Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mSphere ; 9(5): e0000524, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38661343

RESUMEN

The mycobacterial cell envelope is a major virulence determinant in pathogenic mycobacteria. Specific outer lipids play roles in pathogenesis, modulating the immune system and promoting the secretion of virulence factors. ESX-1 (ESAT-6 system-1) is a conserved protein secretion system required for mycobacterial pathogenesis. Previous studies revealed that mycobacterial strains lacking the outer lipid PDIM have impaired ESX-1 function during laboratory growth and infection. The mechanisms underlying changes in ESX-1 function are unknown. We used a proteo-genetic approach to measure phthiocerol dimycocerosate (PDIM)- and phenolic glycolipid (PGL)-dependent protein secretion in M. marinum, a non-tubercular mycobacterial pathogen that causes tuberculosis-like disease in ectothermic animals. Importantly, M. marinum is a well-established model for mycobacterial pathogenesis. Our findings showed that M. marinum strains without PDIM and PGL showed specific, significant reductions in protein secretion compared to the WT and complemented strains. We recently established a hierarchy for the secretion of ESX-1 substrates in four (I-IV) groups. Loss of PDIM differentially impacted secretion of Group III and IV ESX-1 substrates, which are likely the effectors of pathogenesis. Our data suggest that the altered secretion of specific ESX-1 substrates is responsible for the observed ESX-1-related effects in PDIM-deficient strains.IMPORTANCEMycobacterium tuberculosis, the cause of human tuberculosis, killed an estimated 1.3 million people in 2022. Non-tubercular mycobacterial species cause acute and chronic human infections. Understanding how these bacteria cause disease is critical. Lipids in the cell envelope are essential for mycobacteria to interact with the host and promote disease. Strains lacking outer lipids are attenuated for infection, but the reasons are unclear. Our research aims to identify a mechanism for attenuation of mycobacterial strains without the PDIM and PGL outer lipids in M. marinum. These findings will enhance our understanding of the importance of lipids in pathogenesis and how these lipids contribute to other established virulence mechanisms.


Asunto(s)
Proteínas Bacterianas , Glucolípidos , Mycobacterium marinum , Factores de Virulencia , Mycobacterium marinum/patogenicidad , Mycobacterium marinum/genética , Mycobacterium marinum/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Glucolípidos/metabolismo , Virulencia , Lípidos , Antígenos Bacterianos/metabolismo , Antígenos Bacterianos/genética
2.
mBio ; 15(4): e0335723, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38445877

RESUMEN

Bacterial pathogens use protein secretion systems to transport virulence factors and regulate gene expression. Among pathogenic mycobacteria, including Mycobacterium tuberculosis and Mycobacterium marinum, the ESAT-6 system 1 (ESX-1) secretion is crucial for host interaction. Secretion of protein substrates by the ESX-1 secretion system disrupts phagosomes, allowing mycobacteria cytoplasmic access during macrophage infections. Deletion or mutation of the ESX-1 system attenuates mycobacterial pathogens. Pathogenic mycobacteria respond to the presence or absence of the ESX-1 system in the cytoplasmic membrane by altering transcription. Under laboratory conditions, the EspM repressor and WhiB6 activator control transcription of specific ESX-1-responsive genes, including the ESX-1 substrate genes. However, deleting the espM or whiB6 gene does not phenocopy the deletion of the ESX-1 substrate genes during macrophage infection by M. marinum. In this study, we identified EspN, a critical transcription factor whose activity is masked by the EspM repressor under laboratory conditions. In the absence of EspM, EspN activates transcription of whiB6 and ESX-1 genes during both laboratory growth and macrophage infection. EspN is also independently required for M. marinum growth within and cytolysis of macrophages, similar to the ESX-1 genes, and for disease burden in a zebrafish larval model of infection. These findings suggest that EspN and EspM coordinate to counterbalance the regulation of the ESX-1 system and support mycobacterial pathogenesis.IMPORTANCEPathogenic mycobacteria, which are responsible for tuberculosis and other long-term diseases, use the ESX-1 system to transport proteins that control the host response to infection and promote bacterial survival. In this study, we identify an undescribed transcription factor that controls the expression of ESX-1 genes and is required for both macrophage and animal infection. However, this transcription factor is not the primary regulator of ESX-1 genes under standard laboratory conditions. These findings identify a critical transcription factor that likely controls expression of a major virulence pathway during infection, but whose effect is not detectable with standard laboratory strains and growth conditions.


