 1 (LRV1) is commonly found in South American Leishmania parasites belonging to the subgenus Viannia, whereas Leishmania RNA virus 2 (LRV2) was previously thought to be restricted to the Old-World pathogens of the subgenus Leishmania. OBJECTIVES In this study, we investigated the presence of LRV2 in strains of Leishmania (L.) infantum, the causative agent of visceral leishmaniasis (VL), originating from different hosts, clinical forms, and geographical regions. METHODS A total of seventy-one isolates were screened for LRV2 using semi-nested reverse transcription-polymerase chain reaction (RT-PCR) targeting the RNA-dependent RNA polymerase (RdRp) gene. FINDINGS We detected LRV2 in two L. infantum isolates (CUR268 and HP-EMO) from canine and human cases, respectively. MAIN CONCLUSIONS To the best of our knowledge, this is the first detection of LRV2 in the New World.

10.
Front Med (Lausanne) ; 9: 1008600, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36250091

RESUMEN

Recombination events have been described in the Coronaviridae family. Since the beginning of the SARS-CoV-2 pandemic, a variable degree of selection pressure has acted upon the virus, generating new strains with increased fitness in terms of viral transmission and antibody scape. Most of the SC2 variants of concern (VOC) detected so far carry a combination of key amino acid changes and indels. Recombination may also reshuffle existing genetic profiles of distinct strains, potentially giving origin to recombinant strains with altered phenotypes. However, co-infection and recombination events are challenging to detect and require in-depth curation of assembled genomes and sequencing reds. Here, we present the molecular characterization of a new SARS-CoV-2 recombinant between BA.1.1 and BA.2.23 Omicron lineages identified in Brazil. We characterized four mutations that had not been previously described in any of the recombinants already identified worldwide and described the likely breaking points. Moreover, through phylogenetic analysis, we showed that the newly named XAG lineage groups in a highly supported monophyletic clade confirmed its common evolutionary history from parental Omicron lineages and other recombinants already described. These observations were only possible thanks to the joint effort of bioinformatics tools auxiliary in genomic surveillance and the manual curation of experienced personnel, demonstrating the importance of genetic, and bioinformatic knowledge in genomics.

11.
Exp Parasitol ; 242: 108367, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36055388

RESUMEN

Gold nanorods (GNRs) are increasingly being studied for diagnostic and therapeutic purposes. Green synthesis based methods with natural compounds as additives stand out as a hope in terms of better synthesis methodology, with advantages of producing potentially less toxic and, perhaps, biologically active GNRs due to influence of natural additives used during synthesis. Exploring green chemistry using different natural phenolic compounds, the present work reveals different in vitro activity of GNRs evaluated against different parasites that causes skin infectious diseases compared to GNRs produced by convencional seed mediated method. This approach brings advantages in producing active GNRs, with ease calling, less cytotoxic and with a better selectivity index (SI) than GNRs synthesized by conventional seed mediated synthesis, opening new possibilities for therapies. Natural compounds used in green syntheses were gallic acid (GA), resveratrol (RSV) and a purified fraction of the hydroalcoholic extract of Stryphnodendron obovatum. GNRs exhibited great activity against Leishmania braziliensis, and the dermatophytes Tricophyton rubrum, T. interdigitale and Microsporum gypseum. The anti-Leishmania and antidermatophytic activity of GNRs reinforce the applicability of GNRs in biomedical field and the influence of synthesis method in biological activity, showing benefits related to the seedless synthesis with natural compounds. In addition, these preliminary results indicate the possibility of exploring at maximum the physical and chemical properties of GNRs in addition to the biological activity itself, such as the development of topical antiparasitic formulations for association with phototherapy.


