Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Dermatol ; 51(1): 95-97, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37698040

RESUMEN

To date, 10 types of human papillomavirus have been identified that cause flat warts, including human papillomavirus type 3, which belongs to species group 2 of the genus alpha papillomavirus. Among these 10 types, human papillomavirus type 94 is most closely related to human papillomavirus type 10, sharing 86% homology. In this study, we conducted polymerase chain reaction analysis with sequencing on samples obtained from cutaneous lesions located on the face and lower legs of an individual, revealing the presence of human papillomavirus type 94. Dermatoscopic findings revealed numerous dotted vessels within one group of macular brown lesions located on the lower leg, which contributed to the diagnosis of flat warts. An online search revealed that human papillomavirus type 94 has previously been detected in various skin diseases, and we provide a review of prior reports.


Asunto(s)
Infecciones por Papillomavirus , Verrugas , Humanos , Infecciones por Papillomavirus/diagnóstico , Virus del Papiloma Humano , ADN Viral/genética , Verrugas/patología , Papillomaviridae/genética
3.
Exp Gerontol ; 180: 112270, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37572992

RESUMEN

INTRODUCTION: With the global population aging, there is an increased prevalence of sepsis among the elderly, a demographic particularly susceptible to inflammation. This study aimed to evaluate the therapeutic potential of hydrogen gas, known for its anti-inflammatory and antioxidant properties, in attenuating inflammation specifically in the lungs and liver, and age-associated molecular markers in aged mice. METHODS: Male mice aged 21 to 23 months, representative of the human elderly population, were subjected to inflammation via intraperitoneal injection of lipopolysaccharide (LPS). The mice were allocated into eight groups to examine the effects of varying durations and concentrations of hydrogen gas inhalation: control, saline without hydrogen, saline with 24-hour 2 % hydrogen, LPS without hydrogen, LPS with 24-hour 2 % hydrogen, LPS with 6-hour 2 % hydrogen, LPS with 1-hour 2 % hydrogen, and LPS with 24-hour 1 % hydrogen. Parameters assessed included survival rate, activity level, inflammatory biomarkers, and organ injury. RESULTS: Extended administration of hydrogen gas specifically at a 2 % concentration for 24 h led to a favorable prognosis in the aged mice by reducing mRNA expression of inflammatory biomarkers in lung and liver tissue, mitigating lung injury, and diminishing the expression of the senescence-associated protein p21. Moreover, hydrogen gas inhalation selectively ameliorated senescence-related markers in lung tissue, including C-X-C motif chemokine 2, metalloproteinase-3, and arginase-1. Notably, hydrogen gas did not alleviate LPS-induced liver injury under the conditions tested. CONCLUSION: The study highlights that continuous inhalation of hydrogen gas at a 2 % concentration for 24 h can be a potent intervention in the geriatric population for improving survival and physical activity by mitigating pulmonary inflammation and modulating senescence-related markers in aged mice with LPS-induced inflammation. This finding paves the way for future research into hydrogen gas as a therapeutic strategy to alleviate severe inflammation that can lead to organ damage in the elderly.


Asunto(s)
Hidrógeno , Lipopolisacáridos , Anciano , Humanos , Masculino , Ratones , Animales , Hidrógeno/farmacología , Hidrógeno/uso terapéutico , Pulmón/metabolismo , Inflamación/metabolismo , Biomarcadores
4.
J Gerontol A Biol Sci Med Sci ; 78(9): 1701-1707, 2023 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-37190783