Asunto(s)
Mycobacterium marinum , Mycobacterium tuberculosis , Tuberculosis , Sistemas de Secreción Tipo VII , Animales , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Tipo VII/genética , Sistemas de Secreción Tipo VII/metabolismo , Pez Cebra , Tuberculosis/microbiología , Mycobacterium tuberculosis/metabolismo , Mycobacterium marinum/metabolismo
3.
bioRxiv ; 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38260599

RESUMEN

The mycobacterial cell envelope is a major virulence determinant in pathogenic mycobacteria. Specific outer lipids play roles in pathogenesis, modulating the immune system and promoting the secretion of virulence factors. ESX-1 (ESAT-6 system-1) is a conserved protein secretion system required for mycobacterial pathogenesis (1, 2). Previous studies revealed that mycobacterial strains lacking the outer lipid PDIM have impaired ESX-1 function during laboratory growth and infection (3-5). The mechanisms underlying changes in ESX-1 function are unknown. We used a proteo-genetic approach to measure PDIM and PGL-dependent protein secretion in M. marinum , a non-tubercular mycobacterial pathogen that causes tuberculosis-like disease in ectothermic animals (6, 7). Importantly, M. marinum is a well-established model for mycobacterial pathogenesis (8, 9). Our findings showed that M. marinum strains without PDIM and PGL showed specific, significant reductions in protein secretion compared to the WT and complemented strains. We recently established a hierarchy for the secretion of ESX-1 substrates in four (I-IV) groups (10). Loss of PDIM differentially impacted secretion of Groups III and IV ESX-1 substrates, which are likely the effectors of pathogenesis. Our data suggests that the altered secretion of specific ESX-1 substrates is responsible for the observed ESX-1-related effects in PDIM-deficient strains.

4.
bioRxiv ; 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36824794

RESUMEN

Bacterial pathogens use protein secretion systems to translocate virulence factors into the host and to control bacterial gene expression. The ESX-1 (ESAT-6 system 1) secretion system facilitates disruption of the macrophage phagosome during infection, enabling access to the cytoplasm, and regulates widespread gene expression in the mycobacterial cell. The transcription factors contributing to the ESX-1 transcriptional network during mycobacterial infection are not known. We showed that the EspM and WhiB6 transcription factors regulate the ESX-1 transcriptional network in vitro but are dispensable for macrophage infection by Mycobacterium marinum . In this study, we used our understanding of the ESX-1 system to identify EspN, a critical transcription factor that controls expression of the ESX-1 genes during infection, but whose effect is not detectable under standard laboratory growth conditions. Under laboratory conditions, EspN activity is masked by the EspM repressor. In the absence of EspM, we found that EspN is required for ESX-1 function because it activates expression of the whiB6 transcription factor gene, and specific ESX-1 substrate and secretory component genes. Unlike the other transcription factors that regulate ESX-1, EspN is required for M. marinum growth within and cytolysis of macrophages, and for disease burden in a zebrafish larval model of infection. These findings demonstrate that EspN is an infection-dependent regulator of the ESX-1 transcriptional network, which is essential for mycobacterial pathogenesis. Moreover, our findings suggest that ESX-1 expression is controlled by a genetic switch that responds to host specific signals. Importance: Pathogenic mycobacteria cause acute and long-term diseases, including human tuberculosis. The ESX-1 system transports proteins that control the host response to infection and promotes bacterial survival. Although ESX-1 transports proteins, it also controls gene expression in the bacteria. In this study, we identify an undescribed transcription factor that controls the expression of ESX-1 genes, and is required for both macrophage and animal infection. However, this transcription factor is not the primary regulator of ESX-1 genes under standard laboratory conditions. These findings identify a critical transcription factor that controls expression of a major virulence pathway during infection, but whose effect is not detectable with standard laboratory strains and growth conditions.

