Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 12: 794535, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34966374

RESUMEN

Brucellae are facultative intracellular coccobacilli causing brucellosis, one of the most widespread bacterial zoonosis affecting wildlife animals, livestock and humans. The genus Brucella comprises classical and atypical species, such as Brucella suis and Brucella microti, respectively. The latter is characterized by increased metabolic activity, fast growth rates, and extreme acid resistance at pH 2.5, suggesting an advantage for environmental survival. In addition, B. microti is more acid-tolerant than B. suis at the intermediate pH of 4.5. This acid-resistant phenotype of B. microti may have major implications for fitness in soil, food products and macrophages. Our study focused on the identification and characterization of acid resistance determinants of B. suis and B. microti in Gerhardt's minimal medium at pH 4.5 and 7.0 for 20 min and 2 h by comparative RNA-Seq-based transcriptome analysis, validated by RT-qPCR. Results yielded a common core response in both species with a total of 150 differentially expressed genes, and acidic pH-dependent genes regulated specifically in each species. The identified core response mechanisms comprise proton neutralization or extrusion from the cytosol, participating in maintaining physiological intracellular pH values. Differential expression of 441 genes revealed species-specific mechanisms in B. microti with rapid physiological adaptation to acid stress, anticipating potential damage to cellular components and critical energy conditions. Acid stress-induced genes encoding cold shock protein CspA, pseudogene in B. suis, and stress protein Dps were associated with survival of B. microti at pH 4.5. B. suis response with 284 specifically regulated genes suggested increased acid stress-mediated protein misfolding or damaging, triggering the set-up of repair strategies countering the consequences rather than the origin of acid stress and leading to subsequent loss of viability. In conclusion, our work supports the hypothesis that increased acid stress resistance of B. microti is based on selective pressure for the maintenance of functionality of critical genes, and on specific differential gene expression, resulting in rapid adaptation.

2.
Virulence ; 10(1): 868-878, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31635539

RESUMEN

Brucella microti was isolated a decade ago from wildlife and soil in Europe. Compared to the classical Brucella species, it exhibits atypical virulence properties such as increased growth in human and murine macrophages and lethality in experimentally infected mice. A spontaneous rough (R) mutant strain, derived from the smooth reference strain CCM4915T, showed increased macrophage colonization and was non-lethal in murine infections. Whole-genome sequencing and construction of an isogenic mutant of B. microti and Brucella suis 1330 revealed that the R-phenotype was due to a deletion in a single gene, namely wbkE (BMI_I539), encoding a putative glycosyltransferase involved in lipopolysaccharide (LPS) O-polysaccharide biosynthesis. Complementation of the R-strains with the wbkE gene restored the smooth phenotype and the ability of B. microti to kill infected mice. LPS with an intact O-polysaccharide is therefore essential for lethal B. microti infections in the murine model, demonstrating its importance in pathogenesis.


Asunto(s)
Proteínas Bacterianas/genética , Brucella/genética , Brucella/patogenicidad , Brucelosis/microbiología , Glicosiltransferasas/genética , Polisacáridos Bacterianos/biosíntesis , Animales , Brucella/enzimología , Modelos Animales de Enfermedad , Femenino , Genotipo , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Mutación , Fenotipo , Virulencia
3.
Artículo en Inglés | MEDLINE | ID: mdl-28573107

