Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2311097, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38412429

RESUMEN

Combining high efficiency with good radiation tolerance, perovskite solar cells (PSCs) are promising candidates to upend expanding space photovoltaic (PV) technologies. Successful employment in a Near-Earth space environment, however, requires high resistance against atomic oxygen (AtOx). This work unravels AtOx-induced degradation mechanisms of PSCs with and without phenethylammonium iodide (PEAI) based 2D-passivation and investigates the applicability of ultrathin silicon oxide (SiO) encapsulation as AtOx barrier. AtOx exposure for 2 h degraded the average power conversion efficiency (PCE) of devices without barrier encapsulation by 40% and 43% (w/o and with 2D-PEAI-passivation) of their initial PCE. In contrast, devices with a SiO-barrier retained over 97% of initial PCE. To understand why 2D-PEAI passivated devices degrade faster than less efficient non-passivated devices, various opto-electrical and structural characterications are conducted. Together, these allowed to decouple different damage mechanisms. Notably, pseudo-J-V curves reveal unchanged high implied fill factors (pFF) of 86.4% and 86.2% in non-passivated and passivated devices, suggesting that degradation of the perovskite absorber itself is not dominating. Instead, inefficient charge extraction and mobile ions, due to a swiftly degrading PEAI interlayer are the primary causes of AtOx-induced device performance degradation in passivated devices, whereas a large ionic FF loss limits non-passivated devices.

2.
J Am Chem Soc ; 146(7): 4642-4651, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38335142

RESUMEN

Here, we report a detailed surface analysis of dry- and ambient air-annealed CsPbI3 films and their subsequent modified interfaces in perovskite solar cells. We revealed that annealing in ambient air does not adversely affect the optoelectronic properties of the semiconducting film; instead, ambient air-annealed samples undergo a surface modification, causing an enhancement of band bending, as determined by hard X-ray photoelectron spectroscopy measurements. We observe interface charge carrier dynamics changes, improving the charge carrier extraction in CsPbI3 perovskite solar cells. Optical spectroscopic measurements show that trap state density is decreased due to ambient air annealing. As a result, air-annealed CsPbI3-based n-i-p structure devices achieved a 19.8% power conversion efficiency with a 1.23 V open circuit voltage.

3.
Adv Mater ; 36(6): e2307743, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37988595

RESUMEN

All-perovskite tandem solar cells show great potential to enable the highest performance at reasonable costs for a viable market entry in the near future. In particular, wide-bandgap (WBG) perovskites with higher open-circuit voltage (VOC ) are essential to further improve the tandem solar cells' performance. Here, a new 1.8 eV bandgap triple-halide perovskite composition in conjunction with a piperazinium iodide (PI) surface treatment is developed. With structural analysis, it is found that the PI modifies the surface through a reduction of excess lead iodide in the perovskite and additionally penetrates the bulk. Constant light-induced magneto-transport measurements are applied to separately resolve charge carrier properties of electrons and holes. These measurements reveal a reduced deep trap state density, and improved steady-state carrier lifetime (factor 2.6) and diffusion lengths (factor 1.6). As a result, WBG PSCs achieve 1.36 V VOC , reaching 90% of the radiative limit. Combined with a 1.26 eV narrow bandgap (NBG) perovskite with a rubidium iodide additive, this enables a tandem cell with a certified scan efficiency of 27.5%.

