Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38345841

RESUMEN

CLC-2 is a voltage-gated chloride channel that contributes to electrical excitability and ion homeostasis in many different tissues. Among the nine mammalian CLC homologs, CLC-2 is uniquely activated by hyperpolarization, rather than depolarization, of the plasma membrane. The molecular basis for the divergence in polarity of voltage gating among closely related homologs has been a long-standing mystery, in part because few CLC channel structures are available. Here, we report cryoEM structures of human CLC-2 at 2.46 - 2.76 Å, in the presence and absence of the selective inhibitor AK-42. AK-42 binds within the extracellular entryway of the Cl--permeation pathway, occupying a pocket previously proposed through computational docking studies. In the apo structure, we observed two distinct conformations involving rotation of one of the cytoplasmic C-terminal domains (CTDs). In the absence of CTD rotation, an intracellular N-terminal 15-residue hairpin peptide nestles against the TM domain to physically occlude the Cl--permeation pathway. This peptide is highly conserved among species variants of CLC-2 but is not present in other CLC homologs. Previous studies suggested that the N-terminal domain of CLC-2 influences channel properties via a "ball-and-chain" gating mechanism, but conflicting data cast doubt on such a mechanism, and thus the structure of the N-terminal domain and its interaction with the channel has been uncertain. Through electrophysiological studies of an N-terminal deletion mutant lacking the 15-residue hairpin peptide, we support a model in which the N-terminal hairpin of CLC-2 stabilizes a closed state of the channel by blocking the cytoplasmic Cl--permeation pathway.


Asunto(s)
Canales de Cloruro CLC-2 , Animales , Humanos , Fenómenos Biofísicos , Canales de Cloruro CLC-2/química , Electrofisiología , Mamíferos/metabolismo , Péptidos/metabolismo , Microscopía por Crioelectrón
2.
bioRxiv ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37645939

RESUMEN

CLC-2 is a voltage-gated chloride channel that contributes to electrical excitability and ion homeostasis in many different mammalian tissues and cell types. Among the nine mammalian CLC homologs, CLC-2 is uniquely activated by hyperpolarization, rather than depolarization, of the plasma membrane. The molecular basis for the divergence in polarity of voltage gating mechanisms among closely related CLC homologs has been a long-standing mystery, in part because few CLC channel structures are available, and those that exist exhibit high conformational similarity. Here, we report cryoEM structures of human CLC-2 at 2.46 - 2.76 Å, in the presence and absence of the potent and selective inhibitor AK-42. AK-42 binds within the extracellular entryway of the Cl--permeation pathway, occupying a pocket previously proposed through computational docking studies. In the apo structure, we observed two distinct apo conformations of CLC-2 involving rotation of one of the cytoplasmic C-terminal domains (CTDs). In the absence of CTD rotation, an intracellular N-terminal 15-residue hairpin peptide nestles against the TM domain to physically occlude the Cl--permeation pathway from the intracellular side. This peptide is highly conserved among species variants of CLC-2 but is not present in any other CLC homologs. Previous studies suggested that the N-terminal domain of CLC-2 influences channel properties via a "ball-and-chain" gating mechanism, but conflicting data cast doubt on such a mechanism, and thus the structure of the N-terminal domain and its interaction with the channel has been uncertain. Through electrophysiological studies of an N-terminal deletion mutant lacking the 15-residue hairpin peptide, we show that loss of this short sequence increases the magnitude and decreases the rectification of CLC-2 currents expressed in mammalian cells. Furthermore, we show that with repetitive hyperpolarization WT CLC-2 currents increase in resemblance to the hairpin-deleted CLC-2 currents. These functional results combined with our structural data support a model in which the N-terminal hairpin of CLC-2 stabilizes a closed state of the channel by blocking the cytoplasmic Cl--permeation pathway.

3.
Bioorg Med Chem ; 63: 116743, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35436748

RESUMEN

The voltage-gated sodium channel Nav1.7 is an attractive target for the treatment of pain based on the high level of target validation with genetic evidence linking Nav1.7 to pain in humans. Our effort to identify selective, CNS-penetrant Nav1.7 blockers with oral activity, improved selectivity, good drug-like properties, and safety led to the discovery of 2-substituted quinolines and quinolones as potent small molecule Nav1.7 blockers. The design of these molecules focused on maintaining potency at Nav1.7, improving selectivity over the hERG channel, and overcoming phospholipidosis observed with the initial leads. The structure-activity relationship (SAR) studies leading to the discovery of (R)-(3-fluoropyrrolidin-1-yl)(6-((5-(trifluoromethyl)pyridin-2-yl)oxy)quinolin-2-yl)methanone (ABBV-318) are described herein. ABBV-318 displayed robust in vivo efficacy in both inflammatory and neuropathic rodent models of pain. ABBV-318 also inhibited Nav1.8, another sodium channel isoform that is an active target for the development of new pain treatments.