RESUMEN

BACKGROUND: Serum growth differentiation factor 15 (GDF15) is associated with age-related adverse outcomes. However, renal function has not been thoroughly evaluated in studies addressing the association between GDF15 and mortality. We aimed to clarify whether GDF15 is associated with total mortality after carefully controlling renal function markers. METHODS: We divided 1 801 community-dwelling Japanese older adults into quartiles according to their serum GDF15 concentrations. The correlation of GDF15 with renal function and inflammation markers was assessed by calculating Spearman correlation coefficients. Cumulative survival rates of the quartiles were estimated. In a Cox regression analysis adjusted for confounders, the association between GDF15 and mortality was evaluated. The discriminative capacity of GDF15 for the prediction of mortality was assessed with receiver-operating characteristic analysis. RESULTS: GDF15 was correlated with cystatin C (r = 0.394), ß2-microglobulin (r = 0.382), C-reactive protein (r = 0.124), and interleukin-6 (r = 0.166). The highest GDF15 quartile showed poor survival compared to the others. Older adults with higher GDF15 were associated with an increased mortality risk, independent of demographics and clinically relevant variables (hazard ratio [95% confidence interval]: 1.98 [1.09-3.59]). This significant association disappeared when additionally adjusted for cystatin C (1.65 [0.89-3.05]) or ß2-microglobulin (1.69 [0.91-3.12]). The ability to predict mortality was approximately comparable between GDF15 (area under the curve: 0.667), cystatin C (0.691), and ß2-microglobulin (0.715). CONCLUSIONS: Serum GDF15 is associated with total mortality in older Japanese after adjustment for major confounders. The increased mortality risk in older adults with higher GDF15 may be partly attributed to decreased renal function.


Asunto(s)
Cistatina C , Factor 15 de Diferenciación de Crecimiento , Enfermedades Renales , Anciano , Humanos , Biomarcadores , Pueblos del Este de Asia , Factor 15 de Diferenciación de Crecimiento/sangre , Vida Independiente , Enfermedades Renales/sangre , Enfermedades Renales/mortalidad , Mortalidad
5.
Med Gas Res ; 13(3): 133-141, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36571379

RESUMEN

Molecular hydrogen (H2) is an antioxidant and anti-inflammatory agent; however, the molecular mechanisms underlying its biological effects are largely unknown. Similar to other gaseous molecules such as inhalation anesthetics, H2 is more soluble in lipids than in water. A recent study demonstrated that H2 reduces radical polymerization-induced cellular damage by suppressing fatty acid peroxidation and membrane permeability. Thus, we sought to examine the effects of short exposure to H2 on lipid composition and associated physiological changes in SH-SY5Y neuroblastoma cells. We analyzed cells by liquid chromatography-high-resolution mass spectrometry to define changes in lipid components. Lipid class analysis of cells exposed to H2 for 1 hour revealed transient increases in glycerophospholipids including phosphatidylethanolamine, phosphatidylinositol, and cardiolipin. Metabolomic analysis also showed that H2 exposure for 1 hour transiently suppressed overall energy metabolism accompanied by a decrease in glutathione. We further observed alterations to endosomal morphology by staining with specific antibodies. Endosomal transport of cholera toxin B to recycling endosomes localized around the Golgi body was delayed in H2-exposed cells. We speculate that H2-induced modification of lipid composition depresses energy production and endosomal transport concomitant with enhancement of oxidative stress, which transiently stimulates stress response pathways to protect cells.


Asunto(s)
Neuroblastoma , Fosfolípidos , Humanos , Fosfolípidos/metabolismo , Regulación hacia Arriba , Antioxidantes/metabolismo , Metabolismo Energético
7.
Sci Rep ; 12(1): 13610, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35948585

