Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; 13(11): e2303359, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38288658

RESUMEN

Bacterial biofilms are notoriously problematic in applications ranging from biomedical implants to ship hulls. Cationic, amphiphilic antibacterial surface coatings delay the onset of biofilm formation by killing microbes on contact, but they lose effectiveness over time due to non-specific binding of biomass and biofilm formation. Harsh treatment methods are required to forcibly expel the biomass and regenerate a clean surface. Here, a simple, dynamically reversible method of polymer surface coating that enables both chemical killing on contact, and on-demand mechanical delamination of surface-bound biofilms, by triggered depolymerization of the underlying antimicrobial coating layer, is developed. Antimicrobial polymer derivatives based on α-lipoic acid (LA) undergo dynamic and reversible polymerization into polydisulfides functionalized with biocidal quaternary ammonium salt groups. These coatings kill >99.9% of Staphylococcus aureus cells, repeatedly for 15 cycles without loss of activity, for moderate microbial challenges (≈105 colony-forming units (CFU) mL-1, 1 h), but they ultimately foul under intense challenges (≈107 CFU mL-1, 5 days). The attached biofilms are then exfoliated from the polymer surface by UV-triggered degradation in an aqueous solution at neutral pH. This work provides a simple strategy for antimicrobial coatings that can kill bacteria on contact for extended timescales, followed by triggered biofilm removal under mild conditions.


Asunto(s)
Biopelículas , Materiales Biocompatibles Revestidos , Staphylococcus aureus , Biopelículas/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Polimerizacion , Disulfuros/química , Disulfuros/farmacología , Antiinfecciosos/farmacología , Antiinfecciosos/química , Polímeros/química , Polímeros/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Ácido Tióctico/química , Ácido Tióctico/farmacología , Propiedades de Superficie
2.
ACS Appl Bio Mater ; 6(2): 806-818, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36749645

RESUMEN

Intracortical microelectrodes are used with brain-computer interfaces to restore lost limb function following nervous system injury. While promising, recording ability of intracortical microelectrodes diminishes over time due, in part, to neuroinflammation. As curcumin has demonstrated neuroprotection through anti-inflammatory activity, we fabricated a 300 nm-thick intracortical microelectrode coating consisting of a polyurethane copolymer of curcumin and polyethylene glycol (PEG), denoted as poly(curcumin-PEG1000 carbamate) (PCPC). The uniform PCPC coating reduced silicon wafer hardness by two orders of magnitude and readily absorbed water within minutes, demonstrating that the coating is soft and hydrophilic in nature. Using an in vitro release model, curcumin eluted from the PCPC coating into the supernatant over 1 week; the majority of the coating was intact after an 8-week incubation in buffer, demonstrating potential for longer term curcumin release and softness. Assessing the efficacy of PCPC within a rat intracortical microelectrode model in vivo, there were no significant differences in tissue inflammation, scarring, neuron viability, and myelin damage between the uncoated and PCPC-coated probes. As the first study to implant nonfunctional probes with a polymerized curcumin coating, we have demonstrated the biocompatibility of a PCPC coating and presented a starting point in the design of poly(pro-curcumin) polymers as coating materials for intracortical electrodes.


Asunto(s)
Curcumina , Ratas , Animales , Microelectrodos , Curcumina/farmacología , Electrodos Implantados , Neuronas , Polímeros
3.
ACS Macro Lett ; 12(2): 215-220, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36700616

RESUMEN

The performance of antimicrobial polymers depends sensitively on the type of cationic species, charge density, and spatial arrangement of cations. Here we report antimicrobial polymers bearing unusually bulky tetraaminophosphonium groups as the source of highly delocalized cationic charge. The bulky cations drastically enhanced the biocidal activity of amphiphilic polymers, leading to remarkably potent activity in the submicromolar range. The cationic polynorbornenes with pendent tetraaminophosphonium groups killed over 98% E. coli at a concentration of 0.1 µg/mL and caused a 4-log reduction of E. coli within 2 h at a concentration of 2 µg/mL, showing very rapid and potent bactericidal activity. The polymers are also highly hemolytic at similar concentrations, indicating a biocidal activity profile. Polymers of a similar chemical structure but with more flexible backbones were made to examine the effects of the flexibility of polymer chains on their activity, which turned out to be marginal. We also explore variants with different spacer arm groups separating the cations from the backbone main chain. The antibacterial activity was comparably potent in all cases, but the polymers with shorter spacer arm groups showed more rapid bactericidal kinetics. Interestingly, pronounced counterion effects were observed. Tightly bound PF6- counteranions showed poor activity at high concentrations due to gross aggregate formation and precipitation from the assay media, whereas loosely bound Cl- counterions resulted in very potent activity that monotonically increased with increasing concentration. In this paper, we reveal that bulky phosphonium cations are associated with markedly enhanced biocidal activity, which provides an innovative strategy to develop more effective self-disinfecting materials.