Asunto(s)
Oro , Nanotubos , Oro/química , Resveratrol , Ácido Gálico/farmacología , Antiparasitarios
12.
Front Cell Infect Microbiol ; 12: 954144, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35992178

RESUMEN

Visceral leishmaniasis (VL), caused by Leishmania infantum, is an oft-fatal neglected tropical disease. In the absence of an effective vaccine, the control of leishmaniasis relies exclusively on chemotherapy. Due to the lack of established molecular/genetic markers denoting parasite resistance, clinical treatment failure is often used as an indicator. Antimony-based drugs have been the standard antileishmanial treatment for more than seven decades, leading to major drug resistance in certain regions. Likewise, drug resistance to miltefosine and amphotericin B continues to spread at alarming rates. In consequence, innovative approaches are needed to accelerate the identification of antimicrobial drug targets and resistance mechanisms. To this end, we have implemented a novel approach based on thermal proteome profiling (TPP) to further characterize the mode of action of antileishmanials antimony, miltefosine and amphotericin B, as well as to better understand the mechanisms of drug resistance deployed by Leishmania. Proteins become more resistant to heat-induced denaturation when complexed with a ligand. In this way, we used multiplexed quantitative mass spectrometry-based proteomics to monitor the melting profile of thousands of expressed soluble proteins in WT, antimony-resistant, miltefosine-resistant, and amphotericin B-resistant L. infantum parasites, in the presence (or absence) of the above-mentioned drugs. Bioinformatics analyses were performed, including data normalization, melting profile fitting, and identification of proteins that underwent changes (fold change > 4) caused by complexation with a drug. With this unique approach, we were able to narrow down the regions of the L. infantum proteome that interact with antimony, miltefosine, and amphotericin B; validating previously-identified and unveiling novel drug targets. Moreover, analyses revealed candidate proteins potentially involved in drug resistance. Interestingly, we detected thermal proximity coaggregation for several proteins belonging to the same metabolic pathway (i.e., tryparedoxin peroxidase and aspartate aminotransferase in proteins exposed to antimony), highlighting the importance of these pathways. Collectively, our results could serve as a jumping-off point for the future development of innovative diagnostic tools for the detection and evaluation of antimicrobial-resistant Leishmania populations, as well as open the door for new on-target therapies.


Asunto(s)
Antiprotozoarios , Leishmania infantum , Anfotericina B/farmacología , Antimonio/metabolismo , Antimonio/farmacología , Antiprotozoarios/metabolismo , Antiprotozoarios/farmacología , Proteoma/análisis , Proteómica
13.
Cell Biol Int ; 46(11): 1947-1958, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35998255

RESUMEN

Lipophosphoglycan (LPG), the major Leishmania glycoconjugate, induces pro-inflammatory/immunosuppressive innate immune responses. Here, we evaluated functional/biochemical LPG properties from six Leishmania amazonensis strains from different hosts/clinical forms. LPGs from three strains (GV02, BA276, and LV79) had higher pro-inflammatory profiles for most of the mediators, including tumor necrosis factor alpha and interleukin 6. For this reason, glycoconjugates from all strains were biochemically characterized and had polymorphisms in their repeat units. They consisted of three types: type I, repeat units devoid of side chains; type II, containing galactosylated side chains; and type III, containing glucosylated side chains. No relationship was observed between LPG type and the pro-inflammatory properties. Finally, to evaluate the susceptibility against antileishmanial agents, two strains with high (GV02, BA276) and one with low (BA336) pro-inflammatory activity were selected for chemotherapeutic tests in THP-1 cells. All analyzed strains were susceptible to amphotericin B (AmB) but displayed various responses against miltefosine (MIL) and glucantime (GLU). The GV02 strain (canine visceral leishmaniasis) had the highest IC50 for MIL (3.34 µM), whereas diffuse leishmaniasis strains (BA276 and BA336) had a higher IC50 for GLU (6.87-12.19 mM). The highest IC50 against MIL shown by the GV02 strain has an impact on clinical management. Miltefosine is the only drug approved for dog treatment in Brazil. Further studies into drug susceptibility of L. amazonensis strains are warranted, especially in areas where dog infection by this species overlaps with those caused by Leishmania infantum.