RESUMEN

Retinitis pigmentosa (RP) is a genetically heterogeneous group of inherited retinal disorders involving the progressive dysfunction of photoreceptors and the retinal pigment epithelium, for which there is currently no treatment. The rd6 mouse is a natural model of autosomal recessive retinal degeneration. Given the known contributions of oxidative stress caused by reactive oxygen species (ROS) and selective inhibition of potent ROS peroxynitrite and OH·by H2 gas we have previously demonstrated, we hypothesized that ingestion of H2 water may delay the progression of photoreceptor death in rd6 mice. H2 mice showed significantly higher retinal thickness as compared to controls on optical coherence tomography. Histopathological and morphometric analyses revealed higher thickness of the outer nuclear layer for H2 mice than controls, as well as higher counts of opsin red/green-positive cells. RNA sequencing (RNA-seq) analysis of differentially expressed genes in the H2 group versus control group revealed 1996 genes with significantly different expressions. Gene and pathway ontology analysis showed substantial upregulation of genes responsible for phototransduction in H2 mice. Our results show that drinking water high in H2 (1.2-1.6 ppm) had neuroprotective effects and inhibited photoreceptor death in mice, and suggest the potential of H2 for the treatment of RP.


Asunto(s)
Agua Potable , Degeneración Retiniana , Retinitis Pigmentosa , Animales , Modelos Animales de Enfermedad , Hidrógeno/metabolismo , Hidrógeno/farmacología , Ratones , Células Fotorreceptoras de Vertebrados/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Degeneración Retiniana/patología , Retinitis Pigmentosa/patología
8.
Exp Gerontol ; 165: 111866, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35680079

RESUMEN

Mitochondria are dysfunctional in post-senescent cells. Therefore, age-dependent impairment of mitochondrial energy production accompanied by excessive mitochondrial reactive oxygen species (ROS) is proposed to be a key driver of cellular senescence, which is a state of irreversible cell cycle arrest. However, it remains to be clarified whether mitochondrial dysfunction initiates or accelerates replicative senescence. In this study, we observed no increase in mitochondrial ROS or decrease in mitochondrial respiratory function in human TIG-1 fibroblasts in the transition phase, during which the population doubling rate gradually decreases due to the development of replicative senescence. The integrated stress response and expression of growth differentiation factor 15, which are triggered by respiratory chain deficiency, were also not induced in the transition phase. Mitochondria were elongated without aberrant cristae structures in the transition phase. Mitophagy-related protein levels started to decrease in the transition phase, but autophagic flux slightly increased during replicative senescence. These results suggest that mitochondrial dysfunction and excessive mitochondrial ROS generation do not occur predominately in the transition phase and may not play a role in the development of replicative senescence in normal diploid TIG-1 fibroblasts.


Asunto(s)
Senescencia Celular , Mitocondrias , Senescencia Celular/fisiología , Fibroblastos/metabolismo , Humanos , Mitocondrias/metabolismo , Mitofagia , Especies Reactivas de Oxígeno/metabolismo
9.
Arch Biochem Biophys ; 720: 109172, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35276212

RESUMEN

Mitochondria change their morphology and inner membrane structure depending on their activity. Since mitochondrial activity also depends on their structure, it is important to elucidate the interrelationship between the activity and structure of mitochondria. However, the mechanism by which mitochondrial activity affects the structure of cristae, the folded structure of the inner membrane, is not well understood. In this study, the effect of the mitochondrial activity on the cristae structure was investigated by examining the structural rigidity of cristae. Taking advantage of the fact that unfolding of cristae induces mitochondrial swelling, we investigated the relationship between mitochondrial activity and the susceptibility to swelling. The swelling of individual isolated mitochondria exposed to a hypotonic solution was observed with an optical microscope. The presence of respiratory substrates (malate and glutamate) increased the percentage of mitochondria that underwent swelling, and the further addition of rotenone or KCN (inhibitors of proton pumps) reversed the increase. In the absence of respiratory substrates, acidification of the buffer surrounding the mitochondria also increased the percentage of swollen mitochondria. These observations suggest that acidification of the outer surface of inner membranes, especially intracristal space, by proton translocation from the matrix to the intracristal space, decreases the structural rigidity of the cristae. This interpretation was verified by the observation that ADP or CCCP, which induces proton re-entry to the matrix, suppressed the mitochondrial swelling in the presence of respiratory substrates. The addition of CCCP to the cells induced a morphological change in mitochondria from an initial elongated structure to a largely curved structure at pH 7.4, but there were no morphological changes when the pH of the cytosol dropped to 6.2. These results suggest that a low pH in the intracristal space may be helpful in maintaining the elongated structure of mitochondria. The present study shows that proton pumping by the electron transfer chain is the mechanism underlying mitochondrial morphology and the flexibility of cristae structure.