Asunto(s)
Antiinfecciosos , Polímeros , Polímeros/farmacología , Escherichia coli , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Cationes/química
4.
Biomacromolecules ; 24(1): 294-307, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36512693

RESUMEN

Curcumin is a natural polyphenol that exhibits remarkable antioxidant and anti-inflammatory activities; however, its clinical application is limited in part by its physiological instability. Here, we report the synthesis of curcumin-derived polyesters that release curcumin upon hydrolytic degradation to improve curcumin stability and solubility in physiological conditions. Curcumin was incorporated in the polymer backbone by a one-pot condensation polymerization in the presence of sebacoyl chloride and polyethylene glycol (PEG, Mn = 1 kDa). The thermal and mechanical properties, surface wettability, self-assembly behavior, and drug-release kinetics all depend sensitively on the mole percentage of curcumin incorporated in these statistical copolymers. Curcumin release was triggered by the hydrolysis of phenolic esters on the polymer backbone, which was confirmed using a PEGylated curcumin model compound, which represented a putative repeating unit within the polymer. The release rate of curcumin was controlled by the hydrophilicity of the polymers. Burst release (2 days) and extended release (>8 weeks) can be achieved from the same polymer depending on curcumin content in the copolymer. The materials can quench free radicals for at least 8 weeks and protect primary neurons from oxidative stress in vitro. Further, these copolymer materials could be processed into both thin films and self-assembled particles, depending on the solvent-based casting conditions. Finally, we envision that these materials may have potential for neural tissue engineering application, where antioxidant release can mitigate oxidative stress and the inflammatory response following neural injury.


Asunto(s)
Curcumina , Curcumina/farmacología , Antioxidantes/farmacología , Portadores de Fármacos , Polímeros , Polietilenglicoles , Poliésteres
5.
ACS Appl Mater Interfaces ; 14(22): 25135-25146, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35613701

RESUMEN

N95 respirator face masks serve as effective physical barriers against airborne virus transmission, especially in a hospital setting. However, conventional filtration materials, such as nonwoven polypropylene fibers, have no inherent virucidal activity, and thus, the risk of surface contamination increases with wear time. The ability of face masks to protect against infection can be likely improved by incorporating components that deactivate viruses on contact. We present a facile method for covalently attaching antiviral quaternary ammonium polymers to the fiber surfaces of nonwoven polypropylene fabrics that are commonly used as filtration materials in N95 respirators via ultraviolet (UV)-initiated grafting of biocidal agents. Here, C12-quaternized benzophenone is simultaneously polymerized and grafted onto melt-blown or spunbond polypropylene fabric using 254 nm UV light. This grafting method generated ultrathin polymer coatings which imparted a permanent cationic charge without grossly changing fiber morphology or air resistance across the filter. For melt-blown polypropylene, which comprises the active filtration layer of N95 respirator masks, filtration efficiency was negatively impacted from 72.5 to 51.3% for uncoated and coated single-ply samples, respectively. Similarly, directly applying the antiviral polymer to full N95 masks decreased the filtration efficiency from 90.4 to 79.8%. This effect was due to the exposure of melt-blown polypropylene to organic solvents used in the coating process. However, N95-level filtration efficiency could be achieved by wearing coated spunbond polypropylene over an N95 mask or by fabricating N95 masks with coated spunbond as the exterior layer. Coated materials demonstrated broad-spectrum antimicrobial activity against several lipid-enveloped viruses, as well as Staphylococcus aureus and Escherichia coli bacteria. For example, a 4.3-log reduction in infectious MHV-A59 virus and a 3.3-log reduction in infectious SuHV-1 virus after contact with coated filters were observed, although the level of viral deactivation varied significantly depending on the virus strain and protocol for assaying infectivity.