Asunto(s)
Dolor , Canales de Sodio , Humanos , Dolor/tratamiento farmacológico , Manejo del Dolor , Isoformas de Proteínas , Canales de Sodio/metabolismo , Relación Estructura-Actividad
4.
J Pharmacol Exp Ther ; 372(1): 107-118, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31732698

RESUMEN

Cystic fibrosis (CF) is the most common monogenic autosomal recessive disease in Caucasians caused by pathogenic mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene (CFTR). Significant small molecule therapeutic advances over the past two decades have been made to target the defective CFTR protein and enhance its function. To address the most prevalent defect of the defective CFTR protein (i.e., F508del mutation) in CF, two biomolecular activities are required, namely, correctors to increase the amount of properly folded F508delCFTR levels at the cell surface and potentiators to allow the effective opening, i.e., function of the F508delCFTR channel. Combined, these activities enhance chloride ion transport yielding improved hydration of the lung surface and subsequent restoration of mucociliary clearance. To enhance clinical benefits to CF patients, a complementary triple combination therapy consisting of two corrector molecules, type 1 (C1) and type 2, with additive mechanisms along with a potentiator are being investigated in the clinic for maximum restoration of mutated CFTR function. We report the identification and in vitro biologic characterization of ABBV-2222/GLPG2222 (4-[(2R,4R)-4-({[1-(2,2-difluoro-1,3-benzodioxol-5-yl)cyclopropyl]carbonyl}amino)-7-(difluoromethoxy)-3,4-dihydro-2H-chromen-2-yl]benzoic acid),-a novel, potent, and orally bioavailable C1 corrector developed by AbbVie-Galapagos and currently in clinical trials-which exhibits substantial improvements over the existing C1 correctors. This includes improvements in potency and drug-drug interaction (DDI) compared with 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid (VX-809, Lumacaftor) and improvements in potency and efficacy compared with 1-(2,2-difluoro-1,3-benzodioxol-5-yl)-N-[1-[(2R)-2,3-dihydroxypropyl]-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)indol-5-yl]cyclopropane-1-carboxamide (VX-661, Tezacaftor). ABBV-2222/GLPG2222 exhibits potent in vitro functional activity in primary patient cells harboring F508del/F508del CFTR with an EC50 value <10 nM. SIGNIFICANCE STATEMENT: To address the most prevalent defect of the defective CFTR protein (i.e., F508del mutation) in cystic fibrosis, AbbVie-Galapagos has developed ABBV-2222/GLPG2222, a novel, potent, and orally bioavailable C1 corrector of this protein. ABBV-2222/GLPG2222, which is currently in clinical trials, exhibits potent in vitro functional activity in primary patient cells harboring F508del/F508del CFTR and substantial improvements over the existing C1 correctors.


Asunto(s)
Benzoatos/farmacología , Benzopiranos/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Pliegue de Proteína/efectos de los fármacos , Animales , Sitios de Unión , Membrana Celular/metabolismo , Células Cultivadas , Cloruros/metabolismo , Cricetinae , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Células HEK293 , Humanos , Moduladores del Transporte de Membrana/farmacología , Unión Proteica , Transporte de Proteínas/efectos de los fármacos , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo
5.
J Med Chem ; 59(10): 4926-47, 2016 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-27077528

RESUMEN

Transient receptor potential vanilloid 3 (TRPV3) is a Ca(2+)- and Na(+)-permeable channel with a unique expression pattern. TRPV3 is found in both neuronal and non-neuronal tissues, including dorsal root ganglia, spinal cord, and keratinocytes. Recent studies suggest that TRPV3 may play a role in inflammation, pain sensation, and skin disorders. TRPV3 studies have been challenging, in part due to a lack of research tools such as selective antagonists. Herein, we provide the first detailed report on the development of potent and selective TRPV3 antagonists featuring a pyridinyl methanol moiety. Systematic optimization of pharmacological, physicochemical, and ADME properties of original lead 5a resulted in identification of a novel and selective TRPV3 antagonist 74a, which demonstrated a favorable preclinical profile in two different models of neuropathic pain as well as in a reserpine model of central pain.


Asunto(s)
Ciclobutanos/síntesis química , Ciclobutanos/farmacología , Piridinas/síntesis química , Piridinas/farmacología , Canales Catiónicos TRPV/antagonistas & inhibidores , Calcio/metabolismo , Ciclobutanos/química , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Conformación Molecular , Piridinas/química , Relación Estructura-Actividad , Canales Catiónicos TRPV/metabolismo
6.
J Med Chem ; 59(7): 3373-91, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-27015369

RESUMEN

The genetic validation for the role of the Nav1.7 voltage-gated ion channel in pain signaling pathways makes it an appealing target for the potential development of new pain drugs. The utility of nonselective Nav blockers is often limited due to adverse cardiovascular and CNS side effects. We sought more selective Nav1.7 blockers with oral activity, improved selectivity, and good druglike properties. The work described herein focused on a series of 3- and 4-substituted indazoles. SAR studies of 3-substituted indazoles yielded analog 7 which demonstrated good in vitro and in vivo activity but poor rat pharmacokinetics. Optimization of 4-substituted indazoles yielded two compounds, 27 and 48, that exhibited good in vitro and in vivo activity with improved rat pharmacokinetic profiles. Both 27 and 48 demonstrated robust activity in the acute rat monoiodoacetate-induced osteoarthritis model of pain, and subchronic dosing of 48 showed a shift to a lower EC50 over 7 days.