Asunto(s)
Bombas de Protones , Protones , Carbonil Cianuro m-Clorofenil Hidrazona/metabolismo , Mitocondrias , Membranas Mitocondriales/metabolismo , Bombas de Protones/metabolismo
10.
BMC Pulm Med ; 21(1): 339, 2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34719405

RESUMEN

BACKGROUND: Acute respiratory distress syndrome, which is caused by acute lung injury, is a destructive respiratory disorder caused by a systemic inflammatory response. Persistent inflammation results in irreversible alveolar fibrosis. Because hydrogen gas possesses anti-inflammatory properties, we hypothesized that daily repeated inhalation of hydrogen gas could suppress persistent lung inflammation by inducing functional changes in macrophages, and consequently inhibit lung fibrosis during late-phase lung injury. METHODS: To test this hypothesis, lung injury was induced in mice by intratracheal administration of bleomycin (1.0 mg/kg). Mice were exposed to control gas (air) or hydrogen (3.2% in air) for 6 h every day for 7 or 21 days. Respiratory physiology, tissue pathology, markers of inflammation, and macrophage phenotypes were examined. RESULTS: Mice with bleomycin-induced lung injury that received daily hydrogen therapy for 21 days (BH group) exhibited higher static compliance (0.056 mL/cmH2O, 95% CI 0.047-0.064) than mice with bleomycin-induced lung injury exposed only to air (BA group; 0.042 mL/cmH2O, 95% CI 0.031-0.053, p = 0.02) and lower static elastance (BH 18.8 cmH2O/mL, [95% CI 15.4-22.2] vs. BA 26.7 cmH2O/mL [95% CI 19.6-33.8], p = 0.02). When the mRNA levels of pro-inflammatory cytokines were examined 7 days after bleomycin administration, interleukin (IL)-6, IL-4 and IL-13 were significantly lower in the BH group than in the BA group. There were significantly fewer M2-biased macrophages in the alveolar interstitium of the BH group than in the BA group (3.1% [95% CI 1.6-4.5%] vs. 1.1% [95% CI 0.3-1.8%], p = 0.008). CONCLUSIONS: The results suggest that hydrogen inhalation inhibits the deterioration of respiratory physiological function and alveolar fibrosis in this model of lung injury.


Asunto(s)
Hidrógeno/farmacología , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/fisiopatología , Administración por Inhalación , Animales , Antibióticos Antineoplásicos , Bleomicina , Interleucinas/metabolismo , Lesión Pulmonar/inducido químicamente , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/patología , Síndrome de Dificultad Respiratoria/complicaciones
11.
Sci Rep ; 11(1): 15000, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294841

RESUMEN

We aimed to develop a sandwich ELISA to detect prostate-specific membrane antigen (PSMA) on small extracellular vesicles (EVs) using T-cell immunoglobulin domain and mucin domain-containing protein 4 (Tim4) as a capture molecule for EVs and to evaluate its diagnostic potential in urologic malignancies. First, we optimized the conditions for sandwich ELISA measuring the PSMA level on EVs captured from serum by Tim4 and found that the use of highly-purified EVs released from Tim4 that had captured EVs in serum reduced the background. Second, we confirmed its validity by studying mouse xenograft model for prostate cancer (PC). Lastly, we measured PSMA-EVs in serum of patients with urologic malignancies. The PSMA-EV levels were significantly higher in metastatic PC and castration-resistant PC (CRPC) patients than in therapy-naïve PC patients. In renal cell carcinoma (RCC) patients, PSMA-EVs were elevated in those with metastasis compared with those without metastasis, which may reflect the development of the neovasculature positive for PSMA in tumors. In conclusion, we developed a sandwich ELISA for detection of PSMA-EVs using highly-purified EVs isolated from serum by Tim4. Our results suggest that PSMA-EVs may be useful to diagnose and monitor not only PC but also RCC and possibly other hypervascular solid tumors.


