Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
bioRxiv ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38328105

RESUMEN

Clustering is a critical step in the analysis of single-cell data, as it enables the discovery and characterization of putative cell types and states. However, most popular clustering tools do not subject clustering results to statistical inference testing, leading to risks of overclustering or underclustering data and often resulting in ineffective identification of cell types with widely differing prevalence. To address these challenges, we present CHOIR (clustering hierarchy optimization by iterative random forests), which applies a framework of random forest classifiers and permutation tests across a hierarchical clustering tree to statistically determine which clusters represent distinct populations. We demonstrate the enhanced performance of CHOIR through extensive benchmarking against 14 existing clustering methods across 100 simulated and 4 real single-cell RNA-seq, ATAC-seq, spatial transcriptomic, and multi-omic datasets. CHOIR can be applied to any single-cell data type and provides a flexible, scalable, and robust solution to the important challenge of identifying biologically relevant cell groupings within heterogeneous single-cell data.

2.
Neurobiol Dis ; 186: 106263, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37591465

RESUMEN

The R47H variant of triggering receptor expressed on myeloid cells 2 (TREM2) increases the risk of Alzheimer's disease (AD). To investigate potential mechanisms, we analyzed knockin mice expressing human TREM2-R47H from one mutant mouse Trem2 allele. TREM2-R47H mice showed increased seizure activity in response to an acute excitotoxin challenge, compared to wildtype controls or knockin mice expressing the common variant of human TREM2. TREM2-R47H also increased spontaneous thalamocortical epileptiform activity in App knockin mice expressing amyloid precursor proteins bearing autosomal dominant AD mutations and a humanized amyloid-ß sequence. In mice with or without such App modifications, TREM2-R47H increased the density of putative synapses in cortical regions without amyloid plaques. TREM2-R47H did not affect synaptic density in hippocampal regions with or without plaques. We conclude that TREM2-R47H increases AD-related network hyperexcitability and that it may do so, at least in part, by causing an imbalance in synaptic densities across brain regions.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Animales , Ratones , Enfermedad de Alzheimer/genética , Alelos , Convulsiones , Péptidos beta-Amiloides , Modelos Animales de Enfermedad , Placa Amiloide , Sinapsis , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/genética
3.
Sci Transl Med ; 14(642): eabm5527, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35476595

RESUMEN

Intracellular accumulation of TAU aggregates is a hallmark of several neurodegenerative diseases. However, global genetic reduction of TAU is beneficial also in models of other brain disorders that lack such TAU pathology, suggesting a pathogenic role of nonaggregated TAU. Here, conditional ablation of TAU in excitatory, but not inhibitory, neurons reduced epilepsy, sudden unexpected death in epilepsy, overactivation of the phosphoinositide 3-kinase-AKT-mammalian target of rapamycin pathway, brain overgrowth (megalencephaly), and autism-like behaviors in a mouse model of Dravet syndrome, a severe epileptic encephalopathy of early childhood. Furthermore, treatment with a TAU-lowering antisense oligonucleotide, initiated on postnatal day 10, had similar therapeutic effects in this mouse model. Our findings suggest that excitatory neurons are the critical cell type in which TAU has to be reduced to counteract brain dysfunctions associated with Dravet syndrome and that overall cerebral TAU reduction could have similar benefits, even when initiated postnatally.


Asunto(s)
Trastorno Autístico , Epilepsias Mioclónicas , Epilepsia , Muerte Súbita e Inesperada en la Epilepsia , Proteínas tau , Animales , Trastorno Autístico/complicaciones , Trastorno Autístico/genética , Modelos Animales de Enfermedad , Epilepsias Mioclónicas/complicaciones , Epilepsias Mioclónicas/genética , Epilepsia/complicaciones , Epilepsia/genética , Epilepsia/metabolismo , Síndromes Epilépticos , Humanos , Lactante , Ratones , Neuronas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Espasmos Infantiles , Proteínas tau/metabolismo
4.
iScience ; 24(11): 103245, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34755090

RESUMEN

Nonconvulsive epileptiform activity and microglial alterations have been detected in people with Alzheimer's disease (AD) and related mouse models. However, the relationship between these abnormalities remains to be elucidated. We suppressed epileptiform activity by treatment with the antiepileptic drug levetiracetam or by genetic ablation of tau and found that these interventions reversed or prevented aberrant microglial gene expression in brain tissues of aged human amyloid precursor protein transgenic mice, which simulate several key aspects of AD. The most robustly modulated genes included multiple factors previously implicated in AD pathogenesis, including TREM2, the hypofunction of which increases disease risk. Genetic reduction of TREM2 exacerbated epileptiform activity after mice were injected with kainate. We conclude that AD-related epileptiform activity markedly changes the molecular profile of microglia, inducing both maladaptive and adaptive alterations in their activities. Increased expression of TREM2 seems to support microglial activities that counteract this type of network dysfunction.