Asunto(s)
Analgésicos/farmacología , Imidazolidinas/farmacología , Indazoles/farmacología , Canal de Sodio Activado por Voltaje NAV1.7/química , Osteoartritis/tratamiento farmacológico , Dolor/tratamiento farmacológico , Pirroles/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Analgésicos/química , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Electrofisiología , Potenciales Evocados , Imidazolidinas/química , Indazoles/química , Ácido Yodoacético/toxicidad , Estructura Molecular , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Osteoartritis/inducido químicamente , Osteoartritis/metabolismo , Dolor/metabolismo , Dolor/patología , Dimensión del Dolor , Pirroles/química , Ratas , Bloqueadores de los Canales de Sodio/química , Relación Estructura-Actividad
7.
J Med Chem ; 57(17): 7412-24, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25100568

RESUMEN

The synthesis and characterization of a series of selective, orally bioavailable 1-(chroman-4-yl)urea TRPV1 antagonists is described. Whereas first-generation antagonists that inhibit all modes of TRPV1 activation can elicit hyperthermia, the compounds disclosed herein do not elevate core body temperature in preclinical models and only partially block acid activation of TRPV1. Advancing the SAR of this series led to the eventual identification of (R)-1-(7-chloro-2,2-bis(fluoromethyl)chroman-4-yl)-3-(3-methylisoquinolin-5-yl)urea (A-1165442, 52), an analogue that possesses excellent pharmacological selectivity, has a favorable pharmacokinetic profile, and demonstrates good efficacy against osteoarthritis pain in rodents.


Asunto(s)
Analgésicos/química , Temperatura Corporal/efectos de los fármacos , Canales Catiónicos TRPV/antagonistas & inhibidores , Urea/química , Analgésicos/farmacocinética , Analgésicos/farmacología , Animales , Área Bajo la Curva , Temperatura Corporal/fisiología , Perros , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Células HEK293 , Humanos , Isoquinolinas/química , Isoquinolinas/farmacocinética , Isoquinolinas/farmacología , Tasa de Depuración Metabólica , Modelos Químicos , Estructura Molecular , Ratas , Relación Estructura-Actividad , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/metabolismo , Urea/análogos & derivados , Urea/farmacocinética , Urea/farmacología
8.
J Pain ; 15(4): 387.e1-14, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24374196

RESUMEN

UNLABELLED: Voltage-gated Ca(2+) channels play an important role in nociceptive transmission. There is significant evidence supporting a role for N-, T- and P/Q-type Ca(2+) channels in chronic pain. Here, we report that A-1264087, a structurally novel state-dependent blocker, inhibits each of these human Ca(2+) channels with similar potency (IC50 = 1-2 µM). A-1264087 was also shown to inhibit the release of the pronociceptive calcitonin gene-related peptide from rat dorsal root ganglion neurons. Oral administration of A-1264087 produces robust antinociceptive efficacy in monoiodoacetate-induced osteoarthritic, complete Freund adjuvant-induced inflammatory, and chronic constrictive injury of sciatic nerve-induced, neuropathic pain models with ED50 values of 3.0, 5.7, and 7.8 mg/kg (95% confidence interval = 2.2-3.5, 3.7-10, and 5.5-12.8 mg/kg), respectively. Further analysis revealed that A-1264087 also suppressed nociceptive-induced p38 and extracellular signal-regulated kinase 1/2 phosphorylation, which are biochemical markers of engagement of pain circuitry in chronic pain states. Additionally, A-1264087 inhibited both spontaneous and evoked neuronal activity in the spinal cord dorsal horn in complete Freund adjuvant-inflamed rats, providing a neurophysiological basis for the observed antihyperalgesia. A-1264087 produced no alteration of body temperature or motor coordination and no learning impairment at therapeutic plasma concentrations. PERSPECTIVE: The present results demonstrate that the neuronal Ca(2+) channel blocker A-1264087 exhibits broad-spectrum efficacy through engagement of nociceptive signaling pathways in preclinical pain models in the absence of effects on psychomotor and cognitive function.