Asunto(s)
Carcinoma de Células Renales/diagnóstico , Vesículas Extracelulares/metabolismo , Neoplasias Renales/diagnóstico , Proteínas de la Membrana/metabolismo , Antígeno Prostático Específico/metabolismo , Neoplasias de la Próstata/diagnóstico , Animales , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Ensayo de Inmunoadsorción Enzimática , Humanos , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Masculino , Ratones , Trasplante de Neoplasias , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Sensibilidad y Especificidad
12.
Biochem Biophys Res Commun ; 540: 116-122, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33472133

RESUMEN

Mitochondrial dysfunction is considered to be a major cause of sarcopenia, defined as age-related muscle fiber atrophy and muscle weakness, as reduced mitochondrial respiration and morphological changes such as ragged red fibers (RRFs) are observed in aging muscles. However, the role of mitochondrial dysfunction in sarcopenia is not fully elucidated. Although previous studies have suggested that aging has a fiber type-specific effect on mitochondrial function, little is known about mitochondrial changes in individual fiber types. Here, we used C57BL/6NCr female mice to identify fiber type-specific pathological changes, examine the significance of pathological changes in sarcopenia, and identify possible mechanisms behind mitochondrial changes in slow-twitch soleus muscle (SOL) and fast-twitch extensor digitorum longus muscle (EDL). We observed reduced type I fiber-specific mitochondrial respiratory enzyme activity, impaired respiration, and subsarcolemmal mitochondrial accumulation in aged SOL, which was different from RRFs. These pathological alterations were not directly associated with fiber atrophy. Additionally, we found increased oxidative stress markers in aged SOL, suggesting that oxidative stress is involved in the pathological and functional changes in mitochondria. Meanwhile, obvious mitochondrial changes were not seen in aged EDL. Thus, age-related mitochondrial dysfunction is specific to the fiber type and may correlate with the muscle quality rather than the muscle mass.


Asunto(s)
Envejecimiento/metabolismo , Envejecimiento/patología , Respiración de la Célula , Mitocondrias/metabolismo , Mitocondrias/patología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Animales , Femenino , Ratones , Mitocondrias/enzimología , Fibras Musculares Esqueléticas/enzimología , Tamaño de los Órganos , Fosforilación Oxidativa , Estrés Oxidativo , Sarcolema/enzimología , Sarcolema/metabolismo , Sarcolema/patología , Sarcopenia/enzimología , Sarcopenia/metabolismo , Sarcopenia/patología
13.
Int J Mol Sci ; 23(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35008703

RESUMEN

Vertebrate animals detect odors through olfactory receptors (ORs), members of the G protein-coupled receptor (GPCR) family. Due to the difficulty in the heterologous expression of ORs, studies of their odor molecule recognition mechanisms have progressed poorly. Functional expression of most ORs in heterologous cells requires the co-expression of their chaperone proteins, receptor transporting proteins (RTPs). Yet, some ORs were found to be functionally expressed without the support of RTP (RTP-independent ORs). In this study, we investigated whether amino acid residues highly conserved among RTP-independent ORs improve the functional expression of ORs in heterologous cells. We found that a single amino acid substitution at one of two sites (NBW3.39 and 3.43) in their conserved residues (E and L, respectively) significantly improved the functional expression of ORs in heterologous cells. E3.39 and L3.43 also enhanced the membrane expression of RTP-dependent ORs in the absence of RTP. These changes did not alter the odorant responsiveness of the tested ORs. Our results showed that specific sites within transmembrane domains regulate the membrane expression of some ORs.


