Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
ACS Infect Dis ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771724

RESUMEN

Toward human immunodeficiency virus type-1 (HIV-1) cure, cells latently infected with HIV-1 must be eliminated from people living with HIV-1. We previously developed a protein kinase C (PKC) activator, diacylglycerol (DAG)-lactone derivative 3, with high HIV-1 latency-reversing activity, based on YSE028 (2) as a lead compound and found that the activity was correlated with binding affinity for PKC and stability against esterase-mediated hydrolysis. Here, we synthesized new DAG-lactone derivatives not only containing a tertiary ester group or an isoxazole surrogate but also several symmetric alkylidene moieties to improve HIV-1 latency reversing activity. Compound 9a, with a dimethyl group at the α-position of the ester group, exerted twice higher HIV-1 latency reversing activity than compound 3, and compound 26, with the isoxazole moiety, was significantly active. In addition, DAG-lactone derivatives with moderate hydrophobicity and potent biostability showed high biological activity.

2.
Adv Sci (Weinh) ; : e2310255, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600709

RESUMEN

Genome Editing is widely used in biomedical research and medicine. Zinc finger nucleases (ZFNs) are smaller in size than transcription activator-like effector (TALE) nucleases (TALENs) and CRISPR-Cas9. Therefore, ZFN-encoding DNAs can be easily packaged into a viral vector with limited cargo space, such as adeno-associated virus (AAV) vectors, for in vivo and clinical applications. ZFNs have great potential for translational research and clinical use. However, constructing functional ZFNs and improving their genome editing efficiency is extremely difficult. Here, the efficient construction of functional ZFNs and the improvement of their genome editing efficiency using AlphaFold, Coot, and Rosetta are described. Plasmids encoding ZFNs consisting of six fingers using publicly available zinc-finger resources are assembled. Two functional ZFNs from the ten ZFNs tested are successfully obtained. Furthermore, the engineering of ZFNs using AlphaFold, Coot, or Rosetta increases the efficiency of genome editing by 5%, demonstrating the effectiveness of engineering ZFNs based on structural modeling.

3.
Chem Pharm Bull (Tokyo) ; 72(3): 311-312, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38494724

RESUMEN

An improvement of the two-photon excitation was achieved using 8-azacoumarin-type caged compounds, which showed large values of the two-photon uncaging action cross-section (δu >0.1 Goeppert-Mayer (GM)). In particular, the 7-hydroxy-6-iodo-8-azacoumarin (8-aza-Ihc)-caged compound showed an excellent uncaging action cross-section value (δu = 1.28 GM). Therefore, 8-azacoumarin-type photolabile protecting groups (PPGs) can be used as two-photon excitation sources.


Asunto(s)
Fotones
4.
Mol Ther Nucleic Acids ; 35(1): 102124, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38328481

RESUMEN

In genome editing, it is important to avoid off-target mutations so as to reduce unexpected side effects, especially for therapeutic applications. Recently, several high-fidelity versions of SpCas9 have been developed to reduce off-target mutations. In addition to reducing off-target effects, highly efficient intended target gene correction is also essential to rescue protein functions that have been disrupted by single nucleotide polymorphisms. Homology-directed repair (HDR) corrects genes precisely using a DNA template. Our recent development of cell cycle-dependent genome editing has shown that regulation of Cas9 activation with an anti-CRISPR-Cdt1 fusion protein increases HDR efficiency and reduces off-target effects. In this study, to apply high-fidelity SpCas9 variants to cell cycle-dependent genome editing, we evaluated anti-CRISPR inhibition of high-fidelity SpCas9s. In addition, HDR efficiency of high-fidelity SpCas9s was addressed, identifying eSpCas9, SpCas9-HF1, and LZ3 Cas9 as promising candidates. Although eSpCas9 and LZ3 Cas9 showed decreased HDR efficiency in cell cycle-dependent genome editing, SpCas9-HF1 successfully achieved increased HDR efficiency and few off-target effects when co-expressed with an AcrIIA4-Cdt1 fusion.