Asunto(s)
Compuestos de Amonio , Virus , Antivirales/farmacología , Máscaras , Respiradores N95 , Polímeros/farmacología , Polipropilenos
6.
Molecules ; 26(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34361664

RESUMEN

Cationic and amphiphilic polymers are known to exert broad-spectrum antibacterial activity by a putative mechanism of membrane disruption. Typically, nonspecific binding to hydrophobic components of the complex biological milieu, such as globular proteins, is considered a deterrent to the successful application of such polymers. To evaluate the extent to which serum deactivates antibacterial polymethacrylates, we compared their minimum inhibitory concentrations in the presence and absence of fetal bovine serum. Surprisingly, we discovered that the addition of fetal bovine serum (FBS) to the assay media in fact enhances the antimicrobial activity of polymers against Gram-positive bacteria S. aureus, whereas the opposite is the case for Gram-negative E. coli. Here, we present these unexpected trends and develop a hypothesis to potentially explain this unusual phenomenon.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Ácidos Polimetacrílicos/farmacología , Albúmina Sérica Bovina/farmacología , Staphylococcus aureus/efectos de los fármacos , Sinergismo Farmacológico , Escherichia coli/efectos de los fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Pruebas de Sensibilidad Microbiana
7.
ACS Chem Neurosci ; 12(6): 959-965, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33635633

RESUMEN

17ß-Estradiol (E2) confers neuroprotection in preclinical models of spinal cord injury when administered systemically. The goal of this study was to apply E2 locally to the injured spinal cord for a sustained duration using poly(pro-E2) film biomaterials. Following contusive spinal cord injury in adult male mice, poly(pro-E2) films were implanted subdurally and neuroprotection was assessed using immunohistochemistry 7 days after injury and implantation. In these studies, poly(pro-E2) films modestly improved neuroprotection without affecting the inflammatory response when compared to the injured controls. To increase the E2 dose released, bolus-releasing poly(pro-E2) films were fabricated by incorporating unbound E2 into the poly(pro-E2) films. However, compared to the injured controls, bolus-releasing poly(pro-E2) films did not significantly enhance neuroprotection or limit inflammation at either 7 or 21 days post-injury. Future work will focus on developing poly(pro-E2) biomaterials capable of more precisely releasing therapeutic doses of E2.


Asunto(s)
Contusiones , Fármacos Neuroprotectores , Traumatismos de la Médula Espinal , Animales , Estradiol , Masculino , Ratones , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/tratamiento farmacológico
9.
Sci Adv ; 6(9): eaay4213, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32158941

RESUMEN

Spin and valley degrees of freedom in materials without inversion symmetry promise previously unknown device functionalities, such as spin-valleytronics. Control of material symmetry with electric fields (ferroelectricity), while breaking additional symmetries, including mirror symmetry, could yield phenomena where chirality, spin, valley, and crystal potential are strongly coupled. Here we report the synthesis of a halide perovskite semiconductor that is simultaneously photoferroelectricity switchable and chiral. Spectroscopic and structural analysis, and first-principles calculations, determine the material to be a previously unknown low-dimensional hybrid perovskite (R)-(-)-1-cyclohexylethylammonium/(S)-(+)-1 cyclohexylethylammonium) PbI3. Optical and electrical measurements characterize its semiconducting, ferroelectric, switchable pyroelectricity and switchable photoferroelectric properties. Temperature dependent structural, dielectric and transport measurements reveal a ferroelectric-paraelectric phase transition. Circular dichroism spectroscopy confirms its chirality. The development of a material with such a combination of these properties will facilitate the exploration of phenomena such as electric field and chiral enantiomer-dependent Rashba-Dresselhaus splitting and circular photogalvanic effects.