5.
Cell Rep ; 37(3): 109855, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34686344

RESUMEN

The protein tau has been implicated in many brain disorders. In animal models, tau reduction suppresses epileptogenesis of diverse causes and ameliorates synaptic and behavioral abnormalities in various conditions associated with excessive excitation-inhibition (E/I) ratios. However, the underlying mechanisms are unknown. Global genetic ablation of tau in mice reduces the action potential (AP) firing and E/I ratio of pyramidal cells in acute cortical slices without affecting the excitability of these cells. Tau ablation reduces the excitatory inputs to inhibitory neurons, increases the excitability of these cells, and structurally alters their axon initial segments (AISs). In primary neuronal cultures subjected to prolonged overstimulation, tau ablation diminishes the homeostatic response of AISs in inhibitory neurons, promotes inhibition, and suppresses hypersynchrony. Together, these differential alterations in excitatory and inhibitory neurons help explain how tau reduction prevents network hypersynchrony and counteracts brain disorders causing abnormally increased E/I ratios.


Asunto(s)
Potenciales Postsinápticos Excitadores , Potenciales Postsinápticos Inhibidores , Interneuronas/metabolismo , Inhibición Neural , Vías Nerviosas/metabolismo , Células Piramidales/metabolismo , Corteza Somatosensorial/metabolismo , Proteínas tau/deficiencia , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Animales , Células Cultivadas , Epilepsia/genética , Epilepsia/metabolismo , Epilepsia/fisiopatología , Femenino , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Vías Nerviosas/citología , Plasticidad Neuronal , Corteza Somatosensorial/citología , Factores de Tiempo , Proteínas tau/genética
6.
JAMA Neurol ; 78(11): 1345-1354, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34570177

RESUMEN

Importance: Network hyperexcitability may contribute to cognitive dysfunction in patients with Alzheimer disease (AD). Objective: To determine the ability of the antiseizure drug levetiracetam to improve cognition in persons with AD. Design, Setting, and Participants: The Levetiracetam for Alzheimer's Disease-Associated Network Hyperexcitability (LEV-AD) study was a phase 2a randomized double-blinded placebo-controlled crossover clinical trial of 34 adults with AD that was conducted at the University of California, San Francisco, and the University of Minnesota, Twin Cities, between October 16, 2014, and July 21, 2020. Participants were adults 80 years and younger who had a Mini-Mental State Examination score of 18 points or higher and/or a Clinical Dementia Rating score of less than 2 points. Screening included overnight video electroencephalography and a 1-hour resting magnetoencephalography examination. Interventions: Group A received placebo twice daily for 4 weeks followed by a 4-week washout period, then oral levetiracetam, 125 mg, twice daily for 4 weeks. Group B received treatment using the reverse sequence. Main Outcomes and Measures: The primary outcome was the ability of levetiracetam treatment to improve executive function (measured by the National Institutes of Health Executive Abilities: Measures and Instruments for Neurobehavioral Evaluation and Research [NIH-EXAMINER] composite score). Secondary outcomes were cognition (measured by the Stroop Color and Word Test [Stroop] interference naming subscale and the Alzheimer's Disease Assessment Scale-Cognitive Subscale) and disability. Exploratory outcomes included performance on a virtual route learning test and scores on cognitive and functional tests among participants with epileptiform activity. Results: Of 54 adults assessed for eligibility, 11 did not meet study criteria, and 9 declined to participate. A total of 34 adults (21 women [61.8%]; mean [SD] age, 62.3 [7.7] years) with AD were enrolled and randomized (17 participants to group A and 17 participants to group B). Thirteen participants (38.2%) were categorized as having epileptiform activity. In total, 28 participants (82.4%) completed the study, 10 of whom (35.7%) had epileptiform activity. Overall, treatment with levetiracetam did not change NIH-EXAMINER composite scores (mean difference vs placebo, 0.07 points; 95% CI, -0.18 to 0.32 points; P = .55) or secondary measures. However, among participants with epileptiform activity, levetiracetam treatment improved performance on the Stroop interference naming subscale (net improvement vs placebo, 7.4 points; 95% CI, 0.2-14.7 points; P = .046) and the virtual route learning test (t = 2.36; Cohen f2 = 0.11; P = .02). There were no treatment discontinuations because of adverse events. Conclusions and Relevance: In this randomized clinical trial, levetiracetam was well tolerated and, although it did not improve the primary outcome, in prespecified analysis, levetiracetam improved performance on spatial memory and executive function tasks in patients with AD and epileptiform activity. These exploratory findings warrant further assessment of antiseizure approaches in AD. Trial Registration: ClinicalTrials.gov Identifier: NCT02002819.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Anticonvulsivantes/uso terapéutico , Cognición/efectos de los fármacos , Levetiracetam/uso terapéutico , Convulsiones , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/complicaciones , Estudios Cruzados , Método Doble Ciego , Función Ejecutiva/efectos de los fármacos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Convulsiones/etiología
7.
eNeuro ; 8(3)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33833046

