Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Neurology ; 102(11): e209393, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38748936

RESUMEN

BACKGROUND AND OBJECTIVES: Perinatal arterial ischemic stroke (PAIS) is a focal vascular brain injury presumed to occur between the fetal period and the first 28 days of life. It is the leading cause of hemiparetic cerebral palsy. Multiple maternal, intrapartum, delivery, and fetal factors have been associated with PAIS, but studies are limited by modest sample sizes and complex interactions between factors. Machine learning approaches use large and complex data sets to enable unbiased identification of clinical predictors but have not yet been applied to PAIS. We combined large PAIS data sets and used machine learning methods to identify clinical PAIS factors and compare this data-driven approach with previously described literature-driven clinical prediction models. METHODS: Common data elements from 3 registries with patients with PAIS, the Alberta Perinatal Stroke Project, Canadian Cerebral Palsy Registry, International Pediatric Stroke Study, and a longitudinal cohort of healthy controls (Alberta Pregnancy Outcomes and Nutrition Study), were used to identify potential predictors of PAIS. Inclusion criteria were term birth and idiopathic PAIS (absence of primary causative medical condition). Data including maternal/pregnancy, intrapartum, and neonatal factors were collected between January 2003 and March 2020. Common data elements were entered into a validated random forest machine learning pipeline to identify the highest predictive features and develop a predictive model. Univariable analyses were completed post hoc to assess the relationship between each predictor and outcome. RESULTS: A machine learning model was developed using data from 2,571 neonates, including 527 cases (20%) and 2,044 controls (80%). With a mean of 21 features selected, the random forest machine learning approach predicted the outcome with approximately 86.5% balanced accuracy. Factors that were selected a priori through literature-driven variable selection that were also identified as most important by the machine learning model were maternal age, recreational substance exposure, tobacco exposure, intrapartum maternal fever, and low Apgar score at 5 minutes. Additional variables identified through machine learning included in utero alcohol exposure, infertility, miscarriage, primigravida, meconium, spontaneous vaginal delivery, neonatal head circumference, and 1-minute Apgar score. Overall, the machine learning model performed better (area under the curve [AUC] 0.93) than the literature-driven model (AUC 0.73). DISCUSSION: Machine learning may be an alternative, unbiased method to identify clinical predictors associated with PAIS. Identification of previously suggested and novel clinical factors requires cautious interpretation but supports the multifactorial nature of PAIS pathophysiology. Our results suggest that identification of neonates at risk of PAIS is possible.


Asunto(s)
Accidente Cerebrovascular Isquémico , Aprendizaje Automático , Humanos , Femenino , Recién Nacido , Factores de Riesgo , Accidente Cerebrovascular Isquémico/epidemiología , Embarazo , Sistema de Registros , Masculino
2.
World J Biol Psychiatry ; 25(3): 175-187, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38185882

RESUMEN

OBJECTIVES: This study compared machine learning models using unimodal imaging measures and combined multi-modal imaging measures for deep brain stimulation (DBS) outcome prediction in treatment resistant depression (TRD). METHODS: Regional brain glucose metabolism (CMRGlu), cerebral blood flow (CBF), and grey matter volume (GMV) were measured at baseline using 18F-fluorodeoxy glucose (18F-FDG) positron emission tomography (PET), arterial spin labelling (ASL) magnetic resonance imaging (MRI), and T1-weighted MRI, respectively, in 19 patients with TRD receiving subcallosal cingulate (SCC)-DBS. Responders (n = 9) were defined by a 50% reduction in HAMD-17 at 6 months from the baseline. Using an atlas-based approach, values of each measure were determined for pre-selected brain regions. OneR feature selection algorithm and the naïve Bayes model was used for classification. Leave-out-one cross validation was used for classifier evaluation. RESULTS: The performance accuracy of the CMRGlu classification model (84%) was greater than CBF (74%) or GMV (74%) models. The classification model using the three image modalities together led to a similar accuracy (84%0 compared to the CMRGlu classification model. CONCLUSIONS: CMRGlu imaging measures may be useful for the development of multivariate prediction models for SCC-DBS studies for TRD. The future of multivariate methods for multimodal imaging may rest on the selection of complementing features and the developing better models.Clinical Trial Registration: ClinicalTrials.gov (#NCT01983904).