Asunto(s)
Analgésicos/farmacología , Compuestos de Azabiciclo/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Leucina/análogos & derivados , Neuronas/metabolismo , Nocicepción/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Inmunohistoquímica , Leucina/farmacología , Masculino , Neuronas/efectos de los fármacos , Dolor/metabolismo , Técnicas de Placa-Clamp , Ratas Sprague-Dawley , Médula Espinal/metabolismo
9.
Assay Drug Dev Technol ; 11(1): 17-24, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23002961

RESUMEN

The KCNQ2/3 channel has emerged as a drug target for a number of neurological disorders including pain and epilepsy. Known KCNQ2/3 openers have effects on two distinct biophysical properties of the channel: (1) a hyperpolarizing shift in the voltage dependence of channel activation (V(1/2)), and (2) an increase in channel open probability or peak whole-cell current. The current high-throughput screening assays for KCNQ2/3 openers measure changes of channel activity at sub-peak conductances and the output measure is a combination of effects on V(1/2) shift and peak current. Here, we describe a medium-throughput electrophysiological assay for screening KCNQ2/3 openers using the QPatch HT platform. We employed a double-pulse protocol that measures the shift in V(1/2) and the change in current amplitude at peak conductance voltage. Retigabine along with novel KCNQ2/3 openers were evaluated in this assay. Three classes of KCNQ2/3 openers were identified based on the hyperpolarizing shift in V(1/2) and the change in peak current. All three classes of compounds caused a hyperpolarizing shift in V(1/2), but they were differentiated by their respective effects on peak current amplitude (increase, decrease, or only modestly affecting peak current amplitude). KCNQ2/3 blockers were also identified with this assay. These compounds blocked currents without affecting voltage-dependent activation. In summary, we have developed a medium-throughput assay that can reliably detect changes in the biophysical properties of the KCNQ2/3 channel, V(1/2), and peak current amplitude, and therefore may serve as a reliable assay to evaluate KCNQ2/3 openers and blockers.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/normas , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/metabolismo , Moduladores del Transporte de Membrana/metabolismo , Técnicas de Placa-Clamp/normas , Carbamatos/química , Carbamatos/metabolismo , Fenómenos Electrofisiológicos/fisiología , Células HEK293 , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Canal de Potasio KCNQ2/clasificación , Canal de Potasio KCNQ3/clasificación , Moduladores del Transporte de Membrana/química , Técnicas de Placa-Clamp/métodos , Fenilendiaminas/química , Fenilendiaminas/metabolismo
10.
J Pharmacol Exp Ther ; 342(2): 416-28, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22570364

RESUMEN

The transient receptor potential vanilloid-1 (TRPV1) channel is involved in the development and maintenance of pain and participates in the regulation of temperature. The channel is activated by diverse agents, including capsaicin, noxious heat (≥ 43°C), acidic pH (< 6), and endogenous lipids including N-arachidonoyl dopamine (NADA). Antagonists that block all modes of TRPV1 activation elicit hyperthermia. To identify efficacious TRPV1 antagonists that do not affect temperature antagonists representing multiple TRPV1 pharmacophores were evaluated at recombinant rat and human TRPV1 channels with Ca(2+) flux assays, and two classes of antagonists were identified based on their differential ability to inhibit acid activation. Although both classes of antagonists completely blocked capsaicin- and NADA-induced activation of TRPV1, select compounds only partially inhibited activation of the channel by protons. Electrophysiology and calcitonin gene-related peptide release studies confirmed the differential pharmacology of these antagonists at native TRPV1 channels in the rat. Comparison of the in vitro pharmacological properties of these TRPV1 antagonists with their in vivo effects on core body temperature confirms and expands earlier observations that acid-sparing TRPV1 antagonists do not significantly increase core body temperature. Although both classes of compounds elicit equivalent analgesia in a rat model of knee joint pain, the acid-sparing antagonist tested is not effective in a mouse model of bone cancer pain.


Asunto(s)
Temperatura Corporal/efectos de los fármacos , Canales Catiónicos TRPV/antagonistas & inhibidores , Analgésicos/farmacología , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Calcio/metabolismo , Capsaicina/farmacología , Línea Celular Transformada , Fiebre/tratamiento farmacológico , Fiebre/fisiopatología , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C3H , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Dolor/tratamiento farmacológico , Dolor/metabolismo , Dolor/fisiopatología , Protones , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/metabolismo , Canales Catiónicos TRPV/metabolismo
11.
Biochem Pharmacol ; 83(3): 406-18, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22153861

RESUMEN

Blockade of voltage-gated Ca²âº channels on sensory nerves attenuates neurotransmitter release and membrane hyperexcitability associated with chronic pain states. Identification of small molecule Ca²âº channel blockers that produce significant antinociception in the absence of deleterious hemodynamic effects has been challenging. In this report, two novel structurally related compounds, A-686085 and A-1048400, were identified that potently block N-type (IC50=0.8 µM and 1.4 µM, respectively) and T-type (IC50=4.6 µM and 1.2 µM, respectively) Ca²âº channels in FLIPR based Ca²âº flux assays. A-686085 also potently blocked L-type Ca²âº channels (EC50=0.6 µM), however, A-1048400 was much less active in blocking this channel (EC50=28 µM). Both compounds dose-dependently reversed tactile allodynia in a model of capsaicin-induced secondary hypersensitivity with similar potencies (EC50=300-365 ng/ml). However, A-686085 produced dose-related decreases in mean arterial pressure at antinociceptive plasma concentrations in the rat, while A-1048400 did not significantly alter hemodynamic function at supra-efficacious plasma concentrations. Electrophysiological studies demonstrated that A-1048400 blocks native N- and T-type Ca²âº currents in rat dorsal root ganglion neurons (IC50=3.0 µM and 1.6 µM, respectively) in a voltage-dependent fashion. In other experimental pain models, A-1048400 dose-dependently attenuated nociceptive, neuropathic and inflammatory pain at doses that did not alter psychomotor or hemodynamic function. The identification of A-1048400 provides further evidence that voltage-dependent inhibition of neuronal Ca²âº channels coupled with pharmacological selectivity vs. L-type Ca²âº channels can provide robust antinociception in the absence of deleterious effects on hemodynamic or psychomotor function.


