Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 13(1): 7597, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36494441

RESUMEN

The integration of bottom-up fabrication techniques and top-down methods can overcome current limits in nanofabrication. For such integration, we propose a gradient area-selective deposition using atomic layer deposition to overcome the inherent limitation of 3D nanofabrication and demonstrate the applicability of the proposed method toward large-scale production of materials. Cp(CH3)5Ti(OMe)3 is used as a molecular surface inhibitor to prevent the growth of TiO2 film in the next atomic layer deposition process. Cp(CH3)5Ti(OMe)3 adsorption was controlled gradually in a 3D nanoscale hole to achieve gradient TiO2 growth. This resulted in the formation of perfectly seamless TiO2 films with a high-aspect-ratio hole structure. The experimental results were consistent with theoretical calculations based on density functional theory, Monte Carlo simulation, and the Johnson-Mehl-Avrami-Kolmogorov model. Since the gradient area-selective deposition TiO2 film formation is based on the fundamentals of molecular chemical and physical behaviours, this approach can be applied to other material systems in atomic layer deposition.

3.
J Am Chem Soc ; 144(26): 11757-11766, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35674504

RESUMEN

The adsorption of metalorganic and metal halide precursors on the SiO2 surface plays an essential role in thin-film deposition processes such as atomic layer deposition (ALD). In the case of aluminum oxide (Al2O3) films, the growth characteristics are influenced by the precursor structure, which controls both chemical reactivity and the geometrical constraints during deposition. In this work, a systematic study using a series of Al(CH3)xCl3-x (x = 0, 1, 2, and 3) and Al(CyH2y+1)3 (y = 1, 2, and 3) precursors is carried out using a combination of experimental spectroscopic techniques together with density functional theory calculations and Monte Carlo simulations to analyze differences across precursor molecules. Results show that reactivity and steric hindrance mutually influence the ALD surface reaction. The increase in the number of chlorine ligands in the precursor shifts the deposition temperature higher, an effect attributed to more favorable binding of the intermediate species due to higher Lewis acidity, while differences between precursors in film growth per cycle are shown to originate from variations in adsorption activation barriers and size-dependent saturation coverage. Comparison between the theoretical and experimental results indicates that the Al(CyH2y+1)3 precursors are favored to undergo two ligand exchange reactions upon adsorption at the surface, whereas only a single Cl-ligand exchange reaction is energetically favorable upon adsorption by the AlCl3 precursor. By pursuing the first-principles design of ALD precursors combined with experimental analysis of thin-film growth, this work enables a robust understanding of the effect of precursor chemistry on ALD processes.

4.
Dalton Trans ; 50(48): 17935-17944, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34821888

RESUMEN

Atomic layer deposition (ALD) is a thin film deposition technique based on self-saturated reactions between a precursor and reactant vacuum conditions. A typical ALD reaction consists of the first half-reaction of the precursor and the second half-reaction of the counter reactant, in which the terminal groups on the surface change after each half-reaction. In this study, the effects of counter reactants on the surface termination and growth characteristics of ALD HfO2 thin films formed on Si substrates using tetrakis(dimethylamino)-hafnium (TDMAH) as a precursor were investigated. Two counter reactants, H2O and O3, were individually employed, as well as in combination with consecutive exposure by H2O-O3 and O3-H2O. The film growth behaviors and properties differed when the sequence of exposure of the substrate to the reactants was varied. Based on X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) simulation, the changes are attributed to the effects of the surface terminations formed from different counter reactant combinations. The knowledge from this work could provide insight for precisely tuning the growth and properties of ALD films.

5.
Nanomaterials (Basel) ; 11(7)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34361180

RESUMEN

Humid conditions can disrupt the triboelectric signal generation and reduce the accuracy of triboelectric mechanical sensors. This study demonstrates a novel design approach using atomic layer deposition (ALD) to enhance the humidity resistance of triboelectric mechanical sensors. Titanium oxide (TiOx) was deposited on polytetrafluoroethylene (PTFE) film as a moisture passivation layer. To determine the effective ALD process cycle, the TiOx layer was deposited with 100 to 2000 process cycles. The triboelectric behavior and surface chemical bonding states were analyzed before and after moisture exposure. The ALD-TiOx-deposited PTFE showed three times greater humidity stability than pristine PTFE film. Based on the characterization of TiOx on PTFE film, the passivation mechanism was proposed, and it was related to the role of the oxygen-deficient sites in the TiOx layer. This study could provide a novel way to design stable triboelectric mechanical sensors in highly humid environments.

6.
Langmuir ; 36(11): 2794-2801, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32052969

RESUMEN

We successfully fabricated a conductive E-textile and color-coated E-textile by depositing multilayer Al2O3/TiO2 on a conductive E-textile through atomic layer deposition (ALD). Pt was deposited on an E-textile as a conductive layer via low-temperature ALD. The color of the coated conductive E-textile could be tuned to violet, green, or pink by simply varying the thickness of the Al2O3 and TiO2 layers. Both experimental and simulation results revealed that seven different colors can be obtained with single-layer TiO2 and multilayer Al2O3/TiO2, depending on the film thickness and their refractive indices. This method is highly effective for enhancing the fastness of structural color on conductive E-textiles. Furthermore, the mechanical properties and chemical stability of the color-coated E-textiles were investigated. The color-coated E-textiles could withstand acidic and basic solutions, with almost negligible changes in their morphology; this in turn indicates their excellent chemical stability. These switchable stable color-based conductive E-textiles can be used as a platform to directly integrate future wearable electronics in textiles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...