Asunto(s)
Estimulación Encefálica Profunda , Trastorno Depresivo Resistente al Tratamiento , Humanos , Estimulación Encefálica Profunda/métodos , Trastorno Depresivo Resistente al Tratamiento/diagnóstico por imagen , Trastorno Depresivo Resistente al Tratamiento/terapia , Teorema de Bayes , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen Multimodal
3.
Epilepsia ; 64(10): 2781-2791, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37455354

RESUMEN

OBJECTIVE: This study was undertaken to develop a multimodal machine learning (ML) approach for predicting incident depression in adults with epilepsy. METHODS: We randomly selected 200 patients from the Calgary Comprehensive Epilepsy Program registry and linked their registry-based clinical data to their first-available clinical electroencephalogram (EEG) and magnetic resonance imaging (MRI) study. We excluded patients with a clinical or Neurological Disorders Depression Inventory for Epilepsy (NDDI-E)-based diagnosis of major depression at baseline. The NDDI-E was used to detect incident depression over a median of 2.4 years of follow-up (interquartile range [IQR] = 1.5-3.3 years). A ReliefF algorithm was applied to clinical as well as quantitative EEG and MRI parameters for feature selection. Six ML algorithms were trained and tested using stratified threefold cross-validation. Multiple metrics were used to assess model performances. RESULTS: Of 200 patients, 150 had EEG and MRI data of sufficient quality for ML, of whom 59 were excluded due to prevalent depression. Therefore, 91 patients (41 women) were included, with a median age of 29 (IQR = 22-44) years. A total of 42 features were selected by ReliefF, none of which was a quantitative MRI or EEG variable. All models had a sensitivity > 80%, and five of six had an F1 score ≥ .72. A multilayer perceptron model had the highest F1 score (median = .74, IQR = .71-.78) and sensitivity (84.3%). Median area under the receiver operating characteristic curve and normalized Matthews correlation coefficient were .70 (IQR = .64-.78) and .57 (IQR = .50-.65), respectively. SIGNIFICANCE: Multimodal ML using baseline features can predict incident depression in this population. Our pilot models demonstrated high accuracy for depression prediction. However, overall performance and calibration can be improved. This model has promise for identifying those at risk for incident depression during follow-up, although efforts to refine it in larger populations along with external validation are required.

4.
Neuroimage Clin ; 38: 103405, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37079936

RESUMEN

INTRODUCTION: Parkinson's disease (PD) is a severe neurodegenerative disease that affects millions of people. Early diagnosis is important to facilitate prompt interventions to slow down disease progression. However, accurate PD diagnosis can be challenging, especially in the early disease stages. The aim of this work was to develop and evaluate a robust explainable deep learning model for PD classification trained from one of the largest collections of T1-weighted magnetic resonance imaging datasets. MATERIALS AND METHODS: A total of 2,041 T1-weighted MRI datasets from 13 different studies were collected, including 1,024 datasets from PD patients and 1,017 datasets from age- and sex-matched healthy controls (HC). The datasets were skull stripped, resampled to isotropic resolution, bias field corrected, and non-linearly registered to the MNI PD25 atlas. The Jacobian maps derived from the deformation fields together with basic clinical parameters were used to train a state-of-the-art convolutional neural network (CNN) to classify PD and HC subjects. Saliency maps were generated to display the brain regions contributing the most to the classification task as a means of explainable artificial intelligence. RESULTS: The CNN model was trained using an 85%/5%/10% train/validation/test split stratified by diagnosis, sex, and study. The model achieved an accuracy of 79.3%, precision of 80.2%, specificity of 81.3%, sensitivity of 77.7%, and AUC-ROC of 0.87 on the test set while performing similarly on an independent test set. Saliency maps computed for the test set data highlighted frontotemporal regions, the orbital-frontal cortex, and multiple deep gray matter structures as most important. CONCLUSION: The developed CNN model, trained on a large heterogenous database, was able to differentiate PD patients from HC subjects with high accuracy with clinically feasible classification explanations. Future research should aim to investigate the combination of multiple imaging modalities with deep learning and on validating these results in a prospective trial as a clinical decision support system.