Asunto(s)
Analgésicos/administración & dosificación , Bloqueadores de los Canales de Calcio/administración & dosificación , Hemodinámica/fisiología , Neuronas/fisiología , Dimensión del Dolor , Piperidonas/administración & dosificación , Piperidonas/química , Administración Oral , Animales , Relación Dosis-Respuesta a Droga , Células HEK293 , Hemodinámica/efectos de los fármacos , Humanos , Masculino , Neuronas/efectos de los fármacos , Dimensión del Dolor/efectos de los fármacos , Dimensión del Dolor/métodos , Ratas , Ratas Sprague-Dawley
12.
J Gen Physiol ; 138(3): 341-52, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21844219

RESUMEN

Transient receptor potential vanilloid 1 (TRPV1) is a ligand-gated nonselective cation channel expressed predominantly in peripheral nociceptors. By detecting and integrating diverse noxious thermal and chemical stimuli, and as a result of its sensitization by inflammatory mediators, the TRPV1 receptor plays a key role in inflammation-induced pain. Activation of TRPV1 leads to a cascade of pro-nociceptive mechanisms, many of which still remain to be identified. Here, we report a novel effect of TRPV1 on the activity of the potassium channel KCNQ2/3, a negative regulator of neuronal excitability. Using ion influx assays, we revealed that TRPV1 activation can abolish KCNQ2/3 activity, but not vice versa, in human embryonic kidney (HEK)293 cells. Electrophysiological studies showed that coexpression of TRPV1 caused a 7.5-mV depolarizing shift in the voltage dependence of KCNQ2/3 activation compared with control expressing KCNQ2/3 alone. Furthermore, activation of TRPV1 by capsaicin led to a 54% reduction of KCNQ2/3-mediated current amplitude and attenuation of KCNQ2/3 activation. The inhibitory effect of TRPV1 appears to depend on Ca(2+) influx through the activated channel followed by Ca(2+)-sensitive depletion of phosphatidylinositol 4,5-bisphosphate and activation of protein phosphatase calcineurin. We also identified physical interactions between TRPV1 and KCNQ2/3 coexpressed in HEK293 cells and in rat dorsal root ganglia neurons. Mutation studies established that this interaction is mediated predominantly by the membrane-spanning regions of the respective proteins and correlates with the shift of KCNQ2/3 activation. Collectively, these data reveal that TRPV1 activation may deprive neurons from inhibitory control mediated by KCNQ2/3. Such neurons may thus have a lower threshold for activation, which may indirectly facilitate TRPV1 in integrating multiple noxious signals and/or in the establishment or maintenance of chronic pain.


Asunto(s)
Canal de Potasio KCNQ2/antagonistas & inhibidores , Canal de Potasio KCNQ3/antagonistas & inhibidores , Canales Catiónicos TRPV/metabolismo , Animales , Células Cultivadas , Células HEK293 , Humanos , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/metabolismo , Masculino , Neuronas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Ratas , Ratas Sprague-Dawley , Transfección
13.
Inflamm Res ; 60(7): 683-93, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21394563

RESUMEN

OBJECTIVE: The aim of this study was to compare a diverse set of peptide and small-molecule calcium channel blockers for inactivated-state block of native and recombinant N-type calcium channels using fluorescence-based and automated patch-clamp electrophysiology assays. METHODS: The pharmacology of calcium channel blockers was determined at N-type channels in IMR-32 cells and in HEK cells overexpressing the inward rectifying K(+) channel Kir2.1. N-type channels were opened by increasing extracellular KCl. In the Kir2.1/N-type cell line the membrane potential could be modulated by adjusting the extracellular KCl, allowing determination of resting and inactivated-state block of N-type calcium channels. The potency and degree of state-dependent inhibition of these blockers were also determined by automated patch-clamp electrophysiology. RESULTS: N-type-mediated calcium influx in IMR-32 cells was determined for a panel of blockers with IC(50) values of 0.001-7 µM and this positively correlated with inactivated-state block of recombinant channels measured using electrophysiology. The potency of several compounds was markedly weaker in the state-dependent fluorescence-based assay compared to the electrophysiology assay, although the degree of state-dependent blockade was comparable. CONCLUSIONS: The present data demonstrate that fluorescence-based assays are suitable for assessing the ability of blockers to selectively interact with the inactivated state of the N-type channel.