Asunto(s)
Anfotericina B , Leishmania , Anfotericina B/farmacología , Animales , Perros , Glicoesfingolípidos , Interleucina-6 , Leishmania/genética , Antimoniato de Meglumina/farmacología , Ratones , Ratones Endogámicos BALB C , Fosforilcolina/análogos & derivados , Factor de Necrosis Tumoral alfa
14.
Toxicon ; 216: 50-56, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35787893

RESUMEN

Diagnostic tests for brown spider accidents are unavailable and impact treatment decisions, increasing costs and patient risks. In this work, we used for the first time a fast, simple, and visual method based on the loop-mediated isothermal amplification assay (LAMP) to detect Loxosceles envenomation. Using the DNA from L. similis legs, we observed a high sensitivity using this test since as low as 0.32 pg of DNA could be detected. This pH-dependent colorimetric assay was 64 times more sensitive than PCR to detect spider DNA. The test was specific for Loxosceles once no cross-reaction was observed when testing DNA from different agents that cause similar dermonecrotic injuries. The test allowed the detection of Loxosceles intermedia DNA from hair, serum, and exudate samples obtained from experimentally-envenomed rabbit within 72 h. The method sensitivity varied according to the sample and the collection time, reaching 100% sensitivity in serum and hair, respectively, 1 h and 24 h after the experimental envenomation. Due to its ease of execution, speed, sensitivity, and specificity, LAMP presents an excellent potential for identifying Loxosceles spp. Envenomation. This can reduce the burden on the Health System and the morbidity for the patient by implementing the appropriate therapy immediately.In addition, this work opens up the perspective to other venomous animal accident identification using LAMP.


Asunto(s)
Venenos de Araña , Arañas , Animales , Colorimetría , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Hidrolasas Diéster Fosfóricas/genética , Conejos , Sensibilidad y Especificidad , Venenos de Araña/genética , Venenos de Araña/toxicidad , Arañas/genética
15.
Mem Inst Oswaldo Cruz ; 117: e220050, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35766650

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus (SARS-CoV-2) omicron variant was first detected in South Africa in November 2021. Since then, the number of cases due to this variant increases enormously every day in different parts of the world. Mutations within omicron genome may impair the molecular detection resulting in false negative results during Coronavirus disease 19 (COVID-19) diagnosis. OBJECTIVES: To verify if colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) targeting N and E genes would work efficiently to detect omicron SARS-CoV-2 variant and its sub-lineages. METHODS: SARS-CoV-2 reverse transcription quantitative polymerase chain reaction (RT-qPCR) positive samples were sequenced by next generation DNA sequencing. The consensus sequences generated were submitted to Pangolin tool for SARS-CoV-2 lineage identification. RT-LAMP reactions were performed at 65ºC/30 min targeting N and E. FINDINGS: SARS-CoV-2 omicron can be detected by RT-LAMP targeting N and E genes despite the genomic mutation of this more transmissible lineage. Omicron SARS-CoV-2 sub-lineages were tested and efficiently detected by RT-LAMP. We demonstrated that this test is very sensitive in detecting omicron variant, with LoD as low as 0.4 copies/µL. MAIN CONCLUSIONS: Molecular detection of omicron SARS-CoV-2 variant and its sub-lineages can be achieved by RT-LAMP despite the genomic mutations as a very sensitive surveillance tool for COVID-19 molecular diagnosis.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Genómica , Humanos , Técnicas de Diagnóstico Molecular/métodos , Mutación/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , SARS-CoV-2/genética , Sensibilidad y Especificidad
16.
Mem Inst Oswaldo Cruz ; 117: e210403, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35320824

RESUMEN

Despite the increasing number of manuscripts describing potential alternative antileishmanial compounds, little is advancing on translating these knowledges to new products to treat leishmaniasis. This is in part due to the lack of standardisations during pre-clinical drug discovery stage and also depends on the alignment of goals among universities/research centers, government and pharmaceutical industry. Inspired or not by drug repurposing, metal-based antileishmanial drugs represent a class that deserves more attention on its use for leishmaniasis chemotherapy. Together with new chemical entities, progresses have been made on the knowledge of parasite-specific drug targets specially after using CRISPR/Cas system for functional studies. In this regard, Leishmania parasites undergoe post-translational modification as key regulators in several cellular processes, which represents an entire new field for drug target elucidation, once this is poorly explored. This perspective review describes the advances on antileishmanial metallodrugs and the elucidation of drug targets based on post-translational modifications, highlighting the limitations on the drug discovery/development process and suggesting standardisations focused on products addressed to who need it most.