Asunto(s)
Aprendizaje Profundo , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Inteligencia Artificial , Imagen por Resonancia Magnética/métodos , Enfermedad de Parkinson/patología , Estudios Prospectivos , Masculino , Femenino
5.
Neuroimage Clin ; 37: 103337, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36709637

RESUMEN

IMPORTANCE: Cerebrovascular changes are already evident in young adults with hypertension and exercise is recommended to reduce cardiovascular risk. To what extent exercise benefits the cerebrovasculature at an early stage of the disease remains unclear. OBJECTIVE: To investigate whether structured aerobic exercise increases brain vessel lumen diameter or cerebral blood flow (CBF) and whether lumen diameter is associated with CBF. DESIGN: Open, parallel, two-arm superiority randomized controlled (1:1) trial in the TEPHRA study on an intention-to-treat basis. The MRI sub-study was an optional part of the protocol. The outcome assessors remained blinded until the data lock. SETTING: Single-centre trial in Oxford, UK. PARTICIPANTS: Participants were physically inactive (<150 min/week moderate to vigorous physical activity), 18 to 35 years old, 24-hour ambulatory blood pressure 115/75 mmHg-159/99 mmHg, body mass index below 35 kg/m2 and never been on prescribed hypertension medications. Out of 203 randomized participants, 135 participated in the MRI sub-study. Randomisation was stratified for sex, age (<24, 24-29, 30-35 years) and gestational age at birth (<32, 32-37, >37 weeks). INTERVENTION: Study participants were randomised to a 16 week aerobic exercise intervention targeting 3×60 min sessions per week at 60 to 80 % peak heart rate. MAIN OUTCOMES AND MEASURES: cerebral blood flow (CBF) maps from ASL MRI scans, internal carotid artery (ICA), middle cerebral artery (MCA) M1 and M2 segments, anterior cerebral artery (ACA), basilar artery (BA), and posterior cerebral artery (PCA) diameters extracted from TOF MRI scans. RESULTS: Of the 135 randomized participants (median age 28 years, 58 % women) who had high quality baseline MRI data available, 93 participants also had high quality follow-up data available. The exercise group showed an increase in ICA (0.1 cm, 95 % CI 0.01 to 0.18, p =.03) and MCA M1 (0.05 cm, 95 % CI 0.01 to 0.10, p =.03) vessel diameter compared to the control group. Differences in the MCA M2 (0.03 cm, 95 % CI 0.0 to 0.06, p =.08), ACA (0.04 cm, 95 % CI 0.0 to 0.08, p =.06), BA (0.02 cm, 95 % CI -0.04 to 0.09, p =.48), and PCA (0.03 cm, 95 % CI -0.01 to 0.06, p =.17) diameters or CBF were not statistically significant. The increase in ICA vessel diameter in the exercise group was associated with local increases in CBF. CONCLUSIONS AND RELEVANCE: Aerobic exercise induces positive cerebrovascular remodelling in young people with early hypertension, independent of blood pressure. The long-term benefit of these changes requires further study. TRIAL REGISTRATION: Clinicaltrials.gov NCT02723552, 30 March 2016.


Asunto(s)
Monitoreo Ambulatorio de la Presión Arterial , Hipertensión , Recién Nacido , Humanos , Femenino , Adulto Joven , Adolescente , Adulto , Masculino , Presión Sanguínea , Encéfalo , Ejercicio Físico
6.
Neuroinformatics ; 21(1): 45-55, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36083416

RESUMEN

Although current research aims to improve deep learning networks by applying knowledge about the healthy human brain and vice versa, the potential of using such networks to model and study neurodegenerative diseases remains largely unexplored. In this work, we present an in-depth feasibility study modeling progressive dementia in silico with deep convolutional neural networks. Therefore, networks were trained to perform visual object recognition and then progressively injured by applying neuronal as well as synaptic injury. After each iteration of injury, network object recognition accuracy, saliency map similarity between the intact and injured networks, and internal activations of the degenerating models were evaluated. The evaluation revealed that cognitive function of the network progressively decreased with increasing injury load whereas this effect was much more pronounced for synaptic damage. The effects of neurodegeneration found for the in silico model are especially similar to the loss of visual cognition seen in patients with posterior cortical atrophy.