RESUMEN

Diverse gene products contribute to the pathogenesis of Alzheimer's disease (AD). Experimental models have helped elucidate their mechanisms and impact on brain functions. Human amyloid precursor protein (hAPP) transgenic mice from line J20 (hAPP-J20 mice) are widely used to simulate key aspects of AD. However, they also carry an insertional mutation in noncoding sequence of one Zbtb20 allele, a gene involved in neural development. We demonstrate that heterozygous hAPP-J20 mice have reduced Zbtb20 expression in some AD-relevant brain regions, but not others, and that Zbtb20 levels are higher in hAPP-J20 mice than heterozygous Zbtb20 knock-out (Zbtb20+/-) mice. Whereas hAPP-J20 mice have premature mortality, severe deficits in learning and memory, other behavioral alterations, and prominent nonconvulsive epileptiform activity, Zbtb20+/- mice do not. Thus, the insertional mutation in hAPP-J20 mice does not ablate the affected Zbtb20 allele and is unlikely to account for the AD-like phenotype of this model.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Ratones Transgénicos , Fenotipo , Factores de Transcripción
8.
Science ; 371(6532)2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33632820

RESUMEN

Several lines of evidence implicate the protein tau in the pathogenesis of multiple brain disorders, including Alzheimer's disease, other neurodegenerative conditions, autism, and epilepsy. Tau is abundant in neurons and interacts with microtubules, but its main functions in the brain remain to be defined. These functions may involve the regulation of signaling pathways relevant to diverse biological processes. Informative disease models have revealed a plethora of abnormal tau species and mechanisms that might contribute to neuronal dysfunction and loss, but the relative importance of their respective contributions is uncertain. This knowledge gap poses major obstacles to the development of truly impactful therapeutic strategies. The current expansion and intensification of efforts to translate mechanistic insights into tau-related therapeutics should address this issue and could deliver better treatments for a host of devastating conditions.


Asunto(s)
Encefalopatías/metabolismo , Encefalopatías/terapia , Tauopatías/metabolismo , Tauopatías/terapia , Proteínas tau/metabolismo , Animales , Encéfalo/fisiología , Humanos , Microtúbulos/metabolismo , Neuronas/fisiología , Proteínas tau/química , Proteínas tau/genética
9.
Mol Neurodegener ; 15(1): 53, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32921309