5.
J Artif Organs ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38194053

RESUMEN

Understanding the interaction between macrophages and biomaterials is important for the creation of new biomaterials and the development of technologies to control macrophage function. Since macrophages are strongly adhesive, caution is required when performing in vitro evaluations. Similarly, when THP-1 cells, macrophage precursor cells, are differentiated into macrophages using phorbol-12-myristate-13-acetate (PMA), it becomes difficult to detach them from the adherent substrate, which has been a problem on investigation of immunological responses to biomaterials. In this study, the interaction of THP-1 cell-differentiated macrophages with biomaterials was analyzed based on a new method of seeding THP-1 cells. THP-1 cells were cultured in static and rotation culture without and with PMA. In undifferentiated THP-1 cells, there was no change in cellular function between static and rotation cultures. In rotation culture with PMA, THP-1 cells differentiated and formed macrophage aggregates. IL-1ß and MRC1 expression in macrophage aggregates was examined after differentiation and M1/M2 polarization. Macrophage aggregates in rotation culture tended to be polarized toward M2 macrophages compared with those in static culture. In the evaluation of the responses of macrophage aggregates to several kinds of polymeric materials, macrophage aggregates showed different changes in MRC1 expression over time at 30, 50, and 70 rpm. Rotation speed of 30 rpm was considered most appropriate condition in that it gave stable results with the same trend as obtained with static culture. The use of macrophage aggregates obtained by rotational culture is expected to provide new insights into the evaluation of inflammatory properties of biomaterials.

6.
FASEB J ; 38(1): e23391, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38145327

RESUMEN

Adipocytes play a key role in energy storage and homeostasis. Although the role of transcription factors in adipocyte differentiation is known, the effect of endogenous metabolites of low molecular weight remains unclear. Here, we analyzed time-dependent changes in the levels of these metabolites throughout adipocyte differentiation, using metabolome analysis, and demonstrated that there is a positive correlation between cyclic adenosine diphosphate ribose (cADPR) and Pparγ mRNA expression used as a marker of differentiation. We also found that the treatment of C3H10T1/2 adipocytes with cADPR increased the mRNA expression of those marker genes and the accumulation of triglycerides. Furthermore, inhibition of ryanodine receptors (RyR), which are activated by cADPR, caused a significant reduction in mRNA expression levels of the marker genes and triglyceride accumulation in adipocytes. Our findings show that cADPR accelerates adipocytic differentiation via RyR pathway.


Asunto(s)
Adipocitos , ADP-Ribosa Cíclica , Ratones , Animales , ADP-Ribosa Cíclica/metabolismo , Adipocitos/metabolismo , Factores de Transcripción/metabolismo , PPAR gamma/metabolismo , Metaboloma , ARN Mensajero/genética , Diferenciación Celular , Adenosina Difosfato Ribosa/metabolismo , Adenosina Difosfato Ribosa/farmacología , Adipogénesis/genética , Células 3T3-L1
7.
Biochem Biophys Res Commun ; 685: 149157, 2023 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-37918324

RESUMEN

During cell cycle progression in Saccharomyces cerevisiae, spindle pole bodies (SPBs) are duplicated during the G1/S-phase transition. SPBs are crucial for the organization of both the spindle and astral microtubules, and their orientation defines the direction of nuclear division. In this process, an old SPB, which serves as the template SPB during the duplication process, is oriented toward the bud side. The patterning microtubule plus-end tracking protein, Kar9, plays an important role in the orientation of SPBs by asymmetrically localizing to the old SPB. Here, methylglyoxal (MG), a metabolite derived from glycolysis, was found to perturb asymmetric Kar9 localization and influence proper positioning of the old SPB. MG activated the DNA damage checkpoint pathway, and MG-induced perturbation of asymmetric Kar9 localization was abolished by the deletion of MEC1, a sensor for the DNA damage checkpoint pathway. Methyl methanesulfonate, a DNA-alkylating agent, also perturbed asymmetric Kar9 localization. Our results suggest that activation of the DNA damage checkpoint pathway perturbs the asymmetric Kar9 localization required for proper positioning of SPBs.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Daño del ADN , Microtúbulos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Huso Acromático/metabolismo , Cuerpos Polares del Huso/metabolismo
8.
Chem Commun (Camb) ; 59(50): 7676-7684, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37259535