Asunto(s)
Aprendizaje Profundo , Demencia , Humanos , Redes Neurales de la Computación , Encéfalo/diagnóstico por imagen , Simulación por Computador
7.
J Am Med Inform Assoc ; 30(1): 112-119, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36287916

RESUMEN

OBJECTIVE: Distributed learning avoids problems associated with central data collection by training models locally at each site. This can be achieved by federated learning (FL) aggregating multiple models that were trained in parallel or training a single model visiting sites sequentially, the traveling model (TM). While both approaches have been applied to medical imaging tasks, their performance in limited local data scenarios remains unknown. In this study, we specifically analyze FL and TM performances when very small sample sizes are available per site. MATERIALS AND METHODS: 2025 T1-weighted magnetic resonance imaging scans were used to investigate the effect of sample sizes on FL and TM for brain age prediction. We evaluated models across 18 scenarios varying the number of samples per site (1, 2, 5, 10, and 20) and the number of training rounds (20, 40, and 200). RESULTS: Our results demonstrate that the TM outperforms FL, for every sample size examined. In the extreme case when each site provided only one sample, FL achieved a mean absolute error (MAE) of 18.9 ± 0.13 years, while the TM achieved a MAE of 6.21 ± 0.50 years, comparable to central learning (MAE = 5.99 years). DISCUSSION: Although FL is more commonly used, our study demonstrates that TM is the best implementation for small sample sizes. CONCLUSION: The TM offers new opportunities to apply machine learning models in rare diseases and pediatric research but also allows even small hospitals to contribute small datasets.


Asunto(s)
Encéfalo , Aprendizaje Automático , Niño , Humanos , Tamaño de la Muestra , Recolección de Datos , Hospitales
8.
J Med Imaging (Bellingham) ; 9(6): 061102, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36046104

RESUMEN

Purpose: Explainability and fairness are two key factors for the effective and ethical clinical implementation of deep learning-based machine learning models in healthcare settings. However, there has been limited work on investigating how unfair performance manifests in explainable artificial intelligence (XAI) methods, and how XAI can be used to investigate potential reasons for unfairness. Thus, the aim of this work was to analyze the effects of previously established sociodemographic-related confounders on classifier performance and explainability methods. Approach: A convolutional neural network (CNN) was trained to predict biological sex from T1-weighted brain MRI datasets of 4547 9- to 10-year-old adolescents from the Adolescent Brain Cognitive Development study. Performance disparities of the trained CNN between White and Black subjects were analyzed and saliency maps were generated for each subgroup at the intersection of sex and race. Results: The classification model demonstrated a significant difference in the percentage of correctly classified White male ( 90.3 % ± 1.7 % ) and Black male ( 81.1 % ± 4.5 % ) children. Conversely, slightly higher performance was found for Black female ( 89.3 % ± 4.8 % ) compared with White female ( 86.5 % ± 2.0 % ) children. Saliency maps showed subgroup-specific differences, corresponding to brain regions previously associated with pubertal development. In line with this finding, average pubertal development scores of subjects used in this study were significantly different between Black and White females ( p < 0.001 ) and males ( p < 0.001 ). Conclusions: We demonstrate that a CNN with significantly different sex classification performance between Black and White adolescents can identify different important brain regions when comparing subgroup saliency maps. Importance scores vary substantially between subgroups within brain structures associated with pubertal development, a race-associated confounder for predicting sex. We illustrate that unfair models can produce different XAI results between subgroups and that these results may explain potential reasons for biased performance.

9.
Eur Stroke J ; 7(3): 230-237, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36082264

RESUMEN

Paroxysmal Atrial fibrillation (AF) is often clinically silent and may be missed by the usual diagnostic workup after ischemic stroke. We aimed to determine whether shape characteristics of ischemic stroke lesions can be used to predict AF in stroke patients without known AF at baseline. Lesion shape quantification on brain MRI was performed in selected patients from the intervention arm of the Impact of standardized MONitoring for Detection of Atrial Fibrillation in Ischemic Stroke (MonDAFIS) study, which included patients with ischemic stroke or TIA without prior AF. Multiple morphologic parameters were calculated based on lesion segmentation in acute brain MRI data. Multivariate logistic models were used to test the association of lesion morphology, clinical parameters, and AF. A stepwise elimination regression was conducted to identify the most important variables. A total of 755 patients were included. Patients with AF detected within 2 years after stroke (n = 86) had a larger overall oriented bounding box (OBB) volume (p = 0.003) and a higher number of brain lesion components (p = 0.008) than patients without AF. In the multivariate model, OBB volume (OR 1.72, 95%CI 1.29-2.35, p < 0.001), age (OR 2.13, 95%CI 1.52-3.06, p < 0.001), and female sex (OR 2.45, 95%CI 1.41-4.31, p = 0.002) were independently associated with detected AF. Ischemic lesions in patients with detected AF after stroke presented with a more dispersed infarct pattern and a higher number of lesion components. Together with clinical characteristics, these lesion shape characteristics may help in guiding prolonged cardiac monitoring after stroke.