RESUMEN

For aerobic human pathogens, adaptation to hypoxia is a critical factor for the establishment of persistent infections, as oxygen availability is low inside the host. The two-component system RegB/A of Brucella suis plays a central role in the control of respiratory systems adapted to oxygen deficiency, and in persistence in vivo. Using an original "in vitro model of persistence" consisting in gradual oxygen depletion, we compared transcriptomes and proteomes of wild-type and ΔregA strains to identify the RegA-regulon potentially involved in the set-up of persistence. Consecutive to oxygen consumption resulting in growth arrest, 12% of the genes in B. suis were potentially controlled directly or indirectly by RegA, among which numerous transcriptional regulators were up-regulated. In contrast, genes or proteins involved in envelope biogenesis and in cellular division were repressed, suggesting a possible role for RegA in the set-up of a non-proliferative persistence state. Importantly, the greatest number of the RegA-repressed genes and proteins, including aceA encoding the functional IsoCitrate Lyase (ICL), were involved in energy production. A potential consequence of this RegA impact may be the slowing-down of the central metabolism as B. suis progressively enters into persistence. Moreover, ICL is an essential determinant of pathogenesis and long-term interactions with the host, as demonstrated by the strict dependence of B. suis on ICL activity for multiplication and persistence during in vivo infection. RegA regulates gene or protein expression of all functional groups, which is why RegA is a key regulator of B. suis in adaptation to oxygen depletion. This function may contribute to the constraint of bacterial growth, typical of chronic infection. Oxygen-dependent activation of two-component systems that control persistence regulons, shared by several aerobic human pathogens, has not been studied in Brucella sp. before. This work therefore contributes significantly to the unraveling of persistence mechanisms in this important zoonotic pathogen.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Brucella suis/genética , Brucella suis/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Hipoxia/metabolismo , Isocitratoliasa/genética , Regulón/genética , Adaptación Fisiológica , Animales , Secuencia de Bases , Brucella suis/crecimiento & desarrollo , Brucella suis/patogenicidad , Brucelosis/metabolismo , Brucelosis/microbiología , ADN Bacteriano , Modelos Animales de Enfermedad , Regulación hacia Abajo , Metabolismo Energético , Femenino , Genes Bacterianos/genética , Isocitratoliasa/metabolismo , Redes y Vías Metabólicas/genética , Ratones , Ratones Endogámicos BALB C , Mutación , Nitrito Reductasas/análisis , Oxidorreductasas/análisis , Oxígeno/metabolismo , Consumo de Oxígeno/fisiología , Proteoma/análisis , ARN Bacteriano/aislamiento & purificación , Regulación hacia Arriba , Virulencia/genética
4.
J Enzyme Inhib Med Chem ; 32(1): 683-687, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28274160

RESUMEN

Carbonic anhydrases have started to emerge as new potential antibacterial targets for several pathogens. Two ß-carbonic anhydrases, denominated bsCA I and bsCA II, have been isolated and characterized from the bacterial pathogen Brucella suis, the causative agent of brucellosis or Malta fever. These enzymes have been investigated in detail and a wide range of classical aromatic and heteroaromatic sulfonamides as well as carbohydrate-based compounds have been found to inhibit selectively and efficiently Brucella suis carbonic anhydrases. Inhibition of these metalloenzymes constitutes a novel approach for the potential development of new anti-Brucella agents. This review aims at discussing the recent literature on this topic.


Asunto(s)
Antibacterianos/farmacología , Brucella suis/efectos de los fármacos , Brucella suis/enzimología , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Sulfonamidas/farmacología , Antibacterianos/química , Inhibidores de Anhidrasa Carbónica/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad , Sulfonamidas/química
5.
J Enzyme Inhib Med Chem ; 30(6): 1017-20, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25676329

RESUMEN

A small series of C-glycosides containing the phenol moiety was tested for the inhibition of the ß-class carbonic anhydrases (ßCAs, EC 4.2.1.1) from Brucella suis. Many compounds showed activities in the micromolar or submicromolar range and excellent selectivity for pathogen CAs over human isozymes. Glycosides incorporating the 3-hydroxyphenyl moiety showed the best inhibition profile, and therefore this functionality represents lead for the development of novel anti-infectives with a new mechanism of action.


Asunto(s)
Brucella suis/enzimología , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Glicósidos/farmacología , Fenoles/farmacología , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Relación Dosis-Respuesta a Droga , Glicósidos/química , Estructura Molecular , Fenoles/química , Relación Estructura-Actividad
6.
Bioorg Med Chem Lett ; 24(21): 5008-10, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25278235

RESUMEN

Histidinol dehydrogenase (HDH) has been established as a virulence factor for the human pathogen bacterium Brucella suis. Targeting such a virulence factor is a relevant anti-infectious approach as it could decrease the frequency of antibiotic resistance appearance. In this paper, we describe the synthesis of a family of oxo- and thioxo-imidazo[1,5-c]pyrimidines, potential enzyme inhibitors. Beyond their anti-HDH activity, the synthesis approach of these molecules, never described before, is highly original and these oxo- and thioxo- derivatives can improve dramatically the efficiency of the histidine protection pathway for the synthesis of histidine analogues.