Asunto(s)
Regulación de la Expresión Génica , Mamíferos/genética , Mutagénesis/genética , Receptores Odorantes/genética , Aminoácidos/genética , Animales , Células HEK293 , Humanos , Ligandos , Mutación con Pérdida de Función/genética , Ratones , Proteínas Mutantes/metabolismo , Mutación/genética , Receptores Odorantes/agonistas , Receptores Odorantes/química
14.
Curr Pharm Des ; 27(5): 659-666, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32981496

RESUMEN

Because multicellular organisms do not have hydrogenase, H2 has been considered to be biologically inactive in these species, and enterobacteria to be largely responsible for the oxidation of H2 taken into the body. However, we showed previously that inhalation of H2 markedly suppresses brain injury induced by focal ischemia-reperfusion by buffering oxidative stress. Although the reaction constant of H2 with hydroxyl radical in aqueous solution is two to three orders of magnitude lower than that of conventional antioxidants, we showed that hydroxyl radical generated by the Fenton reaction reacts with H2 at room temperature without a catalyst. Suppression of hydroxyl radical by H2 has been applied in ophthalmic surgery. However, many of the anti- inflammatory and other therapeutic effects of H2 cannot be completely explained by its ability to scavenge reactive oxygen species. H2 administration is protective in several disease models, and preculture in the presence of H2 suppresses oxidative stress-induced cell death. Specifically, H2 administration induces mitochondrial oxidative stress and activates Nrf2; this phenomenon, in which mild mitochondrial stress leaves the cell less susceptible to subsequent perturbations, is called mitohormesis. Based on these findings, we conclude that crosstalk between antioxidative stress pathways and the anti-inflammatory response is the most important molecular mechanism involved in the protective function of H2, and that regulation of the immune system underlies H2 efficacy. For further medical applications of H2, it will be necessary to identify the biomolecule on which H2 first acts.


Asunto(s)
Hidrógeno , Estrés Oxidativo , Antioxidantes/farmacología , Oxidación-Reducción , Especies Reactivas de Oxígeno
15.
Arch Biochem Biophys ; 696: 108668, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33188737

RESUMEN

Mitochondria are multifunctional organelles that regulate diverse cellular processes. Mitochondrial stress, including stress generated by electron transport chain defects and impaired mitochondrial proteostasis, is intimately involved in various diseases and pathological conditions. Sepsis is a life-threatening condition that occurs when an imbalanced host response to infection leads to organ dysfunction. Metabolic disturbances and impaired immune responses are implicated in the pathogenesis and development of sepsis. Given that mitochondria play central roles in cellular metabolism, mitochondrial stress is predicted to be involved in the pathological mechanism of sepsis. Under mitochondrial stress, cells activate stress response systems to maintain homeostasis. This mitochondrial stress response transcriptionally activates genes involved in cell survival and death. Mitochondrial stress also induces the release of distinctive secretory proteins from cells. Recently, we showed that growth differentiation factor 15 (GDF15) is a major secretory protein induced by mitochondrial dysfunction. In this article, we provide a brief overview of mitochondrial stress response and GDF15, and discuss the potential role of GDF15 in the pathophysiology of sepsis.


Asunto(s)
Factor 15 de Diferenciación de Crecimiento/metabolismo , Mitocondrias/metabolismo , Sepsis/fisiopatología , Animales , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Humanos , Inflamación/fisiopatología , Transducción de Señal/fisiología , Respuesta de Proteína Desplegada/fisiología
16.
Int J Ophthalmol ; 13(8): 1173-1179, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32821669