10.
Neurosurgery ; 91(5): 710-716, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36084178

RESUMEN

BACKGROUND: Moya Moya disease (MMD) and Moya Moya syndrome (MMS) are cerebrovascular disorders, which affect the internal carotid arteries (ICAs). Diagnosis and surveillance of MMD/MMS in children mostly rely on qualitative evaluation of vascular imaging, especially MR angiography (MRA). OBJECTIVE: To quantitatively characterize arterial differences in pediatric patients with MMD/MMS compared with normal controls. METHODS: MRA data sets from 17 presurgery MMD/MMS (10M/7F, mean age = 10.0 years) patients were retrospectively collected and compared with MRA data sets of 98 children with normal vessel morphology (49 male patients; mean age = 10.6 years). Using a level set segmentation method with anisotropic energy weights, the cerebral arteries were automatically extracted and used to compute the radius of the ICA, middle cerebral artery (MCA), anterior cerebral artery (ACA), posterior cerebral artery (PCA), and basilar artery (BA). Moreover, the density and the average radius of all arteries in the MCA, ACA, and PCA flow territories were quantified. RESULTS: Statistical analysis revealed significant differences comparing children with MMD/MMS and those with normal vasculature ( P < .001), whereas post hoc analyses identified significantly smaller radii of the ICA, MCA-M1, MCA-M2, and ACA ( P < .001) in the MMD/MMS group. No significant differences were found for the radii of the PCA and BA or any artery density and average artery radius measurement in the flow territories ( P > .05). CONCLUSION: His study describes the results of an automatic approach for quantitative characterization of the cerebrovascular system in patients with MMD/MMS with promising preliminary results for quantitative surveillance in pediatric MMD/MMS management.


Asunto(s)
Enfermedad de Moyamoya , Arterias Cerebrales , Niño , Humanos , Angiografía por Resonancia Magnética , Masculino , Enfermedad de Moyamoya/diagnóstico por imagen , Enfermedad de Moyamoya/cirugía , Estudios Retrospectivos
11.
Front Aging Neurosci ; 14: 941864, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072481

RESUMEN

The brain age gap (BAG) has been shown to capture accelerated brain aging patterns and might serve as a biomarker for several neurological diseases. Moreover, it was also shown that it captures other biological information related to modifiable cardiovascular risk factors. Previous studies have explored statistical relationships between the BAG and cardiovascular risk factors. However, none of those studies explored causal relationships between the BAG and cardiovascular risk factors. In this work, we employ causal structure discovery techniques and define a Bayesian network to model the assumed causal relationships between the BAG, estimated using morphometric T1-weighted magnetic resonance imaging brain features from 2025 adults, and several cardiovascular risk factors. This setup allows us to not only assess observed conditional probability distributions of the BAG given cardiovascular risk factors, but also to isolate the causal effect of each cardiovascular risk factor on BAG using causal inference. Results demonstrate the feasibility of the proposed causal analysis approach by illustrating intuitive causal relationships between variables. For example, body-mass-index, waist-to-hip ratio, smoking, and alcohol consumption were found to impact the BAG, with the greatest impact for obesity markers resulting in higher chances of developing accelerated brain aging. Moreover, the findings show that causal effects differ from correlational effects, demonstrating the importance of accounting for variable relationships and confounders when evaluating the information captured by a biomarker. Our work demonstrates the feasibility and advantages of using causal analyses instead of purely correlation-based and univariate statistical analyses in the context of brain aging and related problems.

12.
IEEE Trans Med Imaging ; 41(9): 2331-2347, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35324436

RESUMEN

Many machine learning tasks in neuroimaging aim at modeling complex relationships between a brain's morphology as seen in structural MR images and clinical scores and variables of interest. A frequently modeled process is healthy brain aging for which many image-based brain age estimation or age-conditioned brain morphology template generation approaches exist. While age estimation is a regression task, template generation is related to generative modeling. Both tasks can be seen as inverse directions of the same relationship between brain morphology and age. However, this view is rarely exploited and most existing approaches train separate models for each direction. In this paper, we propose a novel bidirectional approach that unifies score regression and generative morphology modeling and we use it to build a bidirectional brain aging model. We achieve this by defining an invertible normalizing flow architecture that learns a probability distribution of 3D brain morphology conditioned on age. The use of full 3D brain data is achieved by deriving a manifold-constrained formulation that models morphology variations within a low-dimensional subspace of diffeomorphic transformations. This modeling idea is evaluated on a database of MR scans of more than 5000 subjects. The evaluation results show that our bidirectional brain aging model (1) accurately estimates brain age, (2) is able to visually explain its decisions through attribution maps and counterfactuals, (3) generates realistic age-specific brain morphology templates, (4) supports the analysis of morphological variations, and (5) can be utilized for subject-specific brain aging simulation.