5.
J Bacteriol ; 204(12): e0023322, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36448785

RESUMEN

Pathogenic mycobacteria use the ESX-1 secretion system to escape the macrophage phagosome and survive infection. We demonstrated that the ESX-1 system is regulated by feedback control in Mycobacterium marinum, a nontuberculous pathogen and model for the human pathogen Mycobacterium tuberculosis. In the presence of a functional ESX-1 system, the WhiB6 transcription factor upregulates expression of ESX-1 substrate genes. In the absence of an assembled ESX-1 system, the conserved transcription factor, EspM, represses whiB6 expression by specifically binding the whiB6 promoter. Together, WhiB6 and EspM fine-tune the levels of ESX-1 substrates in response to the secretion system. The mechanisms underlying control of the ESX-1 system by EspM are unknown. Here, we conduct a structure and function analysis to investigate how EspM is regulated. Using biochemical approaches, we measured the formation of higher-order oligomers of EspM in vitro. We demonstrate that multimerization in vitro can be mediated through multiple domains of the EspM protein. Using a bacterial monohybrid system, we showed that EspM self-associates through multiple domains in Escherichia coli. Using this system, we performed a genetic screen to identify EspM variants that failed to self-associate. The screen yielded four EspM variants of interest, which we tested for activity in M. marinum. Our study revealed that the two helix-turn-helix domains are functionally distinct. Moreover, the helix bundle domain is required for wild-type multimerization in vitro. Our data support models where EspM monomers or hexamers contribute to the regulation of whiB6 expression. IMPORTANCE Pathogenic mycobacteria are bacteria that pose a large burden to human health globally. The ESX-1 secretion system is required for pathogenic mycobacteria to survive within and interact with the host. Proper function of the ESX-1 secretion system is achieved by tightly controlling the expression of secreted virulence factors, in part through transcriptional regulation. Here, we characterize the conserved transcription factor EspM, which regulates the expression of ESX-1 virulence factors. We define domains required for EspM to form multimers and bind DNA. These findings provide an initial characterization an ESX-1 transcription factor and provide insights into its mechanism of action.


Asunto(s)
Proteínas Bacterianas , Mycobacterium marinum , Sistemas de Secreción Tipo VII , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Mycobacterium marinum/genética , Mycobacterium tuberculosis/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Sistemas de Secreción Tipo VII/metabolismo , Factores de Virulencia/genética
7.
PLoS Pathog ; 17(1): e1009124, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33411813

RESUMEN

Mycobacterial pathogens pose a sustained threat to human health. There is a critical need for new diagnostics, therapeutics, and vaccines targeting both tuberculous and nontuberculous mycobacterial species. Understanding the basic mechanisms used by diverse mycobacterial species to cause disease will facilitate efforts to design new approaches toward detection, treatment, and prevention of mycobacterial disease. Molecular, genetic, and biochemical approaches have been widely employed to define fundamental aspects of mycobacterial physiology and virulence. The recent expansion of genetic tools in mycobacteria has further increased the accessibility of forward genetic approaches. Proteomics has also emerged as a powerful approach to further our understanding of diverse mycobacterial species. Detection of large numbers of proteins and their modifications from complex mixtures of mycobacterial proteins is now routine, with efforts of quantification of these datasets becoming more robust. In this review, we discuss the "genetic proteome," how the power of genetics, molecular biology, and biochemistry informs and amplifies the quality of subsequent analytical approaches and maximizes the potential of hypothesis-driven mycobacterial research. Published proteomics datasets can be used for hypothesis generation and effective post hoc supplementation to experimental data. Overall, we highlight how the integration of proteomics, genetic, molecular, and biochemical approaches can be employed successfully to define fundamental aspects of mycobacterial pathobiology.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Genómica , Infecciones por Mycobacterium/metabolismo , Mycobacterium/metabolismo , Proteoma/metabolismo , Humanos , Mycobacterium/genética , Mycobacterium/patogenicidad , Infecciones por Mycobacterium/genética , Infecciones por Mycobacterium/microbiología , Proteoma/análisis
8.
Infect Immun ; 88(12)2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-32900815