10.
ACS Appl Mater Interfaces ; 12(19): 21270-21282, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-31917544

RESUMEN

We synthesized a combinatorial library of dendrons that display a cluster of cationic charges juxtaposed with a hydrophobic alkyl chain, using the so-called "molecular umbrella" design approach. Systematically tuning the generation number and alkyl chain length enabled a detailed study of the structure-activity relationships in terms of both hydrophobic content and number of cationic charges. These discrete, unimolecular compounds display rapid and broad-spectrum bactericidal activity comparable to the activity of antibacterial peptides. Micellization was examined by pyrene emission and dynamic light scattering, which revealed that monomeric, individually solvated dendrons are present in aqueous media. The antibacterial mechanism of action is putatively driven by the membrane-disrupting nature of these cationic surfactants, which we confirmed by enzymatic assays on E. coli cells. The hemolytic activity of these dendritic macromolecules is sensitively dependent on the dendron generation and the alkyl chain length. Via structural optimization of these two key design features, we identified a leading candidate with potent broad-spectrum antibacterial activity (4-8 µg/mL) combined with outstanding hemocompatibility (up to 5000 µg/mL). This selected compound is >1000-fold more active against bacteria as compared to red blood cells, which represents one of the highest selectivity index values ever reported for a membrane-disrupting antibacterial agent. Thus, the leading candidate from this initial library screen holds great potential for future applications as a nontoxic, degradable disinfectant.


Asunto(s)
Antibacterianos/farmacología , Dendrímeros/farmacología , Tensoactivos/farmacología , beta-Alanina/análogos & derivados , beta-Alanina/farmacología , Antibacterianos/síntesis química , Antibacterianos/toxicidad , Membrana Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dendrímeros/síntesis química , Dendrímeros/toxicidad , Escherichia coli/efectos de los fármacos , Células HeLa , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/toxicidad , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad , Tensoactivos/síntesis química , Tensoactivos/toxicidad , beta-Alanina/toxicidad
11.
Nat Commun ; 10(1): 4830, 2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31645570

RESUMEN

Central nervous system (CNS) injuries persist for years, and currently there are no therapeutics that can address the complex injury cascade that develops over this time-scale. 17ß-estradiol (E2) has broad tropism within the CNS, targeting and inducing beneficial phenotypic changes in myriad cells following injury. To address the unmet need for vastly prolonged E2 release, we report first-generation poly(pro-E2) biomaterial scaffolds that release E2 at nanomolar concentrations over the course of 1-10 years via slow hydrolysis in vitro. As a result of their finely tuned properties, these scaffolds demonstrate the ability to promote and guide neurite extension ex vivo and protect neurons from oxidative stress in vitro. The design and testing of these materials reported herein demonstrate the first step towards next-generation implantable biomaterials with prolonged release and excellent regenerative potential.


Asunto(s)
Astrocitos/efectos de los fármacos , Materiales Biocompatibles , Estradiol/farmacología , Estrógenos/farmacología , Ganglios Espinales/efectos de los fármacos , Proyección Neuronal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Animales Recién Nacidos , Fármacos del Sistema Nervioso Central/administración & dosificación , Fármacos del Sistema Nervioso Central/química , Fármacos del Sistema Nervioso Central/farmacología , Implantes de Medicamentos/química , Estradiol/administración & dosificación , Estradiol/química , Estrógenos/administración & dosificación , Estrógenos/química , Técnicas In Vitro , Macrófagos , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Polímeros/química , Cultivo Primario de Células , Profármacos/administración & dosificación , Profármacos/química , Profármacos/farmacología , Ratas , Médula Espinal/citología
12.
Langmuir ; 35(11): 3871-3879, 2019 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-30807181

RESUMEN

We study the effect of the microenvironment on writing chemical patterns into spirothiopyran monolayers over large areas in a single step with light. Surfaces functionalized with photoresponsive spirothiopyran are fabricated by chemically modifying amine-terminated monolayers. The merocyanine isomer selectively participates in a thiol-Michael addition reaction with maleimide-functionalized molecules, rendering these surfaces ideal for fast, mask-less direct writing. The local microenvironment of spirothiopyran is found to strongly influence the kinetics of photoswitching. The quantum yield of ring opening is found to be 17 times faster for spirothiopyran surrounded by a locally charged environment rich in guanidinium diluent molecules as compared to a closed-packed monolayer without diluents. Hydrophilic environments are also found to improve the kinetics of ring closing. Optimization of the diluent concentration leads to dramatic improvements in both contrast and yield of direct writing. This enables the monolayer to be used for maskless two-color photopatterning in which spatial control over patterning is obtained by varying the relative intensity of incident UV and green light. These experiments demonstrate the capacity of spirothiopyran monolayers to serve as a versatile toolbox for rapid, large-area surface functionalization.