Asunto(s)
Imagen por Resonancia Magnética , Neuroimagen , Envejecimiento , Encéfalo/diagnóstico por imagen , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos
13.
Hum Brain Mapp ; 43(8): 2554-2566, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35138012

RESUMEN

Biological brain age predicted using machine learning models based on high-resolution imaging data has been suggested as a potential biomarker for neurological and cerebrovascular diseases. In this work, we aimed to develop deep learning models to predict the biological brain age using structural magnetic resonance imaging and angiography datasets from a large database of 2074 adults (21-81 years). Since different imaging modalities can provide complementary information, combining them might allow to identify more complex aging patterns, with angiography data, for instance, showing vascular aging effects complementary to the atrophic brain tissue changes seen in T1-weighted MRI sequences. We used saliency maps to investigate the contribution of cortical, subcortical, and arterial structures to the prediction. Our results show that combining T1-weighted and angiography MR data led to a significantly improved brain age prediction accuracy, with a mean absolute error of 3.85 years comparing the predicted and chronological age. The most predictive brain regions included the lateral sulcus, the fourth ventricle, and the amygdala, while the brain arteries contributing the most to the prediction included the basilar artery, the middle cerebral artery M2 segments, and the left posterior cerebral artery. Our study proposes a framework for brain age prediction using multimodal imaging, which gives accurate predictions and allows identifying the most predictive regions for this task, which can serve as a surrogate for the brain regions that are most affected by aging.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento , Angiografía , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Preescolar , Humanos , Aprendizaje Automático , Angiografía por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Adulto Joven
14.
Front Neurol ; 13: 979774, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36588902

RESUMEN

Introduction: The difference between the chronological and biological brain age, called the brain age gap (BAG), has been identified as a promising biomarker to detect deviation from normal brain aging and to indicate the presence of neurodegenerative diseases. Moreover, the BAG has been shown to encode biological information about general health, which can be measured through cardiovascular risk factors. Current approaches for biological brain age estimation, and therefore BAG estimation, either depend on hand-crafted, morphological measurements extracted from brain magnetic resonance imaging (MRI) or on direct analysis of brain MRI images. The former can be processed with traditional machine learning models while the latter is commonly processed with convolutional neural networks (CNNs). Using a multimodal setting, this study aims to compare both approaches in terms of biological brain age prediction accuracy and biological information captured in the BAG. Methods: T1-weighted MRI, containing brain tissue information, and magnetic resonance angiography (MRA), providing information about brain arteries, from 1,658 predominantly healthy adults were used. The volumes, surface areas, and cortical thickness of brain structures were extracted from the T1-weighted MRI data, while artery density and thickness within the major blood flow territories and thickness of the major arteries were extracted from MRA data. Independent multilayer perceptron and CNN models were trained to estimate the brain age from the hand-crafted features and image data, respectively. Next, both approaches were fused to assess the benefits of combining image data and hand-crafted features for brain age prediction. Results: The combined model achieved a mean absolute error of 4 years between the chronological and predicted biological brain age. Among the independent models, the lowest mean absolute error was observed for the CNN using T1-weighted MRI data (4.2 years). When evaluating the BAGs obtained using the different approaches and imaging modalities, diverging associations between cardiovascular risk factors were found. For example, BAGs obtained from the CNN models showed an association with systolic blood pressure, while BAGs obtained from hand-crafted measurements showed greater associations with obesity markers. Discussion: In conclusion, the use of more diverse sources of data can improve brain age estimation modeling and capture more diverse biological deviations from normal aging.