RESUMEN

Genome editing had a long history before the appearance of CRISPR. Although a decade has passed since the initial use of CRISPR with mammalian cells, the first attempts at gene editing occurred in the 1980's. Subsequently, many researchers tried to develop methods to edit specific genes. Here, we review the history of genome editing and improvements in genome editing tools. In the last two decades, genome editing tools have been applied in basic sciences, the bio-industry, and therapeutics. We provide examples in which genome editing tools have been applied to various tasks. Recently, new CRISPR-Cas techniques, such as base and prime editing and anti-CRISPR proteins, have attracted considerable interest. Accordingly, these topics are also reviewed.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Biología , Mamíferos/genética
9.
Biosci Biotechnol Biochem ; 87(7): 747-757, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37024261

RESUMEN

Soy isoflavones have been shown to have anti-inflammatory properties; however, the anti-inflammatory effects of isoflavone metabolites produced during soybean germination remain unclear. We found that the daidzein and genistein derivatives, 8-prenyl daidzein (8-PD) and 8-prenyl genistein (8-PG), demonstrated a more potent effect than daidzein and genistein on repressing inflammatory responses in macrophages. Although IkB protein levels were unaltered, 8-PD and 8-PG repressed nuclear factor kappa B (NF-κB) activation, which was associated with reduced ERK1/2, JNK, and p38 MAPK activation and suppressed mitogen- and stress-activated kinase 1 phosphorylation. Inflammatory responses induced by the medium containing hypertrophic adipocyte secretions were successfully suppressed by 8-PD and 8-PG treatment. In the ex vivo study, 8-PD and 8-PG significantly inhibited proinflammatory C-C motif chemokine ligand 2 (CCL2) secretion from the adipose tissues of mice fed a long-term high-fat diet. The data suggest that 8-PD and 8-PG could regulate macrophage activation under obesity conditions.


Asunto(s)
Genisteína , Isoflavonas , Ratones , Animales , Genisteína/farmacología , Genisteína/metabolismo , Glycine max/metabolismo , Isoflavonas/farmacología , Isoflavonas/metabolismo , Macrófagos/metabolismo , Antiinflamatorios/farmacología
10.
iScience ; 26(3): 106161, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36895651

RESUMEN

The high thermogenic activity of brown adipose tissue (BAT) has received considerable attention. Here, we demonstrated the role of the mevalonate (MVA) biosynthesis pathway in the regulation of brown adipocyte development and survival. The inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the rate-limiting enzyme in the MVA pathway and the molecular target of statins, suppressed brown adipocyte differentiation by suppressing protein geranylgeranylation-mediated mitotic clonal expansion. The development of BAT in neonatal mice exposed to statins during the fetal period was severely impaired. Moreover, statin-induced geranylgeranyl pyrophosphate (GGPP) deficiency led to the apoptosis of mature brown adipocytes. Brown adipocyte-specific Hmgcr knockout induced BAT atrophy and disrupted thermogenesis. Importantly, both genetic and pharmacological inhibition of HMGCR in adult mice induced morphological changes in BAT accompanied by an increase in apoptosis, and statin-treated diabetic mice showed worsened hyperglycemia. These findings revealed that MVA pathway-generated GGPP is indispensable for BAT development and survival.

11.
FEBS Lett ; 597(7): 985-994, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36905332

RESUMEN

Genome editing with CRISPR-Cas9, particularly for therapeutic purposes, should be accomplished via the homology-directed repair (HDR) pathway, which exhibits greater precision than other pathways. However, one of the issues to be solved is that genome editing efficiency with HDR is generally low. A Streptococcus pyogenes Cas9 (SpyCas9) fusion with human Geminin (Cas9-Gem) reportedly increases HDR efficiency slightly. In contrast, we found that regulation of SpyCas9 activity with an anti-CRISPR protein (AcrIIA4) fused to Chromatin licensing and DNA replication factor 1 (Cdt1) significantly increases HDR efficiency and reduces off-target effects. Here, another anti-CRISPR protein, AcrIIA5, was applied, and the combined use of Cas9-Gem and Anti-CRISPR+Cdt1 showed synergistic enhancement of HDR efficiency. The method may be applicable to various anti-CRISPR/CRISPR-Cas combinations.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Humanos , Geminina/genética , Reparación del ADN por Recombinación , Proteínas de Ciclo Celular/genética
12.
Eur J Pharmacol ; 947: 175682, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36965744