RESUMEN

Mycobacterium tuberculosis, the cause of human tuberculosis, and Mycobacterium marinum, a nontubercular pathogen with a broad host range, require the ESX-1 secretion system for virulence. The ESX-1 system secretes proteins which cause phagosomal lysis within the macrophage via an unknown mechanism. As reported elsewhere (R. E. Bosserman et al., Proc Natl Acad Sci U S A 114:E10772-E10781, 2017, https://doi.org/10.1073/pnas.1710167114), we recently discovered that the ESX-1 system regulates gene expression in M. marinum This finding was confirmed in M. tuberculosis in reports by C. Sala et al. (PLoS Pathog 14:e1007491, 2018, https://doi.org/10.1371/journal.ppat.1007491) and A. M. Abdallah et al. (PLoS One 14:e0211003, 2019, https://doi.org/10.1371/journal.pone.0211003). We further demonstrated that a feedback control mechanism connects protein secretion to WhiB6-dependent expression of the esx-1 genes via an unknown mechanism. Here, we connect protein secretion and gene expression by showing for the first time that specific ESX-1 substrates have dual functions inside and outside the mycobacterial cell. We demonstrate that the EspE and EspF substrates negatively control esx-1 gene expression in the M. marinum cytoplasm through the conserved WhiB6 transcription factor. We found that EspE and EspF are required for virulence and promote lytic activity independently of the major EsxA and EsxB substrates. We show that the dual functions of EspE and EspF are conserved in the orthologous proteins from M. tuberculosis Our findings support a role for EspE and EspF in virulence that is independent of the EsxA and EsxB substrates and demonstrate that ESX-1 substrates have a conserved role in regulating gene expression.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/genética , Mycobacterium marinum/metabolismo , Sistemas de Secreción Tipo VII/metabolismo , Factores de Virulencia/metabolismo , Animales , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Mycobacterium marinum/genética , Mycobacterium marinum/patogenicidad , Células RAW 264.7 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Sistemas de Secreción Tipo VII/genética , Factores de Virulencia/genética
9.
mSphere ; 5(1)2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-32075879

RESUMEN

Kinetoplastid parasites, including Trypanosoma brucei, Trypanosoma cruzi, and Leishmania, harbor unique organelles known as glycosomes, which are evolutionarily related to peroxisomes. Glycosome/peroxisome biogenesis is mediated by proteins called peroxins that facilitate organelle formation, proliferation, and degradation and import of proteins housed therein. Import of matrix proteins occurs via one of two pathways that are dictated by their peroxisome targeting sequence (PTS). In PTS1 import, a C-terminal tripeptide sequence, most commonly SKL, is recognized by the soluble receptor Pex5. In PTS2 import, a less conserved N-terminal sequence is recognized by Pex7. The soluble receptors deliver their cargo to the import channel consisting minimally of Pex13 and Pex14. While much of the import process is conserved, kinetoplastids are the only organisms to have two Pex13s, Pex13.1 and Pex13.2. It is unclear why trypanosomes require two Pex13s when one is sufficient for most eukaryotes. To interrogate the role of Pex13.2, we have employed biochemical approaches to partially resolve the composition of the Pex13/Pex14 import complexes in T. brucei and characterized glycosome morphology and protein import in Pex13.2-deficient parasites. Here, we show that Pex13.2 is an integral glycosome membrane protein that interacts with Pex13.1 and Pex14. The N terminus of Pex13.2 faces the cytoplasmic side of the membrane, where it can facilitate interactions required for protein import. Two-dimensional gel electrophoresis revealed three glycosome membrane complexes containing combinations of Pex13.1, Pex13.2, and Pex14. The silencing of Pex13.2 resulted in parasites with fewer, larger glycosomes and disrupted glycosome protein import, suggesting the protein is involved in glycosome biogenesis as well as protein import. Furthermore, superresolution microscopy demonstrated that Pex13.2 localizes to discrete foci in the glycosome periphery, indicating that the glycosome periphery is not homogenous.IMPORTANCETrypanosoma brucei causes human African trypanosomiasis and a wasting disease called Nagana in livestock. Current treatments are expensive, toxic, and difficult to administer. Because of this, the search for new drug targets is essential. T. brucei has glycosomes that are essential to parasite survival; however, our ability to target them in drug development is hindered by our lack of understanding about how these organelles are formed and maintained. This work forwards our understanding of how the parasite-specific protein Pex13.2 functions in glycosome protein import and lays the foundation for future studies focused on blocking Pex13.2 function, which would be lethal to bloodstream-form parasites that reside in the mammalian bloodstream.