Asunto(s)
Bloqueadores de los Canales de Calcio/metabolismo , Canales de Calcio Tipo N/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio Tipo N/farmacología , Línea Celular , Humanos , Activación del Canal Iónico/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp
14.
Pain ; 150(2): 319-326, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20621685

RESUMEN

The TRPV1 antagonist A-995662 demonstrates analgesic efficacy in monoiodoacetate-induced osteoarthritic (OA) pain in rat, and repeated dosing results in increased in vivo potency and a prolonged duration of action. To identify possible mechanism(s) underlying these observations, release of neuropeptides and the neurotransmitter glutamate from isolated spinal cord was measured. In OA rats, basal release of glutamate, bradykinin and calcitonin gene-related peptide (CGRP) was significantly elevated compared to naïve levels, whereas substance P (SP) levels were not changed. In vitro studies showed that capsaicin-evoked TRPV1-dependent CGRP release was 54.7+/-7.7% higher in OA, relative to levels measured for naïve rats, suggesting that TRPV1 activity was higher under OA conditions. The efficacy of A-995662 in OA corresponded with its ability to inhibit glutamate and CGRP release from the spinal cord. A single, fully efficacious dose of A-995662, 100 micromol/kg, reduced spinal glutamate and CGRP release, while a single sub-efficacious dose of A-995662 (25 micromol/kg) was ineffective. Multiple dosing with A-995662 increased the potency and duration of efficacy in OA rats. Changes in efficacy did not correlate with plasma concentrations of A-995662, but were accompanied with reductions in spinal glutamate release. These findings suggest that repeated dosing of TRPV1 antagonists enhances therapeutic potency and duration of action against OA pain, at least in part, by the sustained reduction in release of glutamate and CGRP from the spinal cord.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/metabolismo , Ácido Glutámico/metabolismo , Osteoartritis de la Rodilla/metabolismo , Dolor/metabolismo , Médula Espinal/efectos de los fármacos , Canales Catiónicos TRPV/antagonistas & inhibidores , Tetrahidronaftalenos/farmacología , Análisis de Varianza , Animales , Bradiquinina/metabolismo , Osteoartritis de la Rodilla/inducido químicamente , Dolor/inducido químicamente , Dimensión del Dolor , Ratas , Ratas Sprague-Dawley , Médula Espinal/metabolismo , Sustancia P/metabolismo
15.
Brain Res ; 1329: 55-66, 2010 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-20206612

RESUMEN

Elevated temperature and decreased extracellular pH are hallmarks of inflammatory pain states. Dorsal root ganglia (DRG) neurons are integral in transferring painful stimuli from the periphery to central sites. This study investigated the effect of elevated temperatures on the response of DRG neurons to acute application of acidic solutions. At room temperature (22 degrees C), in response to pH 5.5, there were a variety of kinetic responses consistent with differential expression of TRPV1 and ASIC channels. Increasing the temperature resulted in a significant increase in the peak and total current mediated by TRPV1 in response to an acidic solution. In contrast, the amplitude of a fast activating, rapidly inactivating ASIC1-like current was not affected by increasing the temperature but did result in an increased rate of desensitization that reduced the total current level. This effect on the rate of desensitization was temperature-dependent and could be reversed by returning to 22 degrees C. Likewise, cells exhibiting slowly inactivating ASIC2-like responses also had temperature-dependent increase in the rate of desensitization. The ASIC2-like responses and the TRPV1 responses tended to decrease in amplitude with repetitive application of pH 5.5 even at 22 degrees C. The rate of desensitization of ASIC-like currents activated by less acidic solutions (pH 6.8) was also increased in a temperature-dependent manner. Finally, acidic pH reduced threshold to trigger action potentials, however, the pattern of action potential firing was shaped by the distribution of ASIC and TRPV1 channels. These results indicate that the ambient temperature at which acidosis occurs has a profound effect on the contribution of ASIC and TRPV1 channels, therefore, altering the neuronal excitability.


Asunto(s)
Ganglios Espinales/citología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Canales de Sodio/metabolismo , Canales Catiónicos TRPV/metabolismo , Temperatura , Canales Iónicos Sensibles al Ácido , Factores de Edad , Animales , Animales Recién Nacidos , Células Cultivadas , Electrofisiología , Concentración de Iones de Hidrógeno , Neuronas/metabolismo , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley
16.
Pain ; 142(1-2): 27-35, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19135797