RESUMEN

AIM: To investigate the effects of hydrogen (H2) on Cu, Zn superoxide dismutase (SOD1) activation in a rat model of corneal alkali burn. METHODS: In each rat, one cornea was subjected to alkali exposure. Physiological saline (saline group) or H2-dissolved saline (H2 group) was instilled continuously on the cornea for 5min before and after alkali exposure. Inflammatory cells, neovascularization, and cytoplasmic SOD1 levels were evaluated immunohistochemically in enucleated eyes from both groups. Three-dimensional ultrastructural tissue changes in the eyes were analyzed using low-vacuum scanning electron microscopy. RESULTS: The numbers of both inflammatory and vascular endothelial cells were significantly reduced in the corneas of the H2 group (P<0.01). Furthermore, H2 treatment increased both cytoplasmic SOD1 levels (P<0.01) and activity in corneal epithelial cells (P<0.01). Notably, the SOD1 activity level in the H2 group was approximately 2.5-fold greater than that in the saline group. CONCLUSION: H2 treatment suppresses inflammation and neovascularization in the injured cornea and indirectly suppresses oxidative insult to the cornea by upregulating the SOD1 enzyme protein level and activity.

17.
Biochem Biophys Res Commun ; 527(1): 270-275, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32446379

RESUMEN

Aldehyde dehydrogenase 2 (ALDH2) plays major roles in aldehyde detoxification and in the catalysis of amino acids. ALDH2∗2, a dominant-negative transgenic expressing aldehyde dehydrogenase 2 (ALDH2) protein, is produced by a single nucleotide polymorphism (rs671) and is involved in the development of osteoporosis and hip fracture with aging. In a previous study, transgenic mice expressing Aldh2∗2(Aldh2∗2 Tg) osteoblastic cells or acetaldehyde -treated MC3T3-E1 showed impaired osteoblastogenesis and caused osteoporosis [1]. In this study, we demonstrated the effects of astaxanthin for differentiation to osteoblasts of MC3T3-E1 by the addition of acetaldehyde and Aldh2∗2 Tg mesenchymal stem cells in bone marrow. Astaxanthin restores the inhibited osteoblastogenesis by acetaldehyde in MC 3T3-E1 and in bone marrow mesenchymal stem cells of Aldh2∗2 Tg mice. Additionally, astaxanthin administration improved femur bone density in Aldh2∗2 Tg mice. Furthermore, astaxanthin improved cell survival and mitochondrial function in acetaldehyde-treated MC 3T3-E1 cells. Our results suggested that astaxanthin had restorative effects on osteoblast formation and provide new insight into the regulation of osteoporosis and suggest a novel strategy to promote bone formation in osteopenic diseases caused by impaired acetaldehyde metabolism.


Asunto(s)
Aldehído Deshidrogenasa Mitocondrial/metabolismo , Enfermedades Óseas Metabólicas/tratamiento farmacológico , Osteoclastos/efectos de los fármacos , Células 3T3 , Acetaldehído/antagonistas & inhibidores , Acetaldehído/farmacología , Administración Oral , Aldehído Deshidrogenasa Mitocondrial/genética , Animales , Enfermedades Óseas Metabólicas/inducido químicamente , Enfermedades Óseas Metabólicas/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ratones , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mutación , Osteoclastos/metabolismo , Osteogénesis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Xantófilas/administración & dosificación , Xantófilas/farmacología
18.
J Biol Chem ; 294(40): 14661-14673, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31395660

RESUMEN

Receptor-transporting protein 1S (RTP1S) is an accessory protein that mediates the transport of mammalian odorant receptors (ORs) into the plasma membrane. Although most ORs fail to localize to the cell surface when expressed alone in nonolfactory cells, functional expression of ORs is achieved with the coexpression of RTP1S. However, the mechanism for RTP1S-mediated OR trafficking remains unclear. In this study, we attempted to reveal the mode of action and critical residues of RTP1S in OR trafficking. Experiments using N-terminal truncation and Ala substitution mutants of RTP1S demonstrated that four N-terminal amino acids have essential roles in OR trafficking. Additionally, using recombinant proteins and split luciferase assays in mammalian cells, we provided evidence for the dimer formation of RTP1S. Furthermore, we determined that the 2nd Cys residue is required for the efficient dimerization of RTP1S. Altogether, these findings provide insights into the mechanism for plasma membrane transport of ORs by RTP1S.