Asunto(s)
Microcuerpos/metabolismo , Peroxinas/metabolismo , Peroxisomas/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/genética , Citosol/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Peroxinas/genética , Peroxisomas/genética , Transporte de Proteínas , Proteínas Protozoarias/genética
10.
mBio ; 11(1)2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019792

RESUMEN

Pathogenic mycobacteria encounter multiple environments during macrophage infection. Temporally, the bacteria are engulfed into the phagosome, lyse the phagosomal membrane, and interact with the cytosol before spreading to another cell. Virulence factors secreted by the mycobacterial ESX-1 (ESAT-6-system-1) secretion system mediate the essential transition from the phagosome to the cytosol. It was recently discovered that the ESX-1 system also regulates mycobacterial gene expression in Mycobacterium marinum (R. E. Bosserman, T. T. Nguyen, K. G. Sanchez, A. E. Chirakos, et al., Proc Natl Acad Sci U S A 114:E10772-E10781, 2017, https://doi.org/10.1073/pnas.1710167114), a nontuberculous mycobacterial pathogen, and in the human-pathogenic species M. tuberculosis (A. M. Abdallah, E. M. Weerdenburg, Q. Guan, R. Ummels, et al., PLoS One 14:e0211003, 2019, https://doi.org/10.1371/journal.pone.0211003). It is not known how the ESX-1 system regulates gene expression. Here, we identify the first transcription factor required for the ESX-1-dependent transcriptional response in pathogenic mycobacteria. We demonstrate that the gene divergently transcribed from the whiB6 gene and adjacent to the ESX-1 locus in mycobacterial pathogens encodes a conserved transcription factor (MMAR_5438, Rv3863, now espM). We prove that EspM from both M. marinum and M. tuberculosis directly and specifically binds the whiB6-espM intergenic region. We show that EspM is required for ESX-1-dependent repression of whiB6 expression and for the regulation of ESX-1-associated gene expression. Finally, we demonstrate that EspM functions to fine-tune ESX-1 activity in M. marinum Taking the data together, this report extends the esx-1 locus, defines a conserved regulator of the ESX-1 virulence pathway, and begins to elucidate how the ESX-1 system regulates gene expression.IMPORTANCE Mycobacterial pathogens use the ESX-1 system to transport protein substrates that mediate essential interactions with the host during infection. We previously demonstrated that in addition to transporting proteins, the ESX-1 secretion system regulates gene expression. Here, we identify a conserved transcription factor that regulates gene expression in response to the ESX-1 system. We demonstrate that this transcription factor is functionally conserved in M. marinum, a pathogen of ectothermic animals; M. tuberculosis, the human-pathogenic species that causes tuberculosis; and M. smegmatis, a nonpathogenic mycobacterial species. These findings provide the first mechanistic insight into how the ESX-1 system elicits a transcriptional response, a function of this protein transport system that was previously unknown.


Asunto(s)
Proteínas Bacterianas/genética , Mycobacterium marinum/genética , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Factores de Transcripción/genética , Proteínas Bacterianas/metabolismo , Expresión Génica , Regulación Bacteriana de la Expresión Génica , Mycobacterium marinum/patogenicidad , Mycobacterium tuberculosis/patogenicidad , Factores de Transcripción/metabolismo , Virulencia
11.
J Bacteriol ; 201(14)2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30833360