RESUMEN

Transient receptor potential vanilloid type 1 (TRPV1) is a ligand-gated ion channel that functions as an integrator of multiple pain stimuli including heat, acid, capsaicin and a variety of putative endogenous lipid ligands. TRPV1 antagonists have been shown to decrease inflammatory pain in animal models and to produce limited hyperthermia at analgesic doses. Here, we report that ABT-102, which is a potent and selective TRPV1 antagonist, is effective in blocking nociception in rodent models of inflammatory, post-operative, osteoarthritic, and bone cancer pain. ABT-102 decreased both spontaneous pain behaviors and those evoked by thermal and mechanical stimuli in these models. Moreover, we have found that repeated administration of ABT-102 for 5-12 days increased its analgesic activity in models of post-operative, osteoarthritic, and bone cancer pain without an associated accumulation of ABT-102 concentration in plasma or brain. Similar effects were also observed with a structurally distinct TRPV1 antagonist, A-993610. Although a single dose of ABT-102 produced a self-limiting increase in core body temperature that remained in the normal range, the hyperthermic effects of ABT-102 effectively tolerated following twice-daily dosing for 2 days. Therefore, the present data demonstrate that, following repeated administration, the analgesic activity of TRPV1 receptor antagonists is enhanced, while the associated hyperthermic effects are attenuated. The analgesic efficacy of ABT-102 supports its advancement into clinical studies.


Asunto(s)
Analgésicos/administración & dosificación , Fiebre/tratamiento farmacológico , Indazoles/administración & dosificación , Umbral del Dolor/efectos de los fármacos , Dolor/tratamiento farmacológico , Canales Catiónicos TRPV/metabolismo , Urea/análogos & derivados , Animales , Temperatura Corporal/efectos de los fármacos , Neoplasias Óseas/complicaciones , Calcio/metabolismo , Modelos Animales de Enfermedad , Interacciones Farmacológicas , Fiebre/inducido químicamente , Inflamación/complicaciones , Masculino , Ratones , Ratones Endogámicos C3H , Actividad Motora/efectos de los fármacos , Osteoartritis/complicaciones , Dolor/etiología , Dimensión del Dolor , Ratas , Ratas Sprague-Dawley , Canales Catiónicos TRPV/antagonistas & inhibidores , Urea/administración & dosificación
17.
Protein Expr Purif ; 65(1): 38-50, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19121396

RESUMEN

TRPV1 is a ligand-gated cation channel that is involved in acute thermal nociception and neurogenic inflammation. By using the GP67 signal peptide, high levels of full-length human TRPV1 was expressed in High Five insect cells using the baculovirus expression system. The functional activity of the expressed TRPV1 was confirmed by whole-cell ligand-gated ion flux recordings in the presence of capsaicin and low pH and via specific ligand binding to the isolated cellular membranes. Efficient solubilization and purification protocols have resulted in milligram amounts of detergent-solubilized channel at 80-90% purity after Ni2+ IMAC chromatography and size exclusion chromatography. Western blot analysis of amino and carboxyl terminal domains and MS of tryptic digestions of purified protein confirmed the presence of the full-length human TRPV1. Specific ligand binding experiments confirmed the protein integrity of the purified human TRPV1.


Asunto(s)
Baculoviridae , Expresión Génica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Canales Catiónicos TRPV/biosíntesis , Canales Catiónicos TRPV/aislamiento & purificación , Animales , Línea Celular , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Spodoptera , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/genética
18.
Eur J Pharmacol ; 596(1-3): 62-9, 2008 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-18755179

RESUMEN

1-isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl)-urea (A-425619), a novel, potent, and selective transient receptor potential type V1 (TRPV1) antagonist, attenuates pain associated with inflammation and tissue injury in rats. The purpose of this study was to extend the in vitro characterization of A-425619 to native TRPV1 receptors and to compare the pharmacological properties of TRPV1 receptors in the dorsal root ganglion with trigeminal ganglion neurons. A robust increase in intracellular Ca(2+) was elicited by a variety of TRPV1 agonists with similar rank order of potency between both cultures: resiniferatoxin>tinyatoxin>capsaicin>N-arachidonoyl-dopamine (NADA). A-425619 blocked the 500 nM capsaicin response in both dorsal root ganglion with trigeminal ganglion cultures with IC(50) values of 78 nM and 115 nM, respectively, whereas capsazepine was significantly less potent (dorsal root ganglia: IC(50)=2.63 microM; trigeminal ganglia: IC(50)=6.31 microM). Furthermore, A-425619 was more potent in blocking the 3 microM NADA-evoked response in both dorsal root ganglia (IC(50)=36 nM) and trigeminal ganglia (IC(50)=37 nM) than capsazepine (dorsal root ganglia, IC(50)=741 nM; trigeminal ganglia, IC(50)=708 nM). Electrophysiology studies showed that 100 nM A-425619 completely inhibited TRPV1-mediated acid activated currents in dorsal root ganglia and trigeminal ganglia neurons. In addition, A-425619 blocked capsaicin- and NADA-evoked calcitonin gene-related peptide (CGRP) release in both cultures more effectively than capsazepine. These data show that A-425619 is a potent TRPV1 antagonist at the native TRPV1 receptors, and suggest that the pharmacological profile for TRPV1 receptors on dorsal root ganglia and trigeminal ganglia is very similar.


