Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 299(10): 105157, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37579947

RESUMEN

Noncanonical base pairing between four guanines (G) within single-stranded G-rich sequences leads to formation of а G-quartet. Self-stacking of G-quartets results in a columnar four-stranded DNA structure known as the G-quadruplex (G4 or G4-DNA). In cancer cells, G4-DNA regulates multiple DNA-dependent processes, including transcription, replication, and telomere function. How G4s function in neurons is poorly understood. Here, we performed a genome-wide gene expression analysis (RNA-Seq) to identify genes modulated by a G4-DNA ligand, pyridostatin (PDS), in primary cultured neurons. PDS promotes stabilization of G4 structures, thus allowing us to define genes directly or indirectly responsive to G4 regulation. We found that 901 genes were differentially expressed in neurons treated with PDS out of a total of 18,745 genes with measured expression. Of these, 505 genes were downregulated and 396 genes were upregulated and included gene networks regulating p53 signaling, the immune response, learning and memory, and cellular senescence. Within the p53 network, the E3 ubiquitin ligase Pirh2 (Rchy1), a modulator of DNA damage responses, was upregulated by PDS. Ectopically overexpressing Pirh2 promoted the formation of DNA double-strand breaks, suggesting a new DNA damage mechanism in neurons that is regulated by G4 stabilization. Pirh2 downregulated DDX21, an RNA helicase that unfolds G4-RNA and R-loops. Finally, we demonstrated that Pirh2 increased G4-DNA levels in the neuronal nucleolus. Our data reveal the genes that are responsive to PDS treatment and suggest similar transcriptional regulation by endogenous G4-DNA ligands. They also connect G4-dependent regulation of transcription and DNA damage mechanisms in neuronal cells.

2.
Mol Cell Neurosci ; 125: 103826, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36858083

RESUMEN

Tardigrades are microscopic invertebrates, which are capable of withstanding extreme environmental conditions, including high levels of radiation. A Tardigrade protein, Dsup (Damage Suppressor), protects the Tardigrade's DNA during harsh environmental stress and X-rays. When expressed in cancer cells, Dsup protects DNA from single- and double-strand breaks (DSBs) induced by radiation, increases survival of irradiated cells, and protects DNA from reactive oxygen species. These unusual properties of Dsup suggested that understanding how the protein functions may help in the design of small molecules that could protect humans during radiotherapy or space travel. Here, we investigated if Dsup is protective in cortical neurons cultured from rat embryos. We discovered that, in cortical neurons, the codon-optimized Dsup localizes to the nucleus and, surprisingly, promotes neurotoxicity, leading to neurodegeneration. Unexpectedly, we found that Dsup expression results in the formation of DNA DSBs in cultured neurons. With electron microscopy, we discovered that Dsup promotes chromatin condensation. Unlike Dsup's protective properties in cancerous cells, in neurons, Dsup promotes neurotoxicity, induces DNA damage, and rearranges chromatin. Neurons are sensitive to Dsup, and Dsup is a doubtful surrogate for DNA protection in neuronal cells.


Asunto(s)
Cromatina , Daño del ADN , Humanos , Animales , Ratas , Cromatina/metabolismo , ADN/metabolismo , Roturas del ADN de Doble Cadena , Neuronas/metabolismo
3.
Neural Regen Res ; 18(1): 31-37, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35799505