13.
Angew Chem Int Ed Engl ; 58(12): 3690-3693, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30653795

RESUMEN

The purpose of this Viewpoint is to discuss the molecular design principles that guide development of synthetic antimicrobial polymers, especially those intended to mimic the structure of host defense peptides (HDPs). In particular, we focus on the principle of "amphiphilic balance" as it relates to some recently developed polyphosphoniums with somewhat atypical structure. We find that the fundamental concept of amphiphilic balance is still applicable to these new polymers, but that the method to achieve such balance is somewhat unique. We then briefly outline the future challenges and opportunities in this field.


Asunto(s)
Antibacterianos/química , Polímeros/química , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Farmacorresistencia Bacteriana/efectos de los fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Polímeros/farmacología , Poliestirenos/química , Relación Estructura-Actividad
14.
ACS Appl Mater Interfaces ; 11(2): 1896-1906, 2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30574776

RESUMEN

A library of functionalized oligo(thiophene)s with precisely controlled chain length, regioregularity, sequence, and pendant moieties in the side chains was prepared by iterative convergent/divergent organometallic couplings. The cationic and facially amphiphilic structures were designed to mimic the salient physiochemical features of host defense peptides (HDPs) while concurrently exerting a photodynamic mechanism of antibacterial activity. In the dark, the oligothiophenes exert broad-spectrum and rapid bactericidal activity in the micromolar regime, which is the typical range of HDP activity. Under visible light, the antibacterial potency is enhanced by orders of magnitude, leading to potency in the nanomolar concentration range, whereas the toxicity to red blood cells (RBCs) is almost unaffected by the same visible light exposure. We attribute the potent and selective antibacterial activity to a dual mechanism of action that involves bacterial cell binding, combined with reactive oxygen species production in the bound state. Comonomer sequence and chain length dispersity play important roles in dictating the observed biological activities. The most promising candidate compound from a set of screening experiments showed antibacterial activity that is 3 orders of magnitude more potent against bacteria relative to toxicity against RBCs. Importantly, this compound did not induce resistance upon 21 subinhibitory passages, whereas the activity of ciprofloxacin was reduced 32× in the same condition. Cytotoxicity against HeLa cells in vitro is orders of magnitude weaker than antibacterial activity under visible light illumination. Thus, we have established a new class of HDP-mimetic antibacterial compounds with nanomolar activity and cell type selectivity of greater than 1300-fold. These and related compounds may be highly promising candidates in the urgent search for new topical photodynamic antibacterial formulations.


Asunto(s)
Antibacterianos , Ciprofloxacina , Infecciones por Escherichia coli/tratamiento farmacológico , Escherichia coli/crecimiento & desarrollo , Peptidomiméticos , Fotoquimioterapia , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/crecimiento & desarrollo , Tiofenos , Animales , Antibacterianos/química , Antibacterianos/farmacología , Ciprofloxacina/química , Ciprofloxacina/farmacología , Células HeLa , Humanos , Luz , Peptidomiméticos/química , Peptidomiméticos/farmacología , Ovinos , Tiofenos/química , Tiofenos/farmacología
15.
RSC Adv ; 9(49): 28841-28850, 2019 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-35529644

RESUMEN

Highly parallelized optical super-resolution lithography techniques are key for realizing bulk volume nanopatterning in materials. The majority of demonstrated STED-inspired lithography schemes are serial writing techniques. Here we use a recently developed model spirothiopyran monolayer photoresist to study the non-equilibrium kinetics of STED-inspired lithography systems to achieve large area interference lithography with super-resolved feature dimensions. The linewidth is predicted to increase with exposure time and the contrast is predicted to go through a maximum, resulting in a narrow window of optimum exposure. Experimental results are found to match with high quantitative accuracy. The low photoinhibition saturation threshold of the spirothiopyran renders it especially conducive for parallelized large area nanopatterning. Lines with 56 and 92 nm FWHM were obtained using serial and parallel patterning, respectively. Functionalization of surfaces with heterobifunctional PEGs enables diverse patterning of any desired chemical functionality on these monolayers. These results provide important insight prior to realizing a highly parallelized volume nanofabrication technique.