Asunto(s)
Proteínas de Transporte de Membrana/química , Receptores Acoplados a Proteínas G/química , Receptores Odorantes/química , Animales , Movimiento Celular/genética , Dimerización , Citometría de Flujo , Células HEK293 , Humanos , Proteínas de Transporte de Membrana/genética , Ratones , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Odorantes/análisis , Transporte de Proteínas/genética , Receptores Acoplados a Proteínas G/genética , Receptores Odorantes/genética
19.
J Cell Mol Med ; 23(10): 7043-7053, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31424157

RESUMEN

Rheumatoid arthritis (RA)-associated interstitial lung disease (ILD), a primary cause of mortality in patients with RA, has limited treatment options. A previously established RA model in D1CC transgenic mice aberrantly expressed major histocompatibility complex class II genes in joints, developing collagen II-induced polyarthritis and anti-cyclic citrullinated peptide antibodies and interstitial pneumonitis, similar to those in humans. Molecular hydrogen (H2 ) is an efficient antioxidant that permeates cell membranes and alleviates the reactive oxygen species-induced injury implicated in RA pathogenesis. We used D1CC mice to analyse chronic lung fibrosis development and evaluate H2 treatment effects. We injected D1CC mice with type II collagen and supplied them with H2 -rich or control water until analysis. Increased serum surfactant protein D values and lung densities images were observed 10 months after injection. Inflammation was patchy within the perilymphatic stromal area, with increased 8-hydroxy-2'-deoxyguanosine-positive cell numbers and tumour necrosis factor-α, BAX, transforming growth factor-ß, interleukin-6 and soluble collagen levels in the lungs. Inflammatory and fibrotic changes developed diffusely within the perilymphatic stromal area, as observed in humans. H2 treatment decreased these effects in the lungs. Thus, this model is valuable for studying the effects of H2 treatment and chronic interstitial pneumonia pathophysiology in humans. H2 appears to protect against RA-ILD by alleviating oxidative stress.


Asunto(s)
Artritis Reumatoide/complicaciones , Artritis Reumatoide/tratamiento farmacológico , Hidrógeno/uso terapéutico , Enfermedades Pulmonares Intersticiales/complicaciones , Enfermedades Pulmonares Intersticiales/tratamiento farmacológico , Animales , Artritis Reumatoide/sangre , Artritis Reumatoide/patología , Bovinos , Colágeno Tipo II/administración & dosificación , Citocinas/metabolismo , Modelos Animales de Enfermedad , Hidrógeno/farmacología , Pulmón/patología , Enfermedades Pulmonares Intersticiales/sangre , Enfermedades Pulmonares Intersticiales/patología , Masculino , Ratones , Ratones Transgénicos , Estrés Oxidativo/efectos de los fármacos , Proteína D Asociada a Surfactante Pulmonar/sangre , Proteína X Asociada a bcl-2/metabolismo
20.
Bioorg Med Chem Lett ; 29(14): 1732-1736, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31126855

RESUMEN

OSW-1 is a plant-derived natural product proposed to selectively kill cancer cells by binding to members of the oxysterol binding protein family, thereby disrupting lipid/sterol homeostasis. However, how these protein-ligand interactions mediate cell death signaling has remained elusive. Here, we discovered that OSW-1 selectively activates the Golgi stress response leading to apoptosis, providing a mechanistic basis for the anticancer activity of OSW-1.


Asunto(s)
Antineoplásicos/uso terapéutico , Colestenonas/uso terapéutico , Aparato de Golgi/efectos de los fármacos , Saponinas/uso terapéutico , Antineoplásicos/farmacología , Colestenonas/farmacología , Humanos , Saponinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...