Asunto(s)
Oxidorreductasas de Alcohol/antagonistas & inhibidores , Antibacterianos/síntesis química , Antibacterianos/farmacología , Brucella suis/enzimología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Histidina/química , Bibliotecas de Moléculas Pequeñas/farmacología , Brucella suis/efectos de los fármacos , Brucelosis/microbiología , Histidina/metabolismo , Humanos , Imidazoles/química , Estructura Molecular , Pirimidinas/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Relación Estructura-Actividad , Factores de Virulencia/síntesis química , Factores de Virulencia/farmacología
7.
Biochimie ; 97: 114-20, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24140957

RESUMEN

L-Histidinol dehydrogenase from Brucella suis (BsHDH) is an enzyme involved in the histidine biosynthesis pathway which is absent in mammals, thus representing a very interesting target for the development of anti-Brucella agents. In this paper we report the crystallographic structure of a mutated form of BsHDH both in its unbound form and in complex with a nanomolar inhibitor. These studies provide the first structural background for the rational design of potent HDH inhibitors, thus offering new hints for clinical applications.


Asunto(s)
Oxidorreductasas de Alcohol/química , Antibacterianos/química , Proteínas Bacterianas/química , Brucella suis/química , Butanonas/química , Inhibidores Enzimáticos/química , Imidazoles/química , Oxidorreductasas de Alcohol/antagonistas & inhibidores , Oxidorreductasas de Alcohol/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Brucella suis/enzimología , Dominio Catalítico , Cristalografía por Rayos X , Diseño de Fármacos , Escherichia coli/enzimología , Escherichia coli/genética , Expresión Génica , Histidina/química , Histidina/metabolismo , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Mutación , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido
8.
BMC Genomics ; 14: 459, 2013 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-23834488

RESUMEN

BACKGROUND: In the intracellular pathogen Brucella spp., the activation of the stringent response, a global regulatory network providing rapid adaptation to growth-affecting stress conditions such as nutrient deficiency, is essential for replication in the host. A single, bi-functional enzyme Rsh catalyzes synthesis and hydrolysis of the alarmone (p)ppGpp, responsible for differential gene expression under stringent conditions. RESULTS: cDNA microarray analysis allowed characterization of the transcriptional profiles of the B. suis 1330 wild-type and Δrsh mutant in a minimal medium, partially mimicking the nutrient-poor intramacrophagic environment. A total of 379 genes (11.6% of the genome) were differentially expressed in a rsh-dependent manner, of which 198 were up-, and 181 were down-regulated. The pleiotropic character of the response was confirmed, as the genes encoded an important number of transcriptional regulators, cell envelope proteins, stress factors, transport systems, and energy metabolism proteins. Virulence genes such as narG and sodC, respectively encoding respiratory nitrate reductase and superoxide dismutase, were under the positive control of (p)ppGpp, as well as expression of the cbb3-type cytochrome c oxidase, essential for chronic murine infection. Methionine was the only amino acid whose biosynthesis was absolutely dependent on stringent response in B. suis. CONCLUSIONS: The study illustrated the complexity of the processes involved in adaptation to nutrient starvation, and contributed to a better understanding of the correlation between stringent response and Brucella virulence. Most interestingly, it clearly indicated (p)ppGpp-dependent cross-talk between at least three stress responses playing a central role in Brucella adaptation to the host: nutrient, oxidative, and low-oxygen stress.