RESUMEN

Stroke is the second leading cause of death and a major cause of disability worldwide, and biological sex is an important determining factor in stroke incidence and pathology. From childhood through adulthood, men have a higher incidence of stroke compared with women. Abundant research has confirmed the beneficial effects of estrogen in experimental ischemic stroke but genetic factors such as the X-chromosome complement can also play an important role in determining sex differences in stroke. Autophagy is a self-degrading cellular process orchestrated by multiple core proteins, which leads to the engulfment of cytoplasmic material and degradation of cargo after autophagy vesicles fuse with lysosomes or endosomes. The levels and the activity of components of these signaling pathways and of autophagy-related proteins can be altered during ischemic insults. Ischemic stroke activates autophagy, however, whether inhibiting autophagy after stroke is beneficial in the brain is still under a debate. Autophagy is a potential mechanism that may contribute to differences in stroke progression between the sexes. Furthermore, the effects of manipulating autophagy may also differ between the sexes. Mechanisms that regulate autophagy in a sex-dependent manner in ischemic stroke remain unexplored. In this review, we summarize clinical and pre-clinical evidence for sex differences in stroke. We briefly introduce the autophagy process and summarize the effects of gonadal hormones in autophagy in the brain and discuss X-linked genes that could potentially regulate brain autophagy. Finally, we review pre-clinical studies that address the mechanisms that could mediate sex differences in brain autophagy after stroke.

4.
Cells ; 10(7)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34359998

RESUMEN

Ischemic stroke triggers a series of complex pathophysiological processes including autophagy. Differential activation of autophagy occurs in neurons derived from males versus females after stressors such as nutrient deprivation. Whether autophagy displays sexual dimorphism after ischemic stroke is unknown. We used a cerebral ischemia mouse model (middle cerebral artery occlusion, MCAO) to evaluate the effects of inhibiting autophagy in ischemic brain pathology. We observed that inhibiting autophagy reduced infarct volume in males and ovariectomized females. However, autophagy inhibition enhanced infarct size in females and in ovariectomized females supplemented with estrogen compared to control mice. We also observed that males had increased levels of Beclin1 and LC3 and decreased levels of pULK1 and p62 at 24 h, while females had decreased levels of Beclin1 and increased levels of ATG7. Furthermore, the levels of autophagy markers were increased under basal conditions and after oxygen and glucose deprivation in male neurons compared with female neurons in vitro. E2 supplementation significantly inhibited autophagy only in male neurons, and was beneficial for cell survival only in female neurons. This study shows that autophagy in the ischemic brain differs between the sexes, and that autophagy regulators have different effects in a sex-dependent manner in neurons.


Asunto(s)
Autofagia/genética , Beclina-1/genética , Isquemia Encefálica/genética , Accidente Cerebrovascular Isquémico/genética , Proteínas Asociadas a Microtúbulos/genética , Neuronas/metabolismo , Adenina/análogos & derivados , Adenina/farmacología , Animales , Autofagia/efectos de los fármacos , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Beclina-1/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Hipoxia de la Célula/genética , Supervivencia Celular , Femenino , Regulación de la Expresión Génica , Glucosa/deficiencia , Infarto de la Arteria Cerebral Media/cirugía , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/patología , Ovariectomía/métodos , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Índice de Severidad de la Enfermedad , Factores Sexuales , Transducción de Señal
5.
Aging (Albany NY) ; 13(12): 15917-15941, 2021 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-34139671

RESUMEN

The G-quadruplex (G4-DNA or G4) is a secondary DNA structure formed by DNA sequences containing multiple runs of guanines. While it is now firmly established that stabilized G4s lead to enhanced genomic instability in cancer cells, whether and how G4s contribute to genomic instability in brain cells is still not clear. We previously showed that, in cultured primary neurons, small-molecule G4 stabilizers promote formation of DNA double-strand breaks (DSBs) and downregulate the Brca1 gene. Here, we determined if G4-dependent Brca1 downregulation is unique to neurons or if the effects in neurons also occur in astrocytes and microglia. We show that primary neurons, astrocytes and microglia basally exhibit different G4 landscapes. Stabilizing G4-DNA with the G4 ligand pyridostatin (PDS) differentially modifies chromatin structure in these cell types. Intriguingly, PDS promotes DNA DSBs in neurons, astrocytes and microglial cells, but fails to downregulate Brca1 in astrocytes and microglia, indicating differences in DNA damage and repair pathways between brain cell types. Taken together, our findings suggest that stabilized G4-DNA contribute to genomic instability in the brain and may represent a novel senescence pathway in brain aging.


