Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38713010

RESUMEN

OBJECTIVES: The activated partial thromboplastin time (aPTT) is the most frequently used monitoring assay for bivalirudin in children and young adults on mechanical circulatory support including ventricular assist devices (VADs) and extracorporeal membrane oxygenation (ECMO). However, intrinsic variability of the aPTT complicates management and risks bleeding or thrombotic complications. We evaluated the utility and reliability of a bivalirudin-calibrated dilute thrombin time (Bival dTT) assay for bivalirudin monitoring in this population. DESIGN: Retrospective analysis of clinical data (including aPTT, dilute thrombin time [dTT]) and results of residual plasma samples from VAD patients were assessed in two drug-calibrated experimental assays. One assay (Bival dTT) was validated for clinical use in VAD patients, and subsequently used by clinicians in ECMO patients. Pearson correlation and simple linear regression were used to determine R2 correlation coefficients between the different laboratory parameters using Statistical Package for Social Sciences (Armonk, NY). SETTING: ICUs at Cincinnati Children's Hospital Medical Center. SUBJECTS: Children on VAD or ECMO support anticoagulated with bivalirudin. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: One hundred fifteen plasma samples from 11 VAD patients were analyzed. Both drug-calibrated experimental assays (anti-IIa and Bival dTT) showed excellent correlation with each other (R2 = 0.94) and with the dTT (R2 = 0.87), but poor correlation with aPTT (R2 = 0.1). Bival dTT was selected for validation in VAD patients. Subsequently, clinically ordered results (105) from 11 ECMO patients demonstrated excellent correlation between the Bival dTT and the standard dTT (R2 = 0.86) but very poor correlation with aPTT (R2 = 0.004). CONCLUSIONS: APTT is unreliable and correlates poorly with bivalirudin's anticoagulant effect in ECMO and VAD patients. A drug-calibrated Bival dTT offers superior reliability and opportunity to standardize results across institutions. Additional studies are needed to determine an appropriate therapeutic range and correlation with clinical outcomes.

2.
ASAIO J ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483814

RESUMEN

Extracorporeal membrane oxygenation (ECMO) is often associated with disturbances in acid/base status that can be triggered by the underlying pathology or the ECMO circuit itself. Extracorporeal membrane oxygenation is known to cause hypocapnia, but the impact of reduced partial pressure of carbon dioxide (pCO2) on biomarkers of tissue perfusion during veno-arterial (VA)-ECMO has not been evaluated. To study the impact of low pCO2 on perfusion indices in VA-ECMO, we placed Sprague-Dawley rats on an established VA-ECMO circuit using either an oxygen/carbon dioxide mixture (O2 95%, CO2 5%) or 100% O2 delivered through the oxygenator (n = 5 per cohort). Animals receiving 100% O2 developed a significant VA CO2 difference (pCO2 gap) and rising blood lactate levels that were inversely proportional to the decrease in pCO2 values. In contrast, pCO2 gap and lactate levels remained similar to pre-ECMO baseline levels in animals receiving the O2/CO2 mixture. More importantly, there was no significant difference in venous oxygen saturation (SvO2) between the two groups, suggesting that elevated blood lactate levels observed in the rats receiving 100% O2 were a response to oxygenator induced hypocapnia and alkaline pH rather than reduced perfusion or underlying tissue hypoxia. These findings have implications in clinical and experimental extracorporeal support contexts.

4.
Cell ; 186(24): 5375-5393.e25, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37995657

RESUMEN

Itch is an unpleasant sensation that evokes a desire to scratch. The skin barrier is constantly exposed to microbes and their products. However, the role of microbes in itch generation is unknown. Here, we show that Staphylococcus aureus, a bacterial pathogen associated with itchy skin diseases, directly activates pruriceptor sensory neurons to drive itch. Epicutaneous S. aureus exposure causes robust itch and scratch-induced damage. By testing multiple isogenic bacterial mutants for virulence factors, we identify the S. aureus serine protease V8 as a critical mediator in evoking spontaneous itch and alloknesis. V8 cleaves proteinase-activated receptor 1 (PAR1) on mouse and human sensory neurons. Targeting PAR1 through genetic deficiency, small interfering RNA (siRNA) knockdown, or pharmacological blockade decreases itch and skin damage caused by V8 and S. aureus exposure. Thus, we identify a mechanism of action for a pruritogenic bacterial factor and demonstrate the potential of inhibiting V8-PAR1 signaling to treat itch.