RESUMEN

In the treatment of type 2 diabetes mellitus (T2DM), comprehensive management of multiple risk factors, such as blood glucose, body weight, and lipids, is important to prevent disease progression. Although the combination of dipeptidyl peptidase-4 (DPP-4) inhibitor and sodium-glucose co-transporter 2 (SGLT2) inhibitor is often used clinically, the effects of this combination, other than glucose metabolism, have yet to be thoroughly investigated. In this study, we evaluated the effects of combined treatment with a DPP-4 inhibitor, teneligliptin, and an SGLT2 inhibitor, canagliflozin, on the body weight and lipid metabolism in high-fat diet (HFD)-induced obese mice. We found that monotherapy with teneligliptin or canagliflozin showed suppressive effects on high-fat diet-induced body weight gain and reduced inguinal white adipose tissue (iWAT) mass, and combined treatment additively reduced body weight gain and iWAT mass. Teneligliptin significantly increased oxygen consumption during the light phase, and this effect was preserved in the combined treatment. The combined treatment did not alter the mRNA expression levels of thermogenesis-related genes in adipose tissue but showed the tendency to additively induce mRNA of fatty acid oxidation-related genes in brown adipose tissue and tended to additively decrease mRNA of fatty acid synthesis-related genes in iWAT and liver tissues. These results suggest that combined treatment with teneligliptin and canagliflozin additively suppresses HFD-induced body weight gain with increasing oxygen consumption and modulating the expression of lipid metabolism-related genes. This combination therapy may provide effective body weight management for patients with T2DM and obesity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores de la Dipeptidil-Peptidasa IV , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Ratones , Animales , Canagliflozina/farmacología , Canagliflozina/uso terapéutico , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo de los Lípidos , Dieta Alta en Grasa/efectos adversos , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Aumento de Peso , Peso Corporal , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , ARN Mensajero/metabolismo , Ácidos Grasos , Expresión Génica
13.
J Biol Inorg Chem ; 28(3): 249-261, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36749405

RESUMEN

Zinc finger proteins are abundant in the human proteome and are responsible for a variety of functions. The domains that constitute zinc finger proteins are compact spherical structures, each comprising approximately 30 amino acid residues, but they also have precise molecular factor functions: zinc binding and DNA recognition. Due to the biological importance of zinc finger proteins and their unique structural and functional properties, many artificial zinc finger proteins have been created and are expected to improve their functions and biological applications. In this study, we review previous studies on the redesign and application of artificial zinc finger proteins, focusing on the experimental results obtained by our research group. In addition, we systematically review various design strategies used to construct artificial zinc finger proteins and discuss in detail their potential biological applications, including gene editing. This review will provide relevant information to researchers involved or interested in the field of artificial zinc finger proteins as a potential new treatment for various diseases.


Asunto(s)
ADN , Dedos de Zinc , Humanos , ADN/química
14.
Biochem J ; 479(21): 2279-2296, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36256829

RESUMEN

Certain metabolic intermediates produced during metabolism are known to regulate a wide range of cellular processes. Methylglyoxal (MG), a natural metabolite derived from glycolysis, has been shown to negatively influence systemic metabolism by inducing glucose intolerance, insulin resistance, and diabetic complications. MG plays a functional role as a signaling molecule that initiates signal transduction. However, the specific relationship between MG-induced activation of signal transduction and its negative effects on metabolism remains unclear. Here, we found that MG activated mammalian target of rapamycin complex 1 (mTORC1) signaling via p38 mitogen-activated protein kinase in adipocytes, and that the transforming growth factor-ß-activated kinase 1 (TAK1) is needed to activate p38-mTORC1 signaling following treatment with MG. We also found that MG increased the phosphorylation levels of serine residues in insulin receptor substrate (IRS)-1, which is involved in its negative regulation, thereby attenuating insulin-stimulated tyrosine phosphorylation in IRS-1. The negative effect of MG on insulin-stimulated IRS-1 tyrosine phosphorylation was exerted due to the MG-induced activation of the TAK1-p38-mTORC1 signaling axis. The involvement of the TAK1-p38-mTORC1 signaling axis in the induction of IRS-1 multiple serine phosphorylation was not unique to MG, as the proinflammatory cytokine, tumor necrosis factor-α, also activated the same signaling axis. Therefore, our findings suggest that MG-induced activation of the TAK1-p38-mTORC1 signaling axis caused multiple serine phosphorylation on IRS-1, potentially contributing to insulin resistance.