4.
Mater Horiz ; 11(1): 173-183, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37915305

RESUMEN

The energetic landscape at the interface between electron donating and accepting molecular materials favors efficient conversion of intermolecular charge-transfer (CT) states into free charge carriers (FCC) in high-performance organic solar cells. Here, we elucidate how interfacial energetics, charge generation and radiative recombination are affected by molecular arrangement. We experimentally determine the CT dissociation properties of a series of model, small molecule donor-acceptor blends, where the used acceptors (B2PYMPM, B3PYMPM and B4PYMPM) differ only in the nitrogen position of their lateral pyridine rings. We find that the formation of an ordered, face-on molecular packing in B4PYMPM is beneficial to efficient, field-independent charge separation, leading to fill factors above 70% in photovoltaic devices. This is rationalized by a comprehensive computational protocol showing that, compared to the more amorphous and isotropically oriented B2PYMPM, the higher structural order of B4PYMPM molecules leads to more delocalized CT states. Furthermore, we find no correlation between the quantum efficiency of FCC radiative recombination and the bound or unbound nature of the CT states. This work highlights the importance of structural ordering at donor-acceptor interfaces for efficient FCC generation and shows that less bound CT states do not preclude efficient radiative recombination.

5.
ACS Energy Lett ; 8(10): 4304-4314, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37854052

RESUMEN

In perovskite solar cells (PSCs) energy level alignment and charge extraction at the interfaces are the essential factors directly affecting the device performance. In this work, we present a modified interface between all-inorganic CsPbI3 perovskite and its hole-selective contact (spiro-OMeTAD), realized by the dipole molecule trioctylphosphine oxide (TOPO), to align the energy levels. On a passivated perovskite film, with n-octylammonium iodide (OAI), we created an upward surface band-bending at the interface by TOPO treatment. This improved interface by the dipole molecule induces a better energy level alignment and enhances the charge extraction of holes from the perovskite layer to the hole transport material. Consequently, a Voc of 1.2 V and a high-power conversion efficiency (PCE) of over 19% were achieved for inorganic CsPbI3 perovskite solar cells. Further, to demonstrate the effect of the TOPO dipole molecule, we present a layer-by-layer charge extraction study by a transient surface photovoltage (trSPV) technique accomplished by a charge transport simulation.

6.
Adv Mater ; : e2302005, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37623325

RESUMEN

Over the past three years, remarkable advancements in organic solar cells (OSCs) have emerged, propelled by the introduction of Y6-an innovative A-DA'D-A type small molecule non-fullerene acceptor (NFA). This review provides a critical discussion of the current knowledge about the structural and physical properties of the PM6:Y6 material combination in relation to its photovoltaic performance. The design principles of PM6 and Y6 are discussed, covering charge transfer, transport, and recombination mechanisms. Then, the authors delve into blend morphology and degradation mechanisms before considering commercialization. The current state of the art is presented, while also discussing unresolved contentious issues, such as the blend energetics, the pathways of free charge generation, and the role of triplet states in recombination. As such, this review aims to provide a comprehensive understanding of the PM6:Y6 material combination and its potential for further development in the field of organic solar cells. By addressing both the successes and challenges associated with this system, this review contributes to the ongoing research efforts toward achieving more efficient and stable organic solar cells.

7.
Science ; 380(6643): 404-409, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37104579

RESUMEN

Controlling the perovskite morphology and defects at the buried perovskite-substrate interface is challenging for inverted perovskite solar cells. In this work, we report an amphiphilic molecular hole transporter, (2-(4-(bis(4-methoxyphenyl)amino)phenyl)-1-cyanovinyl)phosphonic acid, that features a multifunctional cyanovinyl phosphonic acid group and forms a superwetting underlayer for perovskite deposition, which enables high-quality perovskite films with minimized defects at the buried interface. The resulting perovskite film has a photoluminescence quantum yield of 17% and a Shockley-Read-Hall lifetime of nearly 7 microseconds and achieved a certified power conversion efficiency (PCE) of 25.4% with an open-circuit voltage of 1.21 volts and a fill factor of 84.7%. In addition, 1-square centimeter cells and 10-square centimeter minimodules show PCEs of 23.4 and 22.0%, respectively. Encapsulated modules exhibited high stability under both operational and damp heat test conditions.