Asunto(s)
Péptido Hidrolasas , Prurito , Receptor PAR-1 , Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Humanos , Ratones , Péptido Hidrolasas/metabolismo , Prurito/microbiología , Receptor PAR-1/metabolismo , Staphylococcus aureus/enzimología , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/fisiología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología
5.
Artículo en Inglés | MEDLINE | ID: mdl-37683721

RESUMEN

BACKGROUND: Factor XII (FXII) is a multifunctional protease capable of activating thrombotic and inflammatory pathways. FXII has been linked to thrombosis in extracorporeal membrane oxygenation (ECMO), but the role of FXII in ECMO-induced inflammatory complications has not been studied. We used novel gene-targeted FXII- deficient rats to evaluate the role of FXII in ECMO-induced thromboinflammation. METHODS: FXII-deficient (FXII-/-) Sprague-Dawley rats were generated using CRISPR/Cas9. A minimally invasive venoarterial (VA) ECMO model was used to compare wild-type (WT) and FXII-/- rats in 2 separate experimental cohorts: rats placed on ECMO without pharmacologic anticoagulation and rats anticoagulated with argatroban. Rats were maintained on ECMO for 1 hour or until circuit failure occurred. Comparisons were made with unchallenged rats and rats that underwent a sham surgical procedure without ECMO. RESULTS: FXII-/- rats were maintained on ECMO without pharmacologic anticoagulation with low resistance throughout the 1-hour experiment. In contrast, WT rats placed on ECMO without anticoagulation developed thrombotic circuit failure within 10 minutes. Argatroban provided a means to maintain WT and FXII-/- rats on ECMO for the 1-hour time frame without thrombotic complications. Analyses of these rats demonstrated that ECMO resulted in increased neutrophil migration into the liver that was significantly blunted by FXII deficiency. ECMO also resulted in increases in high molecular weight kininogen cleavage and complement activation that were abrogated by genetic deletion of FXII. CONCLUSIONS: FXII initiates hemostatic system activation and key inflammatory sequelae in ECMO, suggesting that therapies targeting FXII could limit both thromboembolism and inopportune inflammatory complications in this setting.

7.
Nat Commun ; 14(1): 1929, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024491

RESUMEN

Activating non-inherited mutations in the guanine nucleotide-binding protein G(q) subunit alpha (GNAQ) gene family have been identified in childhood vascular tumors. Patients experience extensive disfigurement, chronic pain and severe complications including a potentially lethal coagulopathy termed Kasabach-Merritt phenomenon. Animal models for this class of vascular tumors do not exist. This has severely hindered the discovery of the molecular consequences of GNAQ mutations in the vasculature and, in turn, the preclinical development of effective targeted therapies. Here we report a mouse model expressing hyperactive mutant GNAQ in endothelial cells. Mutant mice develop vascular and coagulopathy phenotypes similar to those seen in patients. Mechanistically, by transcriptomic analysis we demonstrate increased mitogen activated protein kinase signaling in the mutant endothelial cells. Targeting of this pathway with Trametinib suppresses the tumor growth by reducing vascular cell proliferation and permeability. Trametinib also prevents the development of coagulopathy and improves mouse survival.


Asunto(s)
Melanoma , Neoplasias de la Úvea , Neoplasias Vasculares , Animales , Ratones , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Células Endoteliales/metabolismo , Apoptosis , Melanoma/genética , Neoplasias de la Úvea/genética , Mutación , Modelos Animales de Enfermedad , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Línea Celular Tumoral
8.
Blood Adv ; 7(8): 1404-1417, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36240297

RESUMEN

Previous studies suggested that contact pathway factors drive thrombosis in mechanical circulation. We used a rabbit model of veno-arterial extracorporeal circulation (VA-ECMO) to evaluate the role of factors XI and XII in ECMO-associated thrombosis and organ damage. Factors XI and XII (FXI, FXII) were depleted using established antisense oligonucleotides before placement on a blood-primed VA-ECMO circuit. Decreasing FXII or FXI to < 5% of baseline activity significantly prolonged ECMO circuit lifespan, limited the development of coagulopathy, and prevented fibrinogen consumption. Histological analysis suggested that FXII depletion mitigated interstitial pulmonary edema and hemorrhage whereas heparin and FXI depletion did not. Neither FXI nor FXII depletion was associated with significant hemorrhage in other organs. In vitro analysis showed that membrane oxygenator fibers (MOFs) alone are capable of driving significant thrombin generation in a FXII- and FXI-dependent manner. MOFs also augment thrombin generation triggered by low (1 pM) or high (5 pM) tissue factor concentrations. However, only FXI elimination completely prevented the increase in thrombin generation driven by MOFs, suggesting MOFs augment thrombin-mediated FXI activation. Together, these results suggest that therapies targeting FXII or FXI limit thromboembolic complications associated with ECMO. Further studies are needed to determine the contexts wherein targeting FXI and FXII, either alone or in combination, would be most beneficial in ECMO. Moreover, studies are also needed to determine the potential mechanisms coupling FXII to end-organ damage in ECMO.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Trombosis , Animales , Conejos , Factor XII , Oxigenación por Membrana Extracorpórea/efectos adversos , Trombina/metabolismo , Factor XI/metabolismo , Trombosis/etiología
9.
Blood Adv ; 7(10): 1945-1953, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-36477178