Asunto(s)
Adaptación Fisiológica/genética , Proteínas Bacterianas/metabolismo , Brucella suis/genética , Brucella suis/fisiología , Perfilación de la Expresión Génica , Estrés Fisiológico/genética , Animales , Brucella suis/enzimología , Brucella suis/metabolismo , Complejo IV de Transporte de Electrones/genética , Macrófagos/citología , Metionina/biosíntesis , Ratones , Mutación , Nitrato-Reductasa/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Superóxido Dismutasa/genética , Regulación hacia Arriba , Vacuolas/microbiología
9.
J Infect Dis ; 203(8): 1129-35, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21451001

RESUMEN

In murine infections, Brucella microti exhibits an atypical and highly pathogenic behavior resulting in a mortality of 82%. In this study, the possible involvement of the virB type IV secretion system, a key virulence factor of Brucella sp., in this lethal phenotype was investigated. As previously described for B. suis, expression of the virB operon of B. microti was induced in acid minimal medium, partially mimicking intracellular environment. Early neutralization of cellular compartments abolished intracellular replication of B. microti, showing that acidity of the Brucella-containing vacuole is an essential trigger. A ΔvirB mutant of B. microti exhibited strong attenuation in murine and human macrophages in vitro. Interestingly, infection with this mutant was not lethal in Balb/c mice and lacked the typical intrasplenic peak at 3 days post-infection, hence demonstrating that lethality of B. microti in murine infection absolutely requires a functional virB operon.


Asunto(s)
Brucella/genética , Brucella/patogenicidad , Brucelosis/microbiología , Brucelosis/mortalidad , Cloruro de Amonio , Animales , Regulación Bacteriana de la Expresión Génica/fisiología , Concentración de Iones de Hidrógeno , Macrófagos , Ratones , Ratones Endogámicos BALB C , Bazo/citología , Vacuolas/química
10.
Bioorg Med Chem ; 19(3): 1172-8, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21251841

RESUMEN

A ß-carbonic anhydrase (CA, EC 4.2.1.1) from the bacterial pathogen Brucella suis, bsCA II, has been cloned, purified, and characterized kinetically. bsCA II showed high catalytic activity for the hydration of CO(2) to bicarbonate, with a k(cat) of 1.1×10(6), and k(cat)/K(m) of 8.9×10(7)M(-1)s(-1). A panel of sulfonamides and sulfamates have been investigated for inhibition of this enzyme. All types of activities, from the low nanomolar to the micromolar, have been detected for these derivatives, which showed inhibition constants in the range of 7.3nM-8.56µM. The best bsCA II inhibitors were some glycosylated sulfanilamides, aliphatic sulfamates, and halogenated sulfanilamides, with inhibition constants of 7.3-87nM. Some of these dual inhibitors of bsCA I and II, also inhibited bacterial growth in vitro, in liquid cultures. These promising data on live bacteria allow us to propose bacterial ß-CA inhibition as an approach for obtaining anti-infective agents with a new mechanism of action compared to classical antibiotics.


Asunto(s)
Antibacterianos/farmacología , Brucella suis/efectos de los fármacos , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Sulfonamidas/farmacología , Ácidos Sulfónicos/farmacología , Antibacterianos/química , Brucella suis/enzimología , Brucella suis/crecimiento & desarrollo , Inhibidores de Anhidrasa Carbónica/química , Anhidrasas Carbónicas/química , Anhidrasas Carbónicas/genética , Anhidrasas Carbónicas/aislamiento & purificación , Clonación Molecular , Diseño de Fármacos , Descubrimiento de Drogas , Concentración 50 Inhibidora , Cinética , Sulfonamidas/química , Ácidos Sulfónicos/química
11.
J Infect Dis ; 202(1): 3-10, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20497040

RESUMEN

BACKGROUND: The recent isolation of Brucella microti from the common vole, the red fox, and the soil raises the possibility of an eventual reemergence of brucellosis in Europe. In this work, the pathogenic potential of this new Brucella species in both in vitro and in vivo models of infection was analyzed. METHODS: The ability of B. microti (as compared to that of the closely related species Brucella suis) to replicate in human macrophages and in human and murine macrophage-like cells was determined. The behavior of B. microti and B. suis was evaluated in vivo in murine models of infection with Balb/c, CD1, and C57BL/6 mice. RESULTS: B. microti showed an enhanced capacity for intramacrophagic replication compared with that of B. suis. Surprisingly, and in contrast to other species of Brucella, 10(5) colony-forming units of B. microti killed 82% of Balb/c mice within 7 days. Infection of spleen and liver with B. microti peaked at day 3, compared with B. suis infection, which peaked at day 7. Sublethal doses of B. microti induced good protection against a subsequent challenge with lethal doses. CONCLUSIONS: In experimental cellular and murine infections, B. microti exhibited a high pathogenic potential, compared with other Brucella species.