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is the most frequent and costly neurodegenerative disorder. Although diverse lines of evidence suggest that the amyloid precursor protein (APP) is involved in its causation, the precise mechanisms remain unknown and no treatments are available to prevent or halt the disease. A favorite hypothesis has been that APP contributes to AD pathogenesis through the cerebral accumulation of the amyloid-ß peptide (Aß), which is derived from APP through sequential proteolytic cleavage by BACE1 and γ-secretase. However, inhibitors of these enzymes have failed in clinical trials despite clear evidence for target engagement. METHODS: To further elucidate the roles of APP and its metabolites in AD pathogenesis, we analyzed transgenic mice overexpressing wildtype human APP (hAPP) or hAPP carrying mutations that cause autosomal dominant familial AD (FAD), as well as App knock-in mice that do not overexpress hAPP but have two mouse App alleles with FAD mutations and a humanized Aß sequence. RESULTS: Although these lines of mice had marked differences in cortical and hippocampal levels of APP, APP C-terminal fragments, soluble Aß, Aß oligomers and age-dependent amyloid deposition, they all developed cognitive deficits as well as non-convulsive epileptiform activity, a type of network dysfunction that also occurs in a substantive proportion of humans with AD. Pharmacological inhibition of BACE1 effectively reduced levels of amyloidogenic APP C-terminal fragments (C99), soluble Aß, Aß oligomers, and amyloid deposits in transgenic mice expressing FAD-mutant hAPP, but did not improve their network dysfunction and behavioral abnormalities, even when initiated at early stages before amyloid deposits were detectable. CONCLUSIONS: hAPP transgenic and App knock-in mice develop similar pathophysiological alterations. APP and its metabolites contribute to AD-related functional alterations through complex combinatorial mechanisms that may be difficult to block with BACE inhibitors and, possibly, also with other anti-Aß treatments.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Conducta Animal/fisiología , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Red Nerviosa/metabolismo , Red Nerviosa/patología
10.
Sci Transl Med ; 12(558)2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32848093

RESUMEN

A major sex difference in Alzheimer's disease (AD) is that men with the disease die earlier than do women. In aging and preclinical AD, men also show more cognitive deficits. Here, we show that the X chromosome affects AD-related vulnerability in mice expressing the human amyloid precursor protein (hAPP), a model of AD. XY-hAPP mice genetically modified to develop testicles or ovaries showed worse mortality and deficits than did XX-hAPP mice with either gonad, indicating a sex chromosome effect. To dissect whether the absence of a second X chromosome or the presence of a Y chromosome conferred a disadvantage on male mice, we varied sex chromosome dosage. With or without a Y chromosome, hAPP mice with one X chromosome showed worse mortality and deficits than did those with two X chromosomes. Thus, adding a second X chromosome conferred resilience to XY males and XO females. In addition, the Y chromosome, its sex-determining region Y gene (Sry), or testicular development modified mortality in hAPP mice with one X chromosome such that XY males with testicles survived longer than did XY or XO females with ovaries. Furthermore, a second X chromosome conferred resilience potentially through the candidate gene Kdm6a, which does not undergo X-linked inactivation. In humans, genetic variation in KDM6A was linked to higher brain expression and associated with less cognitive decline in aging and preclinical AD, suggesting its relevance to human brain health. Our study suggests a potential role for sex chromosomes in modulating disease vulnerability related to AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/genética , Animales , Femenino , Masculino , Ratones , Caracteres Sexuales , Testículo , Cromosoma X/genética , Cromosoma Y
11.
Elife ; 92020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32831170

RESUMEN

We tested the proposal that the C-terminal domain (CTD) of the AMPAR subunit GluA1 is required for LTP. We found that a knock-in mouse lacking the CTD of GluA1 expresses normal LTP and spatial memory, assayed by the Morris water maze. Our results support a model in which LTP generates synaptic slots, which capture passively diffusing AMPARs.


Asunto(s)
Potenciación a Largo Plazo , Receptores AMPA , Animales , Línea Celular , Femenino , Técnicas de Sustitución del Gen , Hipocampo/metabolismo , Humanos , Potenciación a Largo Plazo/genética , Potenciación a Largo Plazo/fisiología , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Dominios Proteicos/genética , Receptores AMPA/química , Receptores AMPA/genética , Receptores AMPA/metabolismo , Memoria Espacial/fisiología
12.
Neuron ; 106(3): 421-437.e11, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32126198

RESUMEN

Autism is characterized by repetitive behaviors, impaired social interactions, and communication deficits. It is a prevalent neurodevelopmental disorder, and available treatments offer little benefit. Here, we show that genetically reducing the protein tau prevents behavioral signs of autism in two mouse models simulating distinct causes of this condition. Similar to a proportion of people with autism, both models have epilepsy, abnormally enlarged brains, and overactivation of the phosphatidylinositol 3-kinase (PI3K)/Akt (protein kinase B)/ mammalian target of rapamycin (mTOR) signaling pathway. All of these abnormalities were prevented or markedly diminished by partial or complete genetic removal of tau. We identify disinhibition of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a negative PI3K regulator that tau controls, as a plausible mechanism and demonstrate that tau interacts with PTEN via tau's proline-rich domain. Our findings suggest an enabling role of tau in the pathogenesis of autism and identify tau reduction as a potential therapeutic strategy for some of the disorders that cause this condition.