15.
Clin Neuroradiol ; 32(1): 49-56, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34427700

RESUMEN

PURPOSE: Evaluation of intracranial artery morphology plays an important role in diagnosing a variety of neurovascular diseases. In addition to clinical symptoms, diagnosis currently relies on qualitative rather than quantitative evaluation of vascular imaging sequences, such as magnetic resonance angiography (MRA). However, there is a paucity of literature on normal arterial morphology in the pediatric population across brain development. We aimed to quantitatively assess normal, age-related changes in artery morphology in children. METHODS: We performed retrospective analysis of pediatric MRA data obtained from a tertiary referral center. An MRA dataset from 98 children (49 boys/49 girls) aged 0.6-20 years (median = 11.5 years) with normal intracranial vasculature was retrospectively collected between 2011 and 2018. All arteries were automatically segmented to determine the vessel radius. Using an atlas-based approach, the average radius and density of arteries were measured in the three main cerebral vascular territories and the radius of five major arteries was determined at corresponding locations. RESULTS: The radii of the major arteries as well as the average artery radius and density in the different vascular territories in the brain remained constant throughout childhood and adolescence (|r| < 0.369 in all cases). CONCLUSION: This study presents the first automated evaluation of intracranial vessel morphology on MRA across childhood. Our results can serve as a framework for quantitative evaluation of cerebral vessel morphology in the setting of pediatric neurovascular diseases.


Asunto(s)
Arterias , Angiografía por Resonancia Magnética , Adolescente , Adulto , Encéfalo , Arterias Cerebrales/diagnóstico por imagen , Niño , Preescolar , Femenino , Humanos , Lactante , Angiografía por Resonancia Magnética/métodos , Masculino , Estudios Retrospectivos , Adulto Joven
16.
Sci Rep ; 11(1): 12236, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112870

RESUMEN

Cerebral artery morphological alterations have been associated with several cerebrovascular and neurological diseases, whereas these structures are known to be highly variable among healthy individuals. To date, the knowledge about the influence of cardiovascular risk factors on the morphology of cerebral arteries is rather limited. The aim of this work was to investigate the impact of cardiovascular risk factors on the regional cerebroarterial radius and density. Time-of-Flight magnetic resonance angiography from 1722 healthy adults (21-82 years) were used to extract region-specific measurements describing the main cerebral artery morphology. Multivariate statistical analysis was conducted to quantify the impact of cardiovascular risk factors, including clinical and life behavioural factors, on each region-specific artery measurement. Increased age, blood pressure, and markers of obesity were significantly associated with decreased artery radius and density in most regions, with aging having the greatest impact. Additionally, females showed significantly higher artery density while males showed higher artery radius. Smoking and alcohol consumption did not show any significant association with the artery morphology. The results of this study improve the understanding of the impact of aging, clinical factors, and life behavioural factors on cerebrovascular morphology and can help to identify potential risk factors for cerebrovascular and neurological diseases.


Asunto(s)
Arterias Cerebrales/diagnóstico por imagen , Arterias Cerebrales/patología , Circulación Cerebrovascular , Factores de Riesgo de Enfermedad Cardiaca , Longevidad , Adulto , Femenino , Alemania/epidemiología , Humanos , Procesamiento de Imagen Asistido por Computador , Angiografía por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vigilancia en Salud Pública , Factores de Riesgo
17.
Int J Geriatr Psychiatry ; 36(9): 1398-1406, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33778998

RESUMEN

OBJECTIVES: Agitation and aggression are common in dementia and pre-dementia. The dementia risk syndrome mild behavioral impairment (MBI) includes these symptoms in the impulse dyscontrol domain. However, the neural circuitry associated with impulse dyscontrol in neurodegenerative disease is not well understood. The objective of this work was to investigate if regional micro- and macro-structural brain properties were associated with impulse dyscontrol symptoms in older adults with normal cognition, mild cognitive impairment, and Alzheimer's disease (AD). METHODS: Clinical, neuropsychiatric, and T1-weighted and diffusion-tensor magnetic resonance imaging (DTI) data from 80 individuals with and 123 individuals without impulse dyscontrol were obtained from the AD Neuroimaging Initiative. Linear mixed effect models were used to assess if impulse dyscontrol was related to regional DTI and volumetric parameters. RESULTS: Impulse dyscontrol was present in 17% of participants with NC, 43% with MCI, and 66% with AD. Impulse dyscontrol was associated with: (1) lower fractional anisotropy (FA), and greater mean, axial, and radial diffusivity in the fornix; (2) lesser FA and greater radial diffusivity in the superior fronto-occipital fasciculus; (3) greater axial diffusivity in the cingulum; (4) greater axial and radial diffusivity in the uncinate fasciculus; (5) gray matter atrophy, specifically, lower cortical thickness in the parahippocampal gyrus. CONCLUSION: Our findings provide evidence that well-established atrophy patterns of AD are prominent in the presence of impulse dyscontrol, even when disease status is controlled for, and possibly in advance of dementia. Our findings support the growing evidence for impulse dyscontrol symptoms as an early manifestation of AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedades Neurodegenerativas , Sustancia Blanca , Anciano , Anisotropía , Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora , Humanos , Pruebas Neuropsicológicas , Sustancia Blanca/diagnóstico por imagen
18.
Sci Rep ; 11(1): 4917, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649398