Asunto(s)
Resistencia a la Insulina , Piruvaldehído , Humanos , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Piruvaldehído/farmacología , Piruvaldehído/metabolismo , Resistencia a la Insulina/fisiología , Serina/metabolismo , Transducción de Señal/fisiología , Adipocitos/metabolismo , Insulina/farmacología , Insulina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Tirosina/metabolismo , Fosfoproteínas/metabolismo
15.
J Biol Chem ; 298(10): 102456, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36063990

RESUMEN

Adipocyte browning is one of the potential strategies for the prevention of obesity-related metabolic syndromes, but it is a complex process. Although previous studies make it increasingly clear that several transcription factors and enzymes are essential to induce browning, it is unclear what dynamic and metabolic changes occur in induction of browning. Here, we analyzed the effect of a beta-adrenergic receptor agonist (CL316243, accelerator of browning) on metabolic change in mice adipose tissue and plasma using metabolome analysis and speculated that browning is regulated partly by inosine 5'-monophosphate (IMP) metabolism. To test this hypothesis, we investigated whether Ucp-1, a functional marker of browning, mRNA expression is influenced by IMP metabolism using immortalized adipocytes. Our study showed that mycophenolic acid, an IMP dehydrogenase inhibitor, increases the mRNA expression of Ucp-1 in immortalized adipocytes. Furthermore, we performed a single administration of mycophenolate mofetil, a prodrug of mycophenolic acid, to mice and demonstrated that mycophenolate mofetil induces adipocyte browning and miniaturization of adipocyte size, leading to adipose tissue weight loss. These findings showed that IMP metabolism has a significant effect on adipocyte browning, suggesting that the regulator of IMP metabolism has the potential to prevent obesity.


Asunto(s)
Adipocitos , Inosina Monofosfato , Ácido Micofenólico , Animales , Ratones , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Inosina Monofosfato/metabolismo , Metabolómica , Ratones Endogámicos C57BL , Ácido Micofenólico/farmacología , Ácido Micofenólico/metabolismo , Obesidad/metabolismo , ARN Mensajero/metabolismo
16.
J Cell Sci ; 135(17)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35912799

RESUMEN

Target of rapamycin (TOR) forms two distinct complexes, TORC1 and TORC2, to exert its essential functions in cellular growth and homeostasis. TORC1 signaling is regulated in response to nutrients such as amino acids and glucose; however, the mechanisms underlying the activation of TORC2 signaling are still poorly understood compared to those for TORC1 signaling. In the budding yeast Saccharomyces cerevisiae, TORC2 targets the protein kinases Ypk1 and Ypk2 (hereafter Ypk1/2), and Pkc1 for phosphorylation. Plasma membrane stress is known to activate TORC2-Ypk1/2 signaling. We have previously reported that methylglyoxal (MG), a metabolite derived from glycolysis, activates TORC2-Pkc1 signaling. In this study, we found that MG activates the TORC2-Ypk1/2 and TORC2-Pkc1 signaling, and that phosphatidylserine is involved in the activation of both signaling pathways. We also demonstrated that the Rho family GTPase Cdc42 contributes to the plasma membrane stress-induced activation of TORC2-Ypk1/2 signaling. Furthermore, we revealed that phosphatidylinositol-specific phospholipase C, Plc1, contributes to the activation of both TORC2-Ypk1/2 and TORC2-Pkc1 signaling.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Fosfatidilserinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirolimus , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo
17.
Biosci Biotechnol Biochem ; 86(3): 380-389, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-34935880

RESUMEN

Uncoupling protein 1 (UCP1) in brown or beige adipocytes is a mitochondrial protein that is expected to enhance whole-body energy expenditure. For the high-throughput screening of UCP1 transcriptional activity regulator, we established a murine inguinal white adipose tissue-derived Ucp1-luciferase reporter preadipocyte line. Using this reporter preadipocyte line, 654 flavor compounds were screened, and a novel Ucp1 expression-inducing compound, 5-methylquinoxaline, was identified. Adipocytes treated with 5-methylquinoxaline showed increased Ucp1 mRNA expression levels and enhanced oxygen consumption. 5-Methylquinoxaline induced Ucp1 expression through peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α), and 5-methylquinoxaline-induced PGC1α activation seemed to be partially regulated by its phosphorylation or deacetylation. Thus, our Ucp1-luciferase reporter preadipocyte line is a useful tool for screening of Ucp1 inductive compounds.