Asunto(s)
Trastorno Autístico/genética , Megalencefalia/genética , Proteínas tau/genética , Animales , Trastorno Autístico/metabolismo , Sitios de Unión , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Células HEK293 , Humanos , Megalencefalia/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos , Canal de Sodio Activado por Voltaje NAV1.1/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fosfohidrolasa PTEN/química , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Dominios Proteicos Ricos en Prolina , Unión Proteica , Ratas , Ratas Sprague-Dawley , Proteínas tau/metabolismo
13.
Acta Neuropathol Commun ; 7(1): 77, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-31101070

RESUMEN

The maintenance of genomic integrity is essential for normal cellular functions. However, it is difficult to maintain over a lifetime in postmitotic cells such as neurons, in which DNA damage increases with age and is exacerbated by multiple neurological disorders, including Alzheimer's disease (AD). Here we used immunohistochemical staining to detect DNA double strand breaks (DSBs), the most severe form of DNA damage, in postmortem brain tissues from patients with mild cognitive impairment (MCI) or AD and from cognitively unimpaired controls. Immunostaining for γH2AX-a post-translational histone modification that is widely used as a marker of DSBs-revealed increased proportions of γH2AX-labeled neurons and astrocytes in the hippocampus and frontal cortex of MCI and AD patients, as compared to age-matched controls. In contrast to the focal pattern associated with DSBs, some neurons and glia in humans and mice showed diffuse pan-nuclear patterns of γH2AX immunoreactivity. In mouse brains and primary neuronal cultures, such pan-nuclear γH2AX labeling could be elicited by increasing neuronal activity. To assess whether pan-nuclear γH2AX represents DSBs, we used a recently developed technology, DNA damage in situ ligation followed by proximity ligation assay, to detect close associations between γH2AX sites and free DSB ends. This assay revealed no evidence of DSBs in neurons or astrocytes with prominent pan-nuclear γH2AX labeling. These findings suggest that focal, but not pan-nuclear, increases in γH2AX immunoreactivity are associated with DSBs in brain tissue and that these distinct patterns of γH2AX formation may have different causes and consequences. We conclude that AD is associated with an accumulation of DSBs in vulnerable neuronal and glial cell populations from early stages onward. Because of the severe adverse effects this type of DNA damage can have on gene expression, chromatin stability and cellular functions, DSBs could be an important causal driver of neurodegeneration and cognitive decline in this disease.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Astrocitos/patología , Roturas del ADN de Doble Cadena , Lóbulo Frontal/patología , Hipocampo/patología , Neuronas/patología , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Animales , Astrocitos/metabolismo , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Femenino , Lóbulo Frontal/metabolismo , Hipocampo/metabolismo , Histonas/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Neuronas/metabolismo
14.
Neuron ; 101(6): 1099-1108.e6, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30737131

RESUMEN

Cerebrovascular alterations are a key feature of Alzheimer's disease (AD) pathogenesis. However, whether vascular damage contributes to synaptic dysfunction and how it synergizes with amyloid pathology to cause neuroinflammation and cognitive decline remain poorly understood. Here, we show that the blood protein fibrinogen induces spine elimination and promotes cognitive deficits mediated by CD11b-CD18 microglia activation. 3D molecular labeling in cleared mouse and human AD brains combined with repetitive in vivo two-photon imaging showed focal fibrinogen deposits associated with loss of dendritic spines independent of amyloid plaques. Fibrinogen-induced spine elimination was prevented by inhibiting reactive oxygen species (ROS) generation or genetic ablation of CD11b. Genetic elimination of the fibrinogen binding motif to CD11b reduced neuroinflammation, synaptic deficits, and cognitive decline in the 5XFAD mouse model of AD. Thus, fibrinogen-induced spine elimination and cognitive decline via CD11b link cerebrovascular damage with immune-mediated neurodegeneration and may have important implications in AD and related conditions.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Disfunción Cognitiva/metabolismo , Espinas Dendríticas/metabolismo , Fibrinógeno/metabolismo , Microglía/metabolismo , Placa Amiloide/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Encéfalo/fisiología , Encéfalo/fisiopatología , Antígeno CD11b/metabolismo , Antígenos CD18/metabolismo , Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Espinas Dendríticas/patología , Modelos Animales de Enfermedad , Humanos , Imagenología Tridimensional , Ratones , Placa Amiloide/patología , Especies Reactivas de Oxígeno/metabolismo
15.
Proc Natl Acad Sci U S A ; 115(48): E11388-E11396, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30413620