16.
Curr Pharm Des ; 24(8): 855-865, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29436992

RESUMEN

The rising incidence of antibiotic-resistant infections, combined with a declining number of new antibiotic drug approvals, has generated an alarming therapeutic gap that critically undermines public health. Host Defense Peptides (HDPs), sometimes referred to as "Nature's Antibiotics", are short chain, amphiphilic and cationic peptide sequences found in all multicellular organisms as part of their innate immunity. While there is a vast diversity in terms of HDP sequence and secondary structure, they all seem to share physiochemical characteristics that can be appropriated for macromolecular design by the synthetic polymer chemist. Over the past decade, remarkable progress has been made in the design and synthesis of polymer-based materials that effectively mimic HDP action - broad-spectrum antibacterial potency, rapid bactericidal kinetics, and minimal toxicity to human cells - while offering the additional benefits of low cost, high scalability, and lower propensity to induce resistance, relative to their peptide-based counterparts. A broad range of different macromolecular structures and architectures have been explored in this design space, including polynorbornenes, poly(meth)acrylates, poly(meth)acrylamides, nylon-2 polymers, and polycarbonates, to name a just few. Across all of these diverse chemical categories, the key determinants of antibacterial and hemolytic activity are the same as in HDPs: net cationic charge at neutral pH, well-balanced facial amphiphilicity, and the molecular weight of the compounds. In this review, we focus in particular on recent progress in the polymethacrylate category first pioneered by Kuroda and DeGrado and later modified, expanded upon and rigorously optimized by Kuroda's and many other groups. Key findings and future challenges will be highlighted.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Polímeros/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Diseño de Fármacos , Humanos , Estructura Molecular , Polímeros/síntesis química , Polímeros/química , Relación Estructura-Actividad
17.
J Mater Chem B ; 6(44): 7217-7229, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-32254634

RESUMEN

We report the first example of a self-immolative polymer that exerts potent antibacterial activity combined with relatively low hemolytic toxicity. In particular, self-immolative poly(benzyl ether)s bearing pendant cationic ammonium groups and grafted poly(ethylene glycol) chains in their side chains were prepared via post-polymerization thiol-ene chemistry. These functional polymers undergo sensitive and specific triggered depolymerization into small molecules upon exposure to a designed stimulus (in this example, fluoride ions cleave a silyl ether end cap). The molar composition of the resulting statistical copolymers varied from 0 to 100% PEG side chains. The average molar mass of the pendant PEG chains was either 800 or 2000 g mol-1. The antibacterial and hemolytic activities were evaluated as a function of copolymer composition. Strong bactericidal activity (low µg mL-1 MBC) was retained in the copolymers containing 25-50% PEG-800, whereas hemolytic toxicity monotonically decreased (up to HC50 >1000 µg mL-1) with increasing PEG content. PEG-2000 was far less effective; both the MBC and HC50 decreased to a comparable extent with increasing PEGylation. Overall, the best cell type selectivity index (HC50/MBC ∼ 28) was obtained for the copolymer containing ∼50% cysteamine and ∼50% PEG-800 side chains, as compared to the cationic homopolymer (HC50/MBC < 1). Thus, the systematic tuning of the PEG graft density and chain length effectively enhances the cell-type selectivity of these self-immolative polymers by orders of magnitude.