Asunto(s)
Proteína Desacopladora 1
18.
Biochem Biophys Rep ; 28: 101127, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34527816

RESUMEN

Methylglyoxal (MG) is a metabolite derived from glycolysis whose levels in the blood and tissues of patients with diabetes are higher than those of healthy individuals, suggesting that MG is associated with the development of diabetic complications. However, it remains unknown whether high levels of MG are a cause or consequence of diabetes. Here, we show that MG negatively affects the expression of uncoupling protein 1 (UCP1), which is involved in thermogenesis and the regulation of systemic metabolism. Decreased Ucp1 expression is associated with obesity and type 2 diabetes. We found that MG attenuated the increase in Ucp1 expression following treatment with isoproterenol in beige adipocytes. However, MG did not affect protein kinase A signaling, the core coordinator of isoproterenol-induced Ucp1 expression. Instead, MG activated c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases. We found that JNK inhibition, but not p38, recovered isoproterenol-stimulated Ucp1 expression under MG treatment. Altogether, these results suggest an inhibitory role of MG on the thermogenic function of beige adipocytes through the JNK signaling pathway.

19.
Org Biomol Chem ; 19(38): 8264-8271, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34338277

RESUMEN

Protein kinase C (PKC) is associated with a central cellular signal transduction pathway and disorders such as cancer and Alzheimer-type dementia and is therefore a target for the treatment of these diseases. The development of simple methods suitable for high-throughput screening to find potent PKC ligands is desirable. We have developed an assay based on fluorescence-quenching screening with a solvatochromic fluorophore attached to a competitive probe and its alternative method based on Förster/fluorescence resonance energy transfer (FRET) phenomena. Here, an improved FRET-based PKC binding assay using a diacylglycerol (DAG) lactone labeled with a donor fluorescent dye, 6-methoxynaphthalene (6MN), was developed. The 6MN-labeled DAG-lactone has a higher binding affinity for the PKCδ C1b domain and the fluorescent PKCδ C1b domain labeled by fluorescein as an acceptor fluorescent dye (Fl-δC1b) than the diethylaminocoumarin (DEAC)-labeled DAG-lactone. The combination of the 6MN-labeled DAG-lactone and Fl-δC1b showed a change in fluorescence response larger than that of the DEAC-labeled DAG-lactone and Fl-δC1b. The IC50 values of known PKC ligands calculated by the present FRET-based method using 6MN-labeled DAG-lactone agree well with the Ki values obtained by the conventional radioisotope-based assays. Some false positive compounds, identified by the previous solvatochromic fluorophore-based method, were found to be negative by this method. The present FRET-based PKC binding assay is more sensitive and could be more useful.


Asunto(s)
Diglicéridos
20.
PLoS One ; 16(7): e0254190, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34214105

RESUMEN

Several isoflavonoids are well known for their ability to act as soybean phytoalexins. However, the overall effects of the soybean-Aspergillus oryzae interaction on metabolism remain largely unknown. The aim of this study is to reveal an overview of nutritive and metabolic changes in germinated and A. oryzae-elicited soybeans. The levels of individual nutrients were measured using the ustulation, ashing, Kjeldahl, and Folch methods. The levels of individual amino acids were measured using high-performance liquid chromatography. Low-molecular-weight compounds were measured through metabolome analysis using liquid chromatography-mass spectrometry. Although the levels of individual nutrients and amino acids were strongly influenced by the germination process, the elicitation process had little effect on the change in the contents of individual nutrients and amino acids. However, after analyzing approximately 700 metabolites using metabolome analysis, we found that the levels of many of the metabolites were strongly influenced by soybean-A. oryzae interactions. In particular, the data indicate that steroid, terpenoid, phenylpropanoid, flavonoid, and fatty acid metabolism were influenced by the elicitation process. Furthermore, we demonstrated that not the germination process but the elicitation process induced daidzein prenylation, suggesting that the soybean-A. oryzae interactions produce various phytoalexins that are valuable for health promotion and/or disease prevention.


Asunto(s)
Aspergillus oryzae/metabolismo , Glycine max/metabolismo , Isoflavonas/metabolismo , Metaboloma/fisiología , Prenilación/fisiología , Aminoácidos/metabolismo , Fermentación/fisiología , Flavonoides/metabolismo , Germinación/fisiología , Nutrientes/metabolismo , Extractos Vegetales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...