Asunto(s)
Antiprotozoarios , Leishmania , Leishmaniasis , Antiprotozoarios/química , Descubrimiento de Drogas , Humanos , Leishmaniasis/tratamiento farmacológico , Procesamiento Proteico-Postraduccional
17.
Microorganisms ; 10(2)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35208853

RESUMEN

The sterol biosynthesis pathway of Leishmania spp. is used as a pharmacological target; however, available information about the mechanisms of the regulation and remodeling of sterol-related genes is scarce. The present study investigated compensatory mechanisms of the sterol biosynthesis pathway using an inhibitor of HMG-CoA reductase (simvastatin) and by developing drug-resistant parasites to evaluate the impact on sterol remodeling, cross-resistance, and gene expression. Simvastatin-resistant L. amazonensis parasites (LaSimR) underwent reprogramming of sterol metabolism manifested as an increase in cholestane- and stigmastane-based sterols and a decrease in ergostane-based sterols. The levels of the transcripts of sterol 24-C-methyltransferase (SMT), sterol C14-α-demethylase (C14DM), and protease subtilisin (SUB) were increased in LaSimR. LaSimR was cross-resistance to ketoconazole (a C14DM inhibitor) and remained sensitive to terbinafine (an inhibitor of squalene monooxygenase). Sensitivity of the LaSimR mutant to other antileishmanial drugs unrelated to the sterol biosynthesis pathway, such as trivalent antimony and pentamidine, was similar to that of the wild-type strain; however, LaSimR was cross-resistant to miltefosine, general serine protease inhibitor N-p-tosyl-l-phenylalanine chloromethyl ketone (TPCK), subtilisin-specific inhibitor 4-[(diethylamino)methyl]-N-[2-(2-methoxyphenyl)ethyl]-N-(3R)-3-pyrrolidinyl-benzamide dihydrochloride (PF-429242), and tunicamycin. The findings on the regulation of the sterol pathway can support the development of drugs and protease inhibitors targeting this route in parasites.

19.
Trends Parasitol ; 38(4): 274-276, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35181250

RESUMEN

The selection of Leishmania hybrids in axenic culture was considered rare until recently, when Louradour and Ferreira et al., demonstrated that induced DNA damage facilitates genetic exchange, resulting in full genome tetraploid progenies in vitro. Meiosis-related gene homologues HAP2, GEX1, and RAD51 were found to be involved, opening new avenues for functional genomic studies.


Asunto(s)
Leishmania , Genoma , Hibridación Genética , Leishmania/genética
20.
Mem. Inst. Oswaldo Cruz ; 117: e220050, 2022. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1386350

RESUMEN

BACKGROUND Severe acute respiratory syndrome coronavirus (SARS-CoV-2) omicron variant was first detected in South Africa in November 2021. Since then, the number of cases due to this variant increases enormously every day in different parts of the world. Mutations within omicron genome may impair the molecular detection resulting in false negative results during Coronavirus disease 19 (COVID-19) diagnosis. OBJECTIVES To verify if colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) targeting N and E genes would work efficiently to detect omicron SARS-CoV-2 variant and its sub-lineages. METHODS SARS-CoV-2 reverse transcription quantitative polymerase chain reaction (RT-qPCR) positive samples were sequenced by next generation DNA sequencing. The consensus sequences generated were submitted to Pangolin tool for SARS-CoV-2 lineage identification. RT-LAMP reactions were performed at 65ºC/30 min targeting N and E. FINDINGS SARS-CoV-2 omicron can be detected by RT-LAMP targeting N and E genes despite the genomic mutation of this more transmissible lineage. Omicron SARS-CoV-2 sub-lineages were tested and efficiently detected by RT-LAMP. We demonstrated that this test is very sensitive in detecting omicron variant, with LoD as low as 0.4 copies/µL. MAIN CONCLUSIONS Molecular detection of omicron SARS-CoV-2 variant and its sub-lineages can be achieved by RT-LAMP despite the genomic mutations as a very sensitive surveillance tool for COVID-19 molecular diagnosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...