Asunto(s)
Ganglios Espinales/efectos de los fármacos , Isoquinolinas/farmacología , Canales Catiónicos TRPV/antagonistas & inhibidores , Ganglio del Trigémino/efectos de los fármacos , Urea/análogos & derivados , Aminobutiratos/farmacología , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Calcio/metabolismo , Capsaicina/farmacología , Células Cultivadas , Ganglios Espinales/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Canales Catiónicos TRPV/agonistas , Técnicas de Cultivo de Tejidos , Ganglio del Trigémino/fisiología , Urea/farmacología
19.
J Pharmacol Exp Ther ; 326(3): 879-88, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18515644

RESUMEN

The transient receptor potential vanilloid (TRPV) 1 receptor, a nonselective cation channel expressed on peripheral sensory neurons and in the central nervous system, plays a key role in pain. TRPV1 receptor antagonism is a promising approach for pain management. In this report, we describe the pharmacological and functional characteristics of a structurally novel TRPV1 antagonist, (R)-(5-tert-butyl-2,3-dihydro-1H-inden-1-yl)-3-(1H-indazol-4-yl)-urea (ABT-102), which has entered clinical trials. At the recombinant human TRPV1 receptor ABT-102 potently (IC(50) = 5-7 nM) inhibits agonist (capsaicin, N-arachidonyl dopamine, anandamide, and proton)-evoked increases in intracellular Ca(2+) levels. ABT-102 also potently (IC(50) = 1-16 nM) inhibits capsaicin-evoked currents in rat dorsal root ganglion (DRG) neurons and currents evoked through activation of recombinant rat TRPV1 currents by capsaicin, protons, or heat. ABT-102 is a competitive antagonist (pA(2) = 8.344) of capsaicin-evoked increased intracellular Ca(2+) and shows high selectivity for blocking TRPV1 receptors over other TRP receptors and a range of other receptors, ion channels, and transporters. In functional studies, ABT-102 blocks capsaicin-evoked calcitonin gene-related peptide release from rat DRG neurons. Intraplantar administration of ABT-102 blocks heat-evoked firing of wide dynamic range and nociceptive-specific neurons in the spinal cord dorsal horn of the rat. This effect is enhanced in a rat model of inflammatory pain induced by administration of complete Freund's adjuvant. Therefore, ABT-102 potently blocks multiple modes of TRPV1 receptor activation and effectively attenuates downstream consequences of receptor activity. ABT-102 is a novel and selective TRPV1 antagonist with pharmacological and functional properties that support its advancement into clinical studies.


Asunto(s)
Potenciales de Acción/fisiología , Calor , Indazoles/farmacología , Células del Asta Posterior/metabolismo , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/metabolismo , Urea/análogos & derivados , Potenciales de Acción/efectos de los fármacos , Animales , Línea Celular , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Indazoles/química , Masculino , Células del Asta Posterior/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Urea/química , Urea/farmacología
20.
J Neurosci ; 28(19): 5063-71, 2008 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-18463259

RESUMEN

TRPA1 is an excitatory, nonselective cation channel implicated in somatosensory function, pain, and neurogenic inflammation. Through covalent modification of cysteine and lysine residues, TRPA1 can be activated by electrophilic compounds, including active ingredients of pungent natural products (e.g., allyl isothiocyanate), environmental irritants (e.g., acrolein), and endogenous ligands (4-hydroxynonenal). However, how covalent modification leads to channel opening is not understood. Here, we report that electrophilic, thioaminal-containing compounds [e.g., CMP1 (4-methyl-N-[2,2,2-trichloro-1-(4-nitro-phenylsulfanyl)-ethyl]-benzamide)] covalently modify cysteine residues but produce striking species-specific effects [i.e., activation of rat TRPA1 (rTRPA1) and blockade of human TRPA1 (hTRPA1) activation by reactive and nonreactive agonists]. Through characterizing rTRPA1 and hTRPA1 chimeric channels and point mutations, we identified several residues in the upper portion of the S6 transmembrane domains as critical determinants of the opposite channel gating: Ala-946 and Met-949 of rTRPA1 determine channel activation, whereas equivalent residues of hTRPA1 (Ser-943 and Ile-946) determine channel block. Furthermore, side-chain replacements at these critical residues profoundly affect channel function. Therefore, our findings reveal a molecular basis of species-specific channel gating and provide novel insights into how TRPA1 respond to stimuli.


Asunto(s)
Benzamidas/farmacología , Canales de Calcio/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/metabolismo , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Ancirinas , Canales de Calcio/química , Canales de Calcio/genética , Línea Celular , Humanos , Activación del Canal Iónico/fisiología , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Estructura Terciaria de Proteína , Ratas , Especificidad de la Especie , Canal Catiónico TRPA1 , Canales Catiónicos TRPC , Canales de Potencial de Receptor Transitorio/química , Canales de Potencial de Receptor Transitorio/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...