18.
Biomacromolecules ; 18(10): 3400-3409, 2017 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-28880551

RESUMEN

Self-immolative polymers (SIMPs) are macromolecules that spontaneously undergo depolymerization into small molecules when triggered by specific external stimuli. We report here the first examples of antimicrobial SIMPs with potent, rapid, and broad-spectrum bactericidal activity. Their antibacterial and hemolytic activities were examined as a function of cationic functionality. Polymers bearing primary ammonium cationic groups showed more potent bactericidal activity against Escherichia coli, relative to tertiary and quaternary ammonium counterparts, whereas the quaternary ammonium polymers showed the lowest hemolytic toxicity. These antibacterial polycations undergo end-to-end depolymerization when triggered by an externally applied stimulus. Specifically, poly(benzyl ether)s end-capped with a silyl ether group and bearing pendant allyl side chains were converted to polycations by photoinitiated thiol-ene radical addition using cysteamine HCl. The intact polycations are stable in solution, but they spontaneously unzip into their component monomers upon exposure to fluoride ions, with excellent sensitivity and selectivity. Upon triggered depolymerization, the antibacterial potency was largely retained but the hemolytic toxicity was substantially reduced. Thus, we reveal the first example of a self-immolative antibacterial polymer platform that will enable antibacterial materials to spontaneously unzip into biologically active small molecules upon the introduction of a specifically designed stimulus.


Asunto(s)
Antibacterianos/síntesis química , Compuestos de Bencilo/química , Poliaminas/química , Antibacterianos/efectos adversos , Antibacterianos/química , Antibacterianos/farmacología , Bacillus subtilis/efectos de los fármacos , Células Sanguíneas/efectos de los fármacos , Células Cultivadas , Enterococcus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Hemólisis , Humanos , Éteres Fenílicos/química , Polielectrolitos , Polimerizacion , Compuestos de Amonio Cuaternario/química , Staphylococcus aureus/efectos de los fármacos
19.
Macromol Biosci ; 13(10): 1285-99, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23832766

RESUMEN

There is an urgent need for new antibiotics which are effective against drug-resistant bacteria without contributing to resistance development. We have designed and developed antimicrobial copolymers with cationic amphiphilic structures based on the mimicry of naturally occurring antimicrobial peptides. These copolymers exhibit potent antimicrobial activity against a broad spectrum of bacteria including methicillin-resistant Staphylococcus aureus with no adverse hemolytic activity. Notably, these polymers also did not result in any measurable resistance development in E. coli. The peptide-mimetic design principle offers significant flexibility and diversity in the creation of new antimicrobial materials and their potential biomedical applications.


Asunto(s)
Antiinfecciosos/química , Péptidos Catiónicos Antimicrobianos/química , Biomimética , Polímeros/química , Antibacterianos/química , Antiinfecciosos/síntesis química , Antiinfecciosos/uso terapéutico , Péptidos Catiónicos Antimicrobianos/síntesis química , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Escherichia coli/efectos de los fármacos , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Pruebas de Sensibilidad Microbiana , Polímeros/síntesis química , Polímeros/uso terapéutico , Relación Estructura-Actividad
20.
Macromolecules ; 46(5): 1908-1915, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23750051

RESUMEN

Polymeric synthetic mimics of antimicrobial peptides (SMAMPs) have recently demonstrated similar antimicrobial activity as natural antimicrobial peptides (AMPs) from innate immunity. This is surprising, since polymeric SMAMPs are heterogeneous in terms of chemical structure (random sequence) and conformation (random coil), in contrast to defined amino acid sequence and intrinsic secondary structure. To understand this better, we compare AMPs with a 'minimal' mimic, a well characterized family of polydisperse cationic methacrylate-based random copolymer SMAMPs. Specifically, we focus on a comparison between the quantifiable membrane curvature generating capacity, charge density, and hydrophobicity of the polymeric SMAMPs and AMPs. Synchrotron small angle x-ray scattering (SAXS) results indicate that typical AMPs and these methacrylate SMAMPs generate similar amounts of membrane negative Gaussian curvature (NGC), which is topologically necessary for a variety of membrane-destabilizing processes. Moreover, the curvature generating ability of SMAMPs is more tolerant of changes in the lipid composition than that of natural AMPs with similar chemical groups, consistent with the lower specificity of SMAMPs. We find that, although the amount of NGC generated by these SMAMPs and AMPs are similar, the SMAMPs require significantly higher levels of hydrophobicity and cationic charge to achieve the same level of membrane deformation. We propose an explanation for these differences, which has implications for new synthetic strategies aimed at improved mimesis of AMPs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...