RESUMEN

The chemotherapeutic drug doxorubicin is cardiotoxic and can cause irreversible heart failure. In addition to being cardiotoxic, doxorubicin also induces the activation of coagulation. We determined the effect of thrombin-mediated activation of protease-activated receptor 1 (PAR1) on doxorubicin-induced cardiac injury. Administration of doxorubicin to mice resulted in a significant increase in plasma prothrombin fragment 1+2, thrombin-antithrombin complexes, and extracellular vesicle tissue factor activity. Doxorubicin-treated mice expressing low levels of tissue factor, but not factor XII-deficient mice, had reduced plasma thrombin-antithrombin complexes compared to controls. To evaluate the role of thrombin-mediated activation of PAR1, transgenic mice insensitive to thrombin (Par1R41Q) or activated protein C (Par1R46Q) were subjected to acute and chronic models of doxorubicin-induced cardiac injury and compared with Par1 wild-type (Par1+/+) and PAR1 deficient (Par1-/-) mice. Par1R41Q and Par1-/- mice, but not Par1R46Q mice, demonstrated similar reductions in the cardiac injury marker cardiac troponin I, preserved cardiac function, and reduced cardiac fibrosis compared to Par1+/+ controls after administration of doxorubicin. Furthermore, inhibition of Gαq signaling downstream of PAR1 with the small molecule inhibitor Q94 significantly preserved cardiac function in Par1+/+ mice, but not in Par1R41Q mice subjected to the acute model of cardiac injury when compared to vehicle controls. In addition, mice with PAR1 deleted in either cardiomyocytes or cardiac fibroblasts demonstrated reduced cardiac injury compared to controls. Taken together, these data suggest that thrombin-mediated activation of PAR1 contributes to doxorubicin-induced cardiac injury.


Asunto(s)
Receptor PAR-1 , Trombina , Ratones , Animales , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Trombina/metabolismo , Tromboplastina , Doxorrubicina/efectos adversos , Antitrombinas
10.
ASAIO J ; 68(12): e243-e250, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36229020

RESUMEN

The mechanisms driving the pathologic state created by extracorporeal membrane oxygenation (ECMO) remain poorly defined. We developed the first complete blood-primed murine model of veno-arterial ECMO capable of maintaining oxygenation and perfusion, allowing molecular studies that are unavailable in larger animal models. Fifteen C57BL/6 mice underwent ECMO by cannulating the left common carotid artery and the right external jugular vein. The mean arterial pressure was measured through cannulation of the femoral artery. The blood-primed circuit functioned well. Hemodynamic parameters remained stable and blood gas analyses showed adequate oxygenation of the animals during ECMO over a 1-hour timeframe. A significant increase in plasma-free hemoglobin was observed following ECMO, likely secondary to hemolysis within the miniaturized circuit components. Paralleling clinical data, ECMO resulted in a significant increase in plasma levels of multiple proinflammatory cytokines as well as evidence of early signs of kidney and liver dysfunction. These results demonstrate that this novel, miniature blood-primed ECMO circuit represents a functional murine model of ECMO that will provide unique opportunities for further studies to expand our knowledge of ECMO-related pathologies using the wealth of available genetic, pharmacological, and biochemical murine reagents not available for other species.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Animales , Ratones , Oxigenación por Membrana Extracorpórea/métodos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Hemodinámica , Cateterismo/métodos
11.
Thromb Res ; 213 Suppl 1: S3-S7, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-36210558

RESUMEN

Studies spanning the last 3 decades have fundamentally altered our understanding of the interplay between the hemostatic and immune systems. A plethora of studies have revealed that there is bidirectional crosstalk between these two systems at multiple levels that likely evolved as a means to coordinate the host response to numerous challenges, including trauma, infection, and thermal or chemical injury. Such challenges require reestablishment of vascular integrity, the clearance of pathogens, and removal of cellular and external debris. Clearly, bidirectional coordination of hemostasis and immunity would be beneficial in such contexts. Many types of malignancies take advantage of the interplay between hemostasis and immunity, co-opting these mechanisms to promote tumorigenesis, the formation of a supportive stroma, and metastasis to distant organs. Three important "bridges" that mechanistically link the hemostatic system to immune functions that have been shown to play a key role in cancer biology include the platelet/fibrinogen axis, protease activated receptor-1 (PAR-1) and protease activated receptor-2 (PAR-2). These hemostatic system components have been shown to regulate a variety of immune functions that support tumorigenesis in the context of inflammation-driven malignancy, metastasis, and escape from adaptive antitumor immunity. Understanding the mechanisms coupling these bridges between hemostasis and immunity, as well as others, could provide novel targets for the prevention and treatment of a variety of cancers.