RESUMEN

Located within the brain's ventricles, the choroid plexus produces cerebrospinal fluid and forms an important barrier between the central nervous system and the blood. For unknown reasons, the choroid plexus produces high levels of the protein klotho. Here, we show that these levels naturally decline with aging. Depleting klotho selectively from the choroid plexus via targeted viral vector-induced knockout in Klothoflox/flox mice increased the expression of multiple proinflammatory factors and triggered macrophage infiltration of this structure in young mice, simulating changes in unmanipulated old mice. Wild-type mice infected with the same Cre recombinase-expressing virus did not show such alterations. Experimental depletion of klotho from the choroid plexus enhanced microglial activation in the hippocampus after peripheral injection of mice with lipopolysaccharide. In primary cultures, klotho suppressed thioredoxin-interacting protein-dependent activation of the NLRP3 inflammasome in macrophages by enhancing fibroblast growth factor 23 signaling. We conclude that klotho functions as a gatekeeper at the interface between the brain and immune system in the choroid plexus. Klotho depletion in aging or disease may weaken this barrier and promote immune-mediated neuropathogenesis.


Asunto(s)
Envejecimiento/inmunología , Encéfalo/inmunología , Plexo Coroideo/inmunología , Glucuronidasa/inmunología , Envejecimiento/genética , Animales , Femenino , Glucuronidasa/genética , Hipocampo/inmunología , Humanos , Proteínas Klotho , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología
16.
Nat Immunol ; 19(11): 1212-1223, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30323343

RESUMEN

Activation of innate immunity and deposition of blood-derived fibrin in the central nervous system (CNS) occur in autoimmune and neurodegenerative diseases, including multiple sclerosis (MS) and Alzheimer's disease (AD). However, the mechanisms that link disruption of the blood-brain barrier (BBB) to neurodegeneration are poorly understood, and exploration of fibrin as a therapeutic target has been limited by its beneficial clotting functions. Here we report the generation of monoclonal antibody 5B8, targeted against the cryptic fibrin epitope γ377-395, to selectively inhibit fibrin-induced inflammation and oxidative stress without interfering with clotting. 5B8 suppressed fibrin-induced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation and the expression of proinflammatory genes. In animal models of MS and AD, 5B8 entered the CNS and bound to parenchymal fibrin, and its therapeutic administration reduced the activation of innate immunity and neurodegeneration. Thus, fibrin-targeting immunotherapy inhibited autoimmunity- and amyloid-driven neurotoxicity and might have clinical benefit without globally suppressing innate immunity or interfering with coagulation in diverse neurological diseases.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Fibrinógeno/antagonistas & inhibidores , Enfermedades Neurodegenerativas/inmunología , Animales , Epítopos , Humanos , Inflamación/inmunología , Ratones , Ratas
17.
Curr Biol ; 28(17): R909-R914, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30205056

RESUMEN

Much has been written about the validity of mice as a preclinical model for brain disorders. Critics cite numerous examples of apparently effective treatments in mouse models that failed in human clinical trials, raising the possibility that the two species' neurobiological differences could explain the high translational failure rate in psychiatry and neurology (neuropsychiatry). However, every stage of translation is plagued by complex problems unrelated to neurobiological conservation. Therefore, although these case studies are intriguing, they cannot alone determine whether these differences observed account for translation failures. Our analysis of the literature indicates that most neuropsychiatric treatments used in humans are at least partially effective in mouse models, suggesting that neurobiological differences are unlikely to be the main cause of neuropsychiatric translation failures.


Asunto(s)
Modelos Animales de Enfermedad , Desarrollo de Medicamentos/estadística & datos numéricos , Trastornos Mentales/tratamiento farmacológico , Animales , Humanos , Ratones , Neuropsiquiatría
18.
Cell ; 174(3): 505-520, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30053424

RESUMEN

Although gene discovery in neuropsychiatric disorders, including autism spectrum disorder, intellectual disability, epilepsy, schizophrenia, and Tourette disorder, has accelerated, resulting in a large number of molecular clues, it has proven difficult to generate specific hypotheses without the corresponding datasets at the protein complex and functional pathway level. Here, we describe one path forward-an initiative aimed at mapping the physical and genetic interaction networks of these conditions and then using these maps to connect the genomic data to neurobiology and, ultimately, the clinic. These efforts will include a team of geneticists, structural biologists, neurobiologists, systems biologists, and clinicians, leveraging a wide array of experimental approaches and creating a collaborative infrastructure necessary for long-term investigation. This initiative will ultimately intersect with parallel studies that focus on other diseases, as there is a significant overlap with genes implicated in cancer, infectious disease, and congenital heart defects.