Asunto(s)
Brucella/clasificación , Brucella/fisiología , Brucelosis/microbiología , Macrófagos/microbiología , Animales , Brucelosis/inmunología , Brucelosis/mortalidad , Humanos , Hígado/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Tamaño de los Órganos , Bazo/patología
12.
J Med Chem ; 53(5): 2277-85, 2010 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-20158185

RESUMEN

A beta-carbonic anhydrase (CA, EC 4.2.1.1) from the bacterial pathogen Brucella suis, bsCA 1, has been cloned, purified, and characterized kinetically. bsCA 1 has appreciable activity as catalyst for the hydration of CO(2) to bicarbonate, with a k(cat) of 6.4 x 10(5) s(-1) and k(cat)/K(m) of 3.9 x 10(7) M(-1).s(-1). A panel of 38 sulfonamides and one sulfamate have been investigated for inhibition of this new beta-CA. All types of activities have been detected, with K(I)s in the range of 17 nM to 5.87 microM. The best bsCA 1 inhibitors were ethoxzolamide (17 nM), celecoxib (18 nM), dorzolamide (21 nM), valdecoxib, and sulpiride (19 nM). Whether bsCA 1 inhibitors may have application in the fight against brucellosis, an endemic disease and the major bacterial zoonosis, producing debilitating infection in humans and animals, warrants further studies.


Asunto(s)
Brucella suis/enzimología , Brucelosis/tratamiento farmacológico , Anhidrasas Carbónicas/genética , Filogenia , Sulfonamidas/farmacología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Brucella suis/genética , Anhidrasas Carbónicas/efectos de los fármacos , Clonación Molecular , ADN Bacteriano/química , ADN Bacteriano/genética , Humanos , Cinética , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Alineación de Secuencia , Análisis de Secuencia de ADN , Relación Estructura-Actividad
13.
Infect Immun ; 75(11): 5167-74, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17709411

RESUMEN

Brucella strains are facultative intracellular pathogens that induce chronic diseases in humans and animals. This observation implies that Brucella subverts innate and specific immune responses of the host to develop its full virulence. Deciphering the genes involved in the subversion of the immune system is of primary importance for understanding the virulence of the bacteria, for understanding the pathogenic consequences of infection, and for designing an efficient vaccine. We have developed an in vitro system involving human macrophages infected by Brucella suis and activated syngeneic gamma9delta2 T lymphocytes. Under these conditions, multiplication of B. suis inside macrophages is only slightly reduced. To identify the genes responsible for this reduced sensitivity, we screened a library of 2,000 clones of transposon-mutated B. suis. For rapid and quantitative analysis of the multiplication of the bacteria, we describe a simple method based on Alamar blue reduction, which is compatible with screening a large library. By comparing multiplication inside macrophages alone and multiplication inside macrophages with activated gamma9delta2 T cells, we identified four genes of B. suis that were necessary to resist to the action of the gamma9delta2 T cells. The putative functions of these genes are discussed in order to propose possible explanations for understanding their exact role in the subversion of innate immunity.


Asunto(s)
Brucella suis/inmunología , Brucella suis/patogenicidad , Factores de Virulencia/genética , Factores de Virulencia/fisiología , Animales , Brucella suis/crecimiento & desarrollo , Elementos Transponibles de ADN/genética , Eliminación de Gen , Humanos , Macrófagos/inmunología , Macrófagos/microbiología , Mutagénesis Insercional , Subgrupos de Linfocitos T/inmunología , Virulencia
14.
Cell Microbiol ; 8(12): 1877-87, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16817909