8.
J Phys Chem Lett ; 14(18): 4200-4210, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37115820

RESUMEN

Mobile ions in perovskite photovoltaic devices can hinder performance and cause degradation by impeding charge extraction and screening the internal field. Accurately quantifying mobile ion densities remains a challenge and is a highly debated topic. We assess the suitability of several experimental methodologies for determining mobile ion densities by using drift-diffusion simulations. We found that charge extraction by linearly increasing voltage (CELIV) underestimates ion density, but bias-assisted charge extraction (BACE) can accurately reproduce ionic lower than the electrode charge. A modified Mott-Schottky (MS) analysis at low frequencies can provide ion density values for high excess ionic densities, typical for perovskites. The most significant contribution to capacitance originates from the ionic depletion layer rather than the accumulation layer. Using low-frequency MS analysis, we also demonstrate light-induced generation of mobile ions. These methods enable accurate tracking of ionic densities during device aging and a deeper understanding of ionic losses.

9.
Nat Commun ; 14(1): 932, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36805448

RESUMEN

In this work, we couple theoretical and experimental approaches to understand and reduce the losses of wide bandgap Br-rich perovskite pin devices at open-circuit voltage (VOC) and short-circuit current (JSC) conditions. A mismatch between the internal quasi-Fermi level splitting (QFLS) and the external VOC is detrimental for these devices. We demonstrate that modifying the perovskite top-surface with guanidinium-Br and imidazolium-Br forms a low-dimensional perovskite phase at the n-interface, suppressing the QFLS-VOC mismatch, and boosting the VOC. Concurrently, the use of an ionic interlayer or a self-assembled monolayer at the p-interface reduces the inferred field screening induced by mobile ions at JSC, promoting charge extraction and raising the JSC. The combination of the n- and p-type optimizations allows us to approach the thermodynamic potential of the perovskite absorber layer, resulting in 1 cm2 devices with performance parameters of VOCs up to 1.29 V, fill factors above 80% and JSCs up to 17 mA/cm2, in addition to a thermal stability T80 lifetime of more than 3500 h at 85 °C.

10.
Nat Commun ; 13(1): 7454, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36460635

RESUMEN

Inverted perovskite solar cells still suffer from significant non-radiative recombination losses at the perovskite surface and across the perovskite/C60 interface, limiting the future development of perovskite-based single- and multi-junction photovoltaics. Therefore, more effective inter- or transport layers are urgently required. To tackle these recombination losses, we introduce ortho-carborane as an interlayer material that has a spherical molecular structure and a three-dimensional aromaticity. Based on a variety of experimental techniques, we show that ortho-carborane decorated with phenylamino groups effectively passivates the perovskite surface and essentially eliminates the non-radiative recombination loss across the perovskite/C60 interface with high thermal stability. We further demonstrate the potential of carborane as an electron transport material, facilitating electron extraction while blocking holes from the interface. The resulting inverted perovskite solar cells deliver a power conversion efficiency of over 23% with a low non-radiative voltage loss of 110 mV, and retain >97% of the initial efficiency after 400 h of maximum power point tracking. Overall, the designed carborane based interlayer simultaneously enables passivation, electron-transport and hole-blocking and paves the way toward more efficient and stable perovskite solar cells.

11.
Nat Nanotechnol ; 17(11): 1214-1221, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36280763

RESUMEN

Perovskite-silicon tandem solar cells offer the possibility of overcoming the power conversion efficiency limit of conventional silicon solar cells. Various textured tandem devices have been presented aiming at improved optical performance, but optimizing film growth on surface-textured wafers remains challenging. Here we present perovskite-silicon tandem solar cells with periodic nanotextures that offer various advantages without compromising the material quality of solution-processed perovskite layers. We show a reduction in reflection losses in comparison to planar tandems, with the new devices being less sensitive to deviations from optimum layer thicknesses. The nanotextures also enable a greatly increased fabrication yield from 50% to 95%. Moreover, the open-circuit voltage is improved by 15 mV due to the enhanced optoelectronic properties of the perovskite top cell. Our optically advanced rear reflector with a dielectric buffer layer results in reduced parasitic absorption at near-infrared wavelengths. As a result, we demonstrate a certified power conversion efficiency of 29.80%.