Asunto(s)
Mapeo Cromosómico/métodos , Trastornos del Neurodesarrollo/genética , Biología de Sistemas/métodos , Redes Reguladoras de Genes/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Humanos , Neurobiología/métodos , Neuropsiquiatría
19.
Neurobiol Dis ; 117: 181-188, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29859869

RESUMEN

Neural network dysfunction may contribute to functional decline and disease progression in neurodegenerative disorders. Diverse lines of evidence suggest that neuronal accumulation of tau promotes network dysfunction and cognitive decline. The A152T-variant of human tau (hTau-A152T) increases the risk of Alzheimer's disease (AD) and several other tauopathies. When overexpressed in neurons of transgenic mice, it causes age-dependent neuronal loss and cognitive decline, as well as non-convulsive epileptic activity, which is also seen in patients with AD. Using intracranial EEG recordings with electrodes implanted over the parietal cortex, we demonstrate that hTau-A152T increases the power of brain oscillations in the 0.5-6 Hz range more than wildtype human tau in transgenic lines with comparable levels of human tau protein in brain, and that genetic ablation of endogenous tau in Mapt-/- mice decreases the power of these oscillations as compared to wildtype controls. Suppression of hTau-A152T production in doxycycline-regulatable transgenic mice reversed their abnormal network activity. Treatment of hTau-A152T mice with the antiepileptic drug levetiracetam also rapidly and persistently reversed their brain dysrhythmia and network hypersynchrony. These findings suggest that both the level and the sequence of tau modulate the power of specific brain oscillations. The potential of EEG spectral changes as a biomarker deserves to be explored in clinical trials of tau-lowering therapeutics. Our results also suggest that levetiracetam treatment is able to counteract tau-dependent neural network dysfunction. Tau reduction and levetiracetam treatment may be of benefit in AD and other conditions associated with brain dysrhythmias and network hypersynchrony.


Asunto(s)
Encéfalo/metabolismo , Ritmo Delta/fisiología , Neuronas/metabolismo , Ritmo Teta/fisiología , Proteínas tau/metabolismo , Animales , Encéfalo/patología , Ondas Encefálicas/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/patología
20.
Neuron ; 98(1): 75-89.e5, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29551491

RESUMEN

Inhibitory interneurons regulate the oscillatory rhythms and network synchrony that are required for cognitive functions and disrupted in Alzheimer's disease (AD). Network dysrhythmias in AD and multiple neuropsychiatric disorders are associated with hypofunction of Nav1.1, a voltage-gated sodium channel subunit predominantly expressed in interneurons. We show that Nav1.1-overexpressing, but not wild-type, interneuron transplants derived from the embryonic medial ganglionic eminence (MGE) enhance behavior-dependent gamma oscillatory activity, reduce network hypersynchrony, and improve cognitive functions in human amyloid precursor protein (hAPP)-transgenic mice, which simulate key aspects of AD. Increased Nav1.1 levels accelerated action potential kinetics of transplanted fast-spiking and non-fast-spiking interneurons. Nav1.1-deficient interneuron transplants were sufficient to cause behavioral abnormalities in wild-type mice. We conclude that the efficacy of interneuron transplantation and the function of transplanted cells in an AD-relevant context depend on their Nav1.1 levels. Disease-specific molecular optimization of cell transplants may be required to ensure therapeutic benefits in different conditions.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Ondas Encefálicas/fisiología , Encéfalo/metabolismo , Cognición/fisiología , Interneuronas/metabolismo , Canal de Sodio Activado por Voltaje NAV1.1/biosíntesis , Potenciales de Acción/fisiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Animales , Encéfalo/cirugía , Modelos Animales de Enfermedad , Expresión Génica , Hipocampo/metabolismo , Hipocampo/cirugía , Humanos , Interneuronas/trasplante , Locomoción/fisiología , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...