RESUMEN

Cognitive impairments are prevalent in Parkinson's disease (PD), but the underlying mechanisms of their development are unknown. In this study, we aimed to predict global cognition (GC) in PD with machine learning (ML) using structural neuroimaging, genetics and clinical and demographic characteristics. As a post-hoc analysis, we aimed to explore the connection between novel selected features and GC more precisely and to investigate whether this relationship is specific to GC or is driven by specific cognitive domains. 101 idiopathic PD patients had a cognitive assessment, structural MRI and blood draw. ML was performed on 102 input features including demographics, cortical thickness and subcortical measures, and several genetic variants (APOE, MAPT, SNCA, etc.). Using the combination of RRELIEFF and Support Vector Regression, 11 features were found to be predictive of GC including sex, rs894280, Edinburgh Handedness Inventory, UPDRS-III, education, five cortical thickness measures (R-parahippocampal, L-entorhinal, R-rostral anterior cingulate, L-middle temporal, and R-transverse temporal), and R-caudate volume. The rs894280 of SNCA gene was selected as the most novel finding of ML. Post-hoc analysis revealed a robust association between rs894280 and GC, attention, and visuospatial abilities. This variant indicates a potential role for the SNCA gene in cognitive impairments of idiopathic PD.


Asunto(s)
Trastornos del Conocimiento/genética , Disfunción Cognitiva/genética , Aprendizaje Automático , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética , Anciano , Anciano de 80 o más Años , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neuroimagen
19.
Neuroimage ; 225: 117431, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33045336

RESUMEN

The identification of community structure in graphs continues to attract great interest in several fields. Network neuroscience is particularly concerned with this problem considering the key roles communities play in brain processes and functionality. Most methods used for community detection in brain graphs are based on the maximization of a parameter-dependent modularity function that often obscures the physical meaning and hierarchical organization of the partitions of network nodes. In this work, we present a new method able to detect communities at different scales in a natural, unrestricted way. First, to obtain an estimation of the information flow in the network we release random walkers to freely move over it. The activity of the walkers is separated into oscillatory modes by using empirical mode decomposition. After grouping nodes by their co-occurrence at each time scale, k-modes clustering returns the desired partitions. Our algorithm was first tested on benchmark graphs with favorable performance. Next, it was applied to real and simulated anatomical and/or functional connectomes in the macaque and human brains. We found a clear hierarchical repertoire of community structures in both the anatomical and the functional networks. The observed partitions range from the evident division in two hemispheres -in which all processes are managed globally- to specialized communities seemingly shaped by physical proximity and shared function. Additionally, the spatial scales of a network's community structure (characterized by a measure we term within-communities path length) appear inversely proportional to the oscillatory modes' average frequencies. The proportionality constant may constitute a network-specific propagation velocity for the information flow. Our results stimulate the research of hierarchical community organization in terms of temporal scales of information flow in the brain network.


Asunto(s)
Encéfalo/fisiología , Vías Nerviosas/fisiología , Algoritmos , Análisis por Conglomerados , Humanos
20.
J Neural Eng ; 17(6)2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33036008

RESUMEN

In an increasingly data-driven world, artificial intelligence is expected to be a key tool for converting big data into tangible benefits and the healthcare domain is no exception to this. Machine learning aims to identify complex patterns in multi-dimensional data and use these uncovered patterns to classify new unseen cases or make data-driven predictions. In recent years, deep neural networks have shown to be capable of producing results that considerably exceed those of conventional machine learning methods for various classification and regression tasks. In this paper, we provide an accessible tutorial of the most important supervised machine learning concepts and methods, including deep learning, which are potentially the most relevant for the medical domain. We aim to take some of the mystery out of machine learning and depict how machine learning models can be useful for medical applications. Finally, this tutorial provides a few practical suggestions for how to properly design a machine learning model for a generic medical problem.


Asunto(s)
Inteligencia Artificial , Aprendizaje Automático , Redes Neurales de la Computación , Aprendizaje Automático Supervisado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...