12.
Adv Mater ; 34(40): e2206405, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35977414

RESUMEN

Carbon suboxide (C3 O2 ) is a unique molecule able to polymerize spontaneously into highly conjugated light-absorbing structures at temperatures as low as 0 °C. Despite obvious advantages, little is known about the nature and the functional properties of this carbonaceous material. In this work, the aim is to bring "red carbon," a forgotten polymeric semiconductor, back to the community's attention. A solution polymerization process is adapted to simplify the synthesis and control the structure. This allows one to obtain this crystalline covalent material at low temperatures. Both spectroscopic and elemental analyses support the chemical structure represented as conjugated ladder polypyrone ribbons. Density functional theory calculations suggest a crystalline structure of AB stacks of polypyrone ribbons and identify the material as a direct bandgap semiconductor with a medium bandgap that is further confirmed by optical analysis. The material shows promising photocatalytic performance using blue light. Moreover, the simple condensation-aromatization route described here allows the straightforward fabrication of conjugated ladder polymers and can be inspiring for the synthesis of carbonaceous materials at low temperatures in general.

14.
Mater Horiz ; 8(5): 1461-1471, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34846454

RESUMEN

Organic thin films are widely used in organic electronics and coatings. Such films often feature film-depth dependent variations of composition and optoelectronic properties. State-of-the-art depth profiling methods such as mass spectroscopy and photoelectron spectroscopy rely on non-intrinsic species (vaporized ions, etching-induced surface defects), which are chemically and functionally different from the original materials. Here we introduce an easily-accessible and generally applicable depth profiling method: film-depth-dependent infrared (FDD-IR) spectroscopy profilometry based on directly measuring the intrinsic material after incremental surface-selective etching by a soft plasma, to study the material variations along the surface-normal direction. This depth profiling uses characteristic vibrational signatures of the involved compounds, and can be used for both conjugated and non-conjugated, neutral and ionic materials. A film-depth resolution of one nanometer is achieved. We demonstrate the application of this method for investigation of device-relevant thin films, including organic field-effect transistors and organic photovoltaic cells, as well as ionized dopant distributions in doped semiconductors.

15.
Phys Chem Chem Phys ; 23(25): 13827-13841, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34151324

RESUMEN

The enhancement and control of the electrical conductivity of organic semiconductors is fundamental for their use in optoelectronic applications and can be achieved by molecular doping, which introduces additional charge carriers through electron transfer between a dopant molecule and the organic semiconductor. Here, we use Electron Paramagnetic Resonance (EPR) spectroscopy to characterise the unpaired spins associated with the charges generated by molecular doping of the prototypical organic semiconductor poly(3-hexylthiophene) (P3HT) with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) and tris(pentafluorophenyl)borane (BCF). The EPR results reveal the P3HT radical cation as the only paramagnetic species in BCF-doped P3HT films and show evidence for increased mobility of the detected spins at high doping concentrations as well as formation of antiferromagnetically coupled spin pairs leading to decreased spin concentrations at low temperatures. The EPR signature for F4TCNQ-doped P3HT is found to be determined by spin exchange between P3HT radical cations and F4TCNQ radical anions. Results from continuous-wave and pulse EPR measurements suggest the presence of the unpaired spin on P3HT in a multitude of environments, ranging from free P3HT radical cations with similar properties to those observed in BCF-doped P3HT, to pairs of dipolar and exchange-coupled spins on P3HT and the dopant anion. Characterisation of the proton hyperfine interactions by ENDOR allowed quantification of the extent of spin delocalisation and revealed reduced delocalisation in the F4TCNQ-doped P3HT films.