Asunto(s)
Astrocitos/metabolismo , G-Cuádruplex , Microglía/metabolismo , Neuronas/metabolismo , Aminoquinolinas/farmacología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/ultraestructura , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Secuencia de Bases , Línea Celular , Cromatina/efectos de los fármacos , Cromatina/metabolismo , Cromatina/ultraestructura , Daño del ADN , Ratones , Microglía/efectos de los fármacos , Microglía/ultraestructura , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Ácidos Picolínicos/farmacología , Regiones Promotoras Genéticas/genética , Ratas
6.
Autophagy ; 16(12): 2252-2259, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32420812

RESUMEN

Guanine-rich DNA strands can form secondary structures known as G-quadruplexes (G4-DNA or G4s). G4-DNA is important for the regulation of replication and transcription. We recently showed that the expression of Atg7, a gene that is critical for macroautophagy/autophagy, is controlled by G4-DNA in neurons. We demonstrated that the transcription factor SUB1/PC4 and the G4-DNA-specific antibody HF2 bind to a putative G4-DNA motif located in the Atg7 gene. Stabilizing G4-DNA with the G4-ligand pyridostatin (PDS) downregulates Atg7 expression in neurons. Here, we further investigated how G4-DNA in the Atg7 gene is stabilized by PDS. We show that PDS can form 1:1 and 2:1 complexes with the Atg7's G4. We also demonstrate that PDS downregulates the ATG7 protein and the expression of Atg7 in astrocytes as well as in neurons. Together with our previous findings, these data establish a novel G4-DNA-associated mechanism of autophagy regulation at a transcriptional level in neurons and astrocytes.


Asunto(s)
Autofagia/genética , ADN/metabolismo , G-Cuádruplex , Aminoquinolinas/farmacología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Autofagia/efectos de los fármacos , Proteína 7 Relacionada con la Autofagia/metabolismo , Ácidos Picolínicos/farmacología , Ratas
7.
Int J Mol Sci ; 21(5)2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32138161

RESUMEN

Amyloid plaques in Alzheimer's disease (AD) are associated with inflammation. Recent studies demonstrated the involvement of the gut in cerebral amyloid-beta (Aß) pathogenesis; however, the mechanisms are still not well understood. We hypothesize that the gut bears the Aß burden prior to brain, highlighting gut-brain axis (GBA) interaction in neurodegenerative disorders. We used pre-symptomatic (6-months) and symptomatic (15-months) Tg2576 mouse model of AD compared to their age-matched littermate WT control. We identified that dysfunction of intestinal epithelial barrier (IEB), dysregulation of absorption, and vascular Aß deposition in the IEB occur before cerebral Aß aggregation is detectible. These changes in the GBA were associated with elevated inflammatory plasma cytokines including IL-9, VEGF and IP-10. In association with reduced cerebral myelin tight junction proteins, we identified reduced levels of systemic vitamin B12 and decrease cubilin, an intestinal B12 transporter, after the development of cerebral Aß pathology. Lastly, we report Aß deposition in the intestinal autopsy from AD patients with confirmed cerebral Aß pathology that is not present in intestine from non-AD controls. Our data provide evidence that gut dysfunction occurs in AD and may contribute to its etiology. Future therapeutic strategies to reverse AD pathology may involve the early manipulation of gut physiology and its microbiota.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Mucosa Intestinal/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Quimiocina CXCL10/metabolismo , Femenino , Microbioma Gastrointestinal/genética , Interleucina-9/metabolismo , Mucosa Intestinal/microbiología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Placa Amiloide/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Vitamina B 12/metabolismo
8.
Elife ; 92020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32043463