RESUMEN

The ESX-1 (ESAT-6 system 1) secretion system plays a conserved role in the virulence of diverse mycobacterial pathogens, including the human pathogen Mycobacterium tuberculosis and M. marinum, an environmental mycobacterial species. The ESX-1 system promotes the secretion of protein virulence factors to the extracytoplasmic environment. The secretion of these proteins triggers the host response by lysing the phagosome during macrophage infection. Using proteomic analyses of the M. marinum secretome in the presence and absence of a functional ESX-1 system, we and others have hypothesized that MMAR_2894, a PE family protein, is a potential ESX-1 substrate in M. marinum We used genetic and quantitative proteomic approaches to determine if MMAR_2894 is secreted by the ESX-1 system, and we defined the requirement of MMAR_2894 for ESX-1-mediated secretion and virulence. We show that MMAR_2894 is secreted by the ESX-1 system in M. marinum and is itself required for the optimal secretion of the known ESX-1 substrates in M. marinum Moreover, we found that MMAR_2894 was differentially required for hemolysis and cytolysis of macrophages, two lytic activities ascribed to the M. marinum ESX-1 system.IMPORTANCE Both Mycobacterium tuberculosis, the cause of human tuberculosis (TB), and Mycobacterium marinum, a pathogen of ectotherms, use the ESX-1 secretion system to cause disease. There are many established similarities between the ESX-1 systems in M. tuberculosis and in M. marinum Yet the two bacteria infect different hosts, hinting at species-specific functions of the ESX-1 system. Our findings demonstrate that MMAR_2894 is a PE protein secreted by the ESX-1 system of M. marinum We show that MMAR_2894 is required for the optimal secretion of mycobacterial proteins required for disease. Because the MMAR_2894 gene is not conserved in M. tuberculosis, our findings demonstrate that MMAR_2894 may contribute to a species-specific function of the ESX-1 system in M. marinum, providing new insight into how the M. marinum and M. tuberculosis systems differ.


Asunto(s)
Proteínas Bacterianas/metabolismo , Eritrocitos/microbiología , Hemólisis , Interacciones Huésped-Patógeno , Mycobacterium marinum/genética , Mycobacterium marinum/patogenicidad , Animales , Proteínas Bacterianas/genética , Macrófagos/microbiología , Ratones , Mycobacterium tuberculosis , Proteómica , Células RAW 264.7 , Tuberculosis/microbiología , Virulencia , Factores de Virulencia/genética
12.
J Bacteriol ; 200(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29555701

RESUMEN

Mycobacterium marinum is a nontuberculous pathogen of poikilothermic fish and an opportunistic human pathogen. Like tuberculous mycobacteria, the M. marinum M strain requires the ESX-1 (ESAT-6 system 1) secretion system for virulence in host cells. EsxB and EsxA, two major virulence factors exported by the ESX-1 system, are encoded by the esxBA genes within the ESX-1 locus. Deletion of the esxBA genes abrogates ESX-1 export and attenuates M. marinum in ex vivo and in vivo models of infection. Interestingly, there are several duplications of the esxB and esxA genes (esxB_1, esxB_2, esxA_1, esxA_2, and esxA_3) in the M. marinum M genome located outside the ESX-1 locus. We sought to understand if this region, known as ESX-6, contributes to ESX-1-mediated virulence. We found that deletion of the esxB_1 gene alone or the entire ESX-6 locus did not impact ESX-1 export or function, supporting the idea that the esxBA genes present at the ESX-1 locus are the primary contributors to ESX-1-mediated virulence. Nevertheless, overexpression of the esxB_1 locus complemented ESX-1 function in the ΔesxBA strain, signifying that the two loci are functionally equivalent. Our findings raise questions about why duplicate versions of the esxBA genes are maintained in the M. marinum M genome and how these proteins, which are functionally equivalent to virulence factors, contribute to mycobacterial biology.IMPORTANCEMycobacterium tuberculosis is the causative agent of the human disease tuberculosis (TB). There are 10.4 million cases and 1.7 million TB-associated deaths annually, making TB a leading cause of death globally. Nontuberculous mycobacteria (NTM) cause chronic human infections that are acquired from the environment. Despite differences in disease etiology, both tuberculous and NTM pathogens use the ESX-1 secretion system to cause disease. The nontubercular mycobacterial species, Mycobacterium marinum, has additional copies of specific ESX-1 genes. Our findings demonstrate that the duplicated genes do not contribute to virulence but can substitute for virulence factors in M. marinum These findings suggest that the duplicated genes may play a specific role in NTM biology.


Asunto(s)
Proteínas Bacterianas/metabolismo , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium marinum/genética , Proteínas Bacterianas/genética , Duplicación de Gen , Humanos , Mycobacterium marinum/patogenicidad , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...