RESUMEN

Brucella is an invasive organism that multiplies and survives within eukaryotic cells. The brucellae are able to adhere to the surface of cultured epithelial cells, a mechanism that may facilitate penetration and dissemination to other host tissues. However, no adhesins that allow the bacteria to interact with the surface of epithelial cells before migration within polymorphonuclear leukocytes, monocytes and macrophages have been described. Here, we show that Brucella surface proteins (SPs) with apparent molecular masses of 14, 18 and 41 kDa bound selectively to HeLa cells. However, only antibodies directed against the 41 kDa surface protein (SP41) inhibited in dose-response manner, bacterial adherence and invasion of HeLa cells. HeLa cells treated with neuraminidase did not bind SP41, suggesting the involvement of cellular sialic acid residues in this interaction. Biochemical analysis of SP41 revealed that this protein is the predicted product of the ugpB locus, which showed significant homology to the glycerol-3-phosphate-binding ATP-binding cassette (ABC) transporter protein found in several bacterial species. SP41 appears to be exposed on the bacterial surface as determined by immunofluorescence and immunogold labelling with anti-SP41 antibody. An isogenic DeltaugpB mutant showed a significant inhibitory effect on Brucella adherence and invasion of human cultured epithelial cells and this effect could be reversed by restoration of the ugpB on a plasmid. Lastly, we also show that most of the sera from individuals with acute brucellosis, but not sera obtained from healthy donors or patients with chronic brucellosis, mount antibody reactivity against SP41, suggesting that this protein is produced in vivo and that it elicits an antibody immune response. These data are novel findings that offer new insights into understanding the interplay between this bacterium and host target cells, and identify a new target for vaccine development and prevention of brucellosis.


Asunto(s)
Adhesinas Bacterianas/química , Brucella/patogenicidad , Brucelosis/microbiología , Proteínas de la Membrana/química , Enfermedad Aguda , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/inmunología , Secuencia de Aminoácidos , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Adhesión Bacteriana , Brucella/química , Brucella/inmunología , Brucelosis/inmunología , Enfermedad Crónica , Células Epiteliales/microbiología , Células HeLa , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Datos de Secuencia Molecular , Virulencia
15.
Cell Microbiol ; 8(11): 1791-802, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16803581

RESUMEN

Physiological adaptation of intracellular bacteria is critical for timely interaction with eukaryotic host cells. One mechanism of adaptation, the stringent response, is induced by nutrient stress via its effector molecule (p)ppGpp, synthesized by the action of RelA/SpoT homologues. The intracellular pathogen Brucella spp., causative agent of brucellosis, possesses a gene homologous to relA/spoT, named rsh, encoding a (p)ppGpp synthetase as confirmed by heterologous complementation of a relA mutant of Sinorhizobium meliloti. The Rsh deletion mutants in Brucella suis and Brucella melitensis were characterized by altered morphology, and by reduced survival under starvation conditions and in cellular and murine models of infection. Most interestingly, we evidenced that expression of virB, encoding the type IV secretion system, a major virulence factor of Brucella, was Rsh-dependent. All mutant phenotypes, including lack of VirB proteins, were complemented with the rsh gene of Brucella. In addition, RelA of S. meliloti functionally replaced Brucella Rsh, describing the capacity of a gene from a plant symbiont to restore virulence in a mammalian pathogen. We therefore concluded that in the intramacrophagic environment encountered by Brucella, Rsh might participate in the adaptation of the pathogen to low-nutrient environments, and indirectly in the VirB-mediated formation of the final replicative niche.


Asunto(s)
Proteínas Bacterianas/genética , Brucella melitensis/genética , Brucella suis/genética , Expresión Génica/genética , Factores de Virulencia/genética , Animales , Proteínas Bacterianas/metabolismo , Brucella melitensis/patogenicidad , Brucella suis/patogenicidad , Brucelosis/microbiología , Células Cultivadas , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica/genética , Prueba de Complementación Genética/métodos , Guanosina Tetrafosfato/genética , Guanosina Tetrafosfato/metabolismo , Células HeLa , Humanos , Ratones , Ratones Endogámicos BALB C , Mutación/genética , Ovinos , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Virulencia/genética , Factores de Virulencia/metabolismo
16.
Infect Immun ; 71(3): 1481-90, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12595466