RESUMEN

Guanine-rich DNA sequences can fold into four-stranded G-quadruplex (G4-DNA) structures. G4-DNA regulates replication and transcription, at least in cancer cells. Here, we demonstrate that, in neurons, pharmacologically stabilizing G4-DNA with G4 ligands strongly downregulates the Atg7 gene. Atg7 is a critical gene for the initiation of autophagy that exhibits decreased transcription with aging. Using an in vitro assay, we show that a putative G-quadruplex-forming sequence (PQFS) in the first intron of the Atg7 gene folds into a G4. An antibody specific to G4-DNA and the G4-DNA-binding protein PC4 bind to the Atg7 PQFS. Mice treated with a G4 stabilizer develop memory deficits. Brain samples from aged mice contain G4-DNA structures that are absent in brain samples from young mice. Overexpressing the G4-DNA helicase Pif1 in neurons exposed to the G4 stabilizer improves phenotypes associated with G4-DNA stabilization. Our findings indicate that G4-DNA is a novel pathway for regulating autophagy in neurons.


Asunto(s)
Proteína 7 Relacionada con la Autofagia/fisiología , Autofagia , G-Cuádruplex , Neuronas/fisiología , Aminoquinolinas , Animales , Encéfalo/metabolismo , ADN Helicasas/metabolismo , Humanos , Trastornos de la Memoria , Ratones , Ácidos Picolínicos , Cultivo Primario de Células , Ratas
9.
Cell Death Dis ; 9(5): 521, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29743513

RESUMEN

Autophagy is a degradative pathway for removing aggregated proteins, damaged organelles, and parasites. Evidence indicates that autophagic pathways differ between cell types. In neurons, autophagy plays a homeostatic role, compared to a survival mechanism employed by starving non-neuronal cells. We investigated if sphingosine kinase 1 (SK1)-associated autophagy differs between two symbiotic brain cell types-neurons and astrocytes. SK1 synthesizes sphingosine-1-phosphate, which regulates autophagy in non-neuronal cells and in neurons. We found that benzoxazine autophagy inducers upregulate SK1 and neuroprotective autophagy in neurons, but not in astrocytes. Starvation enhances SK1-associated autophagy in astrocytes, but not in neurons. In astrocytes, SK1 is cytoprotective and promotes the degradation of an autophagy substrate, mutant huntingtin, the protein that causes Huntington's disease. Overexpressed SK1 is unexpectedly toxic to neurons, and its toxicity localizes to the neuronal soma, demonstrating an intricate relationship between the localization of SK1's activity and neurotoxicity. Our results underscore the importance of cell type-specific autophagic differences in any efforts to target autophagy therapeutically.


Asunto(s)
Astrocitos/enzimología , Autofagia , Neuronas/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Animales , Astrocitos/citología , Neuronas/citología , Especificidad de Órganos , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Ratas
10.
Mol Cell Neurosci ; 86: 65-71, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29180229

RESUMEN

Doxorubicin, a commonly used anti-neoplastic agent, causes severe neurotoxicity. Doxorubicin promotes thinning of the brain cortex and accelerates brain aging, leading to cognitive impairment. Oxidative stress induced by doxorubicin contributes to cellular damage. In addition to mitochondria, peroxisomes also generate reactive oxygen species (ROS) and promote cell senescence. Here, we investigated if doxorubicin affects peroxisomal homeostasis in neurons. We demonstrate that the number of peroxisomes is increased in doxorubicin-treated neurons and in the brains of mice which underwent doxorubicin-based chemotherapy. Pexophagy, the specific autophagy of peroxisomes, is downregulated in neurons, and peroxisomes produce more ROS. 2-hydroxypropyl-ß-cyclodextrin (HPßCD), an activator of the transcription factor TFEB, which regulates expression of genes involved in autophagy and lysosome function, mitigates damage of pexophagy and decreases ROS production induced by doxorubicin. We conclude that peroxisome-associated oxidative stress induced by doxorubicin may contribute to neurotoxicity, cognitive dysfunction, and accelerated brain aging in cancer patients and survivors. Peroxisomes might be a valuable new target for mitigating neuronal damage caused by chemotherapy drugs and for slowing down brain aging in general.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Doxorrubicina/farmacología , Neuronas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Peroxisomas/efectos de los fármacos , Animales , Células Cultivadas , Femenino , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/metabolismo , Lóbulo Frontal/ultraestructura , Ratones , Neuronas/metabolismo , Neuronas/ultraestructura , Estrés Oxidativo/fisiología , Peroxisomas/metabolismo , Peroxisomas/ultraestructura , Ratas , Especies Reactivas de Oxígeno/metabolismo
11.
Aging (Albany NY) ; 9(9): 1957-1970, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28904242