16.
Nat Commun ; 12(1): 1772, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33741966

RESUMEN

A critical bottleneck for improving the performance of organic solar cells (OSC) is minimising non-radiative losses in the interfacial charge-transfer (CT) state via the formation of hybrid energetic states. This requires small energetic offsets often detrimental for high external quantum efficiency (EQE). Here, we obtain OSC with both non-radiative voltage losses (0.24 V) and photocurrent losses (EQE > 80%) simultaneously minimised. The interfacial CT states separate into free carriers with ≈40-ps time constant. We combine device and spectroscopic data to model the thermodynamics of charge separation and extraction, revealing that the relatively high performance of the devices arises from an optimal adjustment of the CT state energy, which determines how the available overall driving force is efficiently used to maximize both exciton splitting and charge separation. The model proposed is universal for donor:acceptor (D:A) with low driving forces and predicts which D:A will benefit from a morphology optimization for highly efficient OSC.

17.
ACS Appl Mater Interfaces ; 13(10): 12603-12609, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33660501

RESUMEN

Interfacial layers in conjunction with suitable charge-transport layers can significantly improve the performance of optoelectronic devices by facilitating efficient charge carrier injection and extraction. This work uses a neat C60 interlayer on the anode to experimentally reveal that surface recombination is a significant contributor to nonradiative recombination losses in organic solar cells. These losses are shown to proportionally increase with the extent of contact between donor molecules in the photoactive layer and a molybdenum oxide (MoO3) hole extraction layer, proven by calculating voltage losses in low- and high-donor-content bulk heterojunction device architectures. Using a novel in-device determination of the built-in voltage, the suppression of surface recombination, due to the insertion of a thin anodic-C60 interlayer on MoO3, is attributed to an enhanced built-in potential. The increased built-in voltage reduces the presence of minority charge carriers at the electrodes-a new perspective on the principle of selective charge extraction layers. The benefit to device efficiency is limited by a critical interlayer thickness, which depends on the donor material in bilayer devices. Given the high popularity of MoO3 as an efficient hole extraction and injection layer and the increasingly popular discussion on interfacial phenomena in organic optoelectronic devices, these findings are relevant to and address different branches of organic electronics, providing insights for future device design.

18.
Science ; 370(6522): 1300-1309, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33303611

RESUMEN

Tandem solar cells that pair silicon with a metal halide perovskite are a promising option for surpassing the single-cell efficiency limit. We report a monolithic perovskite/silicon tandem with a certified power conversion efficiency of 29.15%. The perovskite absorber, with a bandgap of 1.68 electron volts, remained phase-stable under illumination through a combination of fast hole extraction and minimized nonradiative recombination at the hole-selective interface. These features were made possible by a self-assembled, methyl-substituted carbazole monolayer as the hole-selective layer in the perovskite cell. The accelerated hole extraction was linked to a low ideality factor of 1.26 and single-junction fill factors of up to 84%, while enabling a tandem open-circuit voltage of as high as 1.92 volts. In air, without encapsulation, a tandem retained 95% of its initial efficiency after 300 hours of operation.

20.
ACS Appl Mater Interfaces ; 12(33): 37647-37656, 2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32678571

RESUMEN

Multication metal-halide perovskites exhibit desirable performance and stability, compared to their monocation counterparts. However, the study of the photophysical properties and the nature of defect states in these materials is still a challenging and ongoing task. Here, we study bulk and interfacial energy loss mechanisms in solution-processed MAPbI3 (MAPI) and (CsPbI3)0.05[(FAPbI3)0.83(MAPbBr3)0.17]0.95 (triple cation) perovskite solar cells using absolute photoluminescence (PL) measurements. In neat MAPI films, we find a significantly smaller quasi-Fermi level splitting than for the triple cation perovskite absorbers, which defines the open-circuit voltage of the MAPI cells. PL measurements at low temperatures (∼20 K) on MAPI films demonstrate that emissive subgap states can be effectively reduced using different passivating agents, which lowers the nonradiative recombination loss at room temperature. We conclude that while triple cation perovskite cells are limited by interfacial recombination, the passivation of surface trap states within the MAPI films is the primary consideration for device optimization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...