RESUMEN

Brucella species are gram-negative, facultative intracellular bacteria that infect humans and animals. These organisms can survive and replicate within a membrane-bound compartment inside professional and nonprofessional phagocytic cells. Inhibition of phagosome-lysosome fusion has been proposed as a mechanism for intracellular survival in both cell types. However, the molecular mechanisms and the microbial factors involved are poorly understood. Smooth lipopolysaccharide (LPS) of Brucella has been reported to be an important virulence factor, although its precise role in pathogenesis is not yet clear. In this study, we show that the LPS O side chain is involved in inhibition of the early fusion between Brucella suis-containing phagosomes and lysosomes in murine macrophages. In contrast, the phagosomes containing rough mutants, which fail to express the O antigen, rapidly fuse with lysosomes. In addition, we show that rough mutants do not enter host cells by using lipid rafts, contrary to smooth strains. Thus, we propose that the LPS O chain might be a major factor that governs the early behavior of bacteria inside macrophages.


Asunto(s)
Brucella suis/inmunología , Fusión Celular , Lisosomas/fisiología , Macrófagos/inmunología , Macrófagos/microbiología , Antígenos O/fisiología , Fagosomas/fisiología , Animales , Brucella suis/patogenicidad , Línea Celular , Colesterol/fisiología , Dextranos/metabolismo , Gangliósido G(M1)/fisiología , Ratones , Xantenos/metabolismo
17.
Vet Microbiol ; 90(1-4): 299-309, 2002 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-12414150

RESUMEN

Phagocytes have developed various antimicrobial defense mechanisms to eliminate pathogens. They comprise the oxidative burst, acidification of phagosomes, or fusion of phagosomes with lysosomes. Facultative intracellular bacteria, in return, have developed strategies counteracting the host cell defense, resulting in intramacrophagic survival. Until lately, only very little was known about the phagosomal compartment containing Brucella spp., the environmental conditions the bacteria encounter, and the pathogen's stress response. Recently, we have determined that the phagosomes acidify rapidly to a pH of 4.0-4.5 following infection, but this early acidification is crucial for intracellular replication as neutralization results in bacterial elimination. A vacuolar proton-ATPase is responsible for this phenomenon that is not linked to phagosome-lysosome fusion. On the contrary, in vitro reconstitution assays revealed association only between phagosomes containing killed B. suis and lysosomes, describing the absence of phagolysosome fusion due to specific recognition inhibition for live bacteria. Further evidence for the necessity of an intact, acidic phagosome as a predominant niche of brucellae in macrophages was obtained with a strain of B. suis secreting listeriolysin. It partially disrupts the phagosomal membranes and fails to multiply intracellularly. How does B. suis adapt to this environment? We have identified and studied a series of genes that are involved in this process of adaptation. The bacterial heat shock protein and chaperone DnaK is induced in phagocytes and it is essential for intracellular multiplication. A low-level, constitutive expression of dnaK following promoter exchange does not restore intramacrophagic survival. Another chaperone and heat shock protein, ClpB, belonging to the family of ClpATPases, is important for the resistance of B. suis to several in vitro stresses, but does not contribute to intramacrophagic survival of the pathogen. Additional bacterial genes specifically induced within the phagocyte were identified by an intramacrophagic screen of random promoter fusions to the reporter gene gfp. A large majority of these genes are encoding proteins involved in transport of nutrients (sugars, amino acids), or cofactors, such as nickel. Analysis of the intracellular gene activation reveals that low oxygen tension is encountered by B. suis. Altogether, these results suggest three major stress conditions encountered by brucellae in the phagosome: acid stress, starvation and low oxygen tension.


Asunto(s)
Brucella suis/fisiología , Brucella suis/patogenicidad , Macrófagos/microbiología , Animales , Brucella suis/ultraestructura , Humanos , Concentración de Iones de Hidrógeno , Lisosomas/fisiología , Operón , Fagosomas/fisiología
18.
Vet Microbiol ; 90(1-4): 341-8, 2002 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-12414154

RESUMEN

The type IV secretion system, encoded by the virB region, is a key virulence factor for Brucella. The 12 genes of the region form an operon that is specifically induced by phagosome acidification in cells after phagocytosis. We speculate that the system serves to secrete unknown effector molecules, which allow Brucella to pervert the host cell endosomal pathways and to create a novel intracellular compartment in which it can replicate.