RESUMEN

The G-quadruplex is a non-canonical DNA secondary structure formed by four DNA strands containing multiple runs of guanines. G-quadruplexes play important roles in DNA recombination, replication, telomere maintenance, and regulation of transcription. Small molecules that stabilize the G-quadruplexes alter gene expression in cancer cells. Here, we hypothesized that the G-quadruplexes regulate transcription in neurons. We discovered that pyridostatin, a small molecule that specifically stabilizes G-quadruplex DNA complexes, induced neurotoxicity and promoted the formation of DNA double-strand breaks (DSBs) in cultured neurons. We also found that pyridostatin downregulated transcription of the Brca1 gene, a gene that is critical for DSB repair. Importantly, in an in vitro gel shift assay, we discovered that an antibody specific to the G-quadruplex structure binds to a synthetic oligonucleotide, which corresponds to the first putative G-quadruplex in the Brca1 gene promoter. Our results suggest that the G-quadruplex complexes regulate transcription in neurons. Studying the G-quadruplexes could represent a new avenue for neurodegeneration and brain aging research.


Asunto(s)
Aminoquinolinas/farmacología , Proteína BRCA1/biosíntesis , Daño del ADN/efectos de los fármacos , Neuronas/efectos de los fármacos , Ácidos Picolínicos/farmacología , Transcripción Genética/efectos de los fármacos , Animales , Regulación hacia Abajo , G-Cuádruplex/efectos de los fármacos , Regulación de la Expresión Génica , Ratas
12.
Hum Mol Genet ; 26(7): 1305-1317, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28175299

RESUMEN

Huntington disease (HD) is the most common inherited neurodegenerative disorder. It has no cure. The protein huntingtin causes HD, and mutations to it confer toxic functions to the protein that lead to neurodegeneration. Thus, identifying modifiers of mutant huntingtin-mediated neurotoxicity might be a therapeutic strategy for HD. Sphingosine kinases 1 (SK1) and 2 (SK2) synthesize sphingosine-1-phosphate (S1P), a bioactive lipid messenger critically involved in many vital cellular processes, such as cell survival. In the nucleus, SK2 binds to and inhibits histone deacetylases 1 and 2 (HDAC1/2). Inhibiting both HDACs has been suggested as a potential therapy in HD. Here, we found that SK2 is nuclear in primary neurons and, unexpectedly, overexpressed SK2 is neurotoxic in a dose-dependent manner. SK2 promotes DNA double-strand breaks in cultured primary neurons. We also found that SK2 is hyperphosphorylated in the brain samples from a model of HD, the BACHD mice. These data suggest that the SK2 pathway may be a part of a pathogenic pathway in HD. ABC294640, an inhibitor of SK2, reduces DNA damage in neurons and increases survival in two neuron models of HD. Our results identify a novel regulator of mutant huntingtin-mediated neurotoxicity and provide a new target for developing therapies for HD.


Asunto(s)
Núcleo Celular/metabolismo , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Animales , Núcleo Celular/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Histona Desacetilasa 1/antagonistas & inhibidores , Histona Desacetilasa 2/antagonistas & inhibidores , Humanos , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Lisofosfolípidos/metabolismo , Ratones , Neuronas/metabolismo , Neuronas/patología , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Esfingosina/análogos & derivados , Esfingosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...