Asunto(s)
Brucella/genética , Brucella/patogenicidad , Operón , Factores de Virulencia , Animales , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , Endosomas/microbiología , Regulación Bacteriana de la Expresión Génica , Virulencia
19.
Proc Natl Acad Sci U S A ; 99(24): 15711-6, 2002 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-12438693

RESUMEN

The pathogen Brucella suis resides and multiplies within a phagocytic vacuole of its host cell, the macrophage. The resulting complex relationship has been investigated by the analysis of the set of genes required for virulence, which we call intramacrophagic virulome. Ten thousand two hundred and seventy-two miniTn5 mutants of B. suis constitutively expressing gfp were screened by fluorescence microscopy for lack of intracellular multiplication in human macrophages. One hundred thirty-one such mutants affected in 59 different genes could be isolated, and a function was ascribed to 53 of them. We identified genes involved in (i) global adaptation to the intracellular environment, (ii) amino acid, and (iii) nucleotide synthesis, (iv) sugar metabolism, (v) oxidoreduction, (vi) nitrogen metabolism, (vii) regulation, (viii) disulphide bond formation, and (ix) lipopolysaccharide biosynthesis. Results led to the conclusion that the replicative compartment of B. suis is poor in nutrients and characterized by low oxygen tension, and that nitrate may be used for anaerobic respiration. Intramacrophagic virulome analysis hence allowed the description of the nature of the replicative vacuole of the pathogen in the macrophage and extended our understanding of the niche in which B. suis resides. We propose calling this specific compartment "brucellosome."


Asunto(s)
Proteínas Bacterianas/genética , Brucella suis/patogenicidad , Genes Bacterianos , Macrófagos/microbiología , Adaptación Fisiológica , Aminoácidos/biosíntesis , Anaerobiosis , Proteínas Bacterianas/biosíntesis , Brucella suis/genética , Brucella suis/fisiología , Metabolismo de los Hidratos de Carbono , División Celular , Transporte de Electrón , Genes Reporteros , Proteínas Fluorescentes Verdes , Metabolismo de los Lípidos , Lipopolisacáridos/metabolismo , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Microscopía Fluorescente , Mutagénesis Insercional , Nitrógeno/metabolismo , Nucleótidos/biosíntesis , Vacuolas/microbiología , Virulencia/genética
20.
Proc Natl Acad Sci U S A ; 99(3): 1544-9, 2002 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-11830669

RESUMEN

A type IV secretion system similar to the VirB system of the phytopathogen Agrobacterium tumefaciens is essential for the intracellular survival and multiplication of the mammalian pathogen Brucella. Reverse transcriptase-PCR showed that the 12 genes encoding the Brucella suis VirB system form an operon. Semiquantitative measurements of virB mRNA levels by slot blotting showed that transcription of the virB operon, but not the flanking genes, is regulated by environmental factors in vitro. Flow cytometry used to measure green fluorescent protein expression from the virB promoter confirmed the data from slot blots. Fluorescence-activated cell sorter analysis and fluorescence microscopy showed that the virB promoter is induced in macrophages within 3 h after infection. Induction only occurred once the bacteria were inside the cells, and phagosome acidification was shown to be the major signal inducing intracellular expression. Because phagosome acidification is essential for the intracellular multiplication of Brucella, we suggest that it is the signal that triggers the secretion of unknown effector molecules. These effector molecules play a role in the remodeling of the phagosome to create the unique intracellular compartment in which Brucella replicates.


Asunto(s)
Proteínas Bacterianas/genética , Brucella/genética , Macrófagos/microbiología , Operón , Factores de Virulencia , Brucella/crecimiento & desarrollo , Brucella/patogenicidad , Línea Celular , Proteínas de Unión al ADN/genética , Regulación Bacteriana de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Monocitos , Fagosomas/microbiología , Fagosomas/fisiología , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Genética , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...