Asunto(s)
Hemostáticos , Neoplasias , Carcinogénesis , Fibrinógeno , Hemostasis/fisiología , Humanos , Receptor PAR-1
12.
Blood Adv ; 6(22): 5821-5828, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36006613

RESUMEN

Anticoagulant treatment of pediatric cancer-associated venous thromboembolism (VTE) has not been prospectively evaluated. Management of anticoagulation for cancer-associated VTE is often challenged by drug interactions and treatment interruptions. A total of 56 of the 500 children (11.2%) with VTE who participated in the recent EINSTEIN-Jr randomized study had cancer (hematologic malignancy, 64.3%, solid malignant tumor, 35.7%). Children were allocated to either therapeutic-dose bodyweight-adjusted oral rivaroxaban (n=40) or standard anticoagulation with heparins, with or without vitamin K antagonists (n=16) and received a median of 30 concomitant medications. Based on sparse blood sampling at steady-state, pharmacokinetic (PK) parameters of rivaroxaban were derived using population PK modeling. During the 3 months of treatment, no recurrent VTE or major bleeding occurred (95% confidence interval, 0.0%-6.4%), and 3-month repeat imaging showed complete or partial vein recanalization in 20 and 24 of 52 evaluable children (38.5% and 46.2%, respectively). Anticoagulant treatment was interrupted 70 times in 26 (46.4%) children because of thrombocytopenia, invasive procedures, or adverse events, for a mean individual period of 5.8 days. Anticoagulant therapy was resumed in therapeutic doses and was not associated with thrombotic or bleeding complications. Rivaroxaban exposures were within the adult exposure range and similar to those observed in children with VTE who did not have cancer-associated VTE. Rivaroxaban and standard anticoagulants appeared safe and efficacious and were associated with reduced clot burden in most children with cancer-associated VTE, including those who had anticoagulant treatment interruptions. Rivaroxaban exposures were within the adult exposure range despite significant polypharmacy use. This trial was registered at www.clinicaltrials.gov as #NCT02234843.


Asunto(s)
Neoplasias , Tromboembolia Venosa , Niño , Humanos , Anticoagulantes/efectos adversos , Hemorragia/inducido químicamente , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Rivaroxabán/efectos adversos , Tromboembolia Venosa/etiología , Tromboembolia Venosa/complicaciones
13.
Res Pract Thromb Haemost ; 6(4): e12728, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35647476

RESUMEN

Significant data have accumulated demonstrating a reciprocal relationship between cancer and the hemostatic system whereby cancer promotes life-threatening hemostatic system dysregulation (e.g., thromboembolism, consumptive coagulopathy), and hemostatic system components directly contribute to cancer pathogenesis. The mechanistic underpinnings of this relationship continue to be defined, but it is becoming increasingly clear that many of these mechanisms involve crosstalk between the hemostatic and immune systems. This is perhaps not surprising given that there is ample evidence for bidirectional crosstalk between the hemostatic and immune systems at multiple levels that likely evolved to coordinate the response to injury, host defense, and tissue repair. Much of the data linking hemostasis and immunity in cancer biology focus on innate immune system components. However, the advent of adaptive immunity-based cancer therapies such as immune checkpoint inhibitors has revealed that the relationship of hemostasis and immunity in cancer extends to the adaptive immune system. Adaptive immunity-based cancer therapies appear to be associated with an increased risk of thromboembolic complications, and hemostatic system components appear to regulate adaptive immune functions through diverse mechanisms to affect tumor progression. In this review, the evidence for crosstalk between hemostatic and adaptive immune system components is discussed, and the implications of this relationship in the context of cancer therapy are reviewed. A better understanding of these relationships will likely lead to strategies to make existing adaptive immune based therapies safer by decreasing thromboembolic risk and may also lead to novel targets to improve adaptive immune-based cancer treatments.

14.
Blood Adv ; 6(15): 4645-4656, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35737875

RESUMEN

Immune thrombocytopenia (ITP) is an acquired bleeding disorder characterized by immunoglobulin G (IgG)-mediated platelet destruction. Current therapies primarily focus on reducing antiplatelet antibodies using immunosuppression or increasing platelet production with thrombopoietin mimetics. However, there are no universally safe and effective treatments for patients presenting with severe life-threatening bleeding. The IgG-degrading enzyme of Streptococcus pyogenes (IdeS), a protease with strict specificity for IgG, prevents IgG-driven immune disorders in murine models, including ITP. In clinical trials, IdeS prevented IgG-mediated kidney transplant rejection; however, the concentration of IdeS used to remove pathogenic antibodies causes profound hypogammaglobulinemia, and IdeS is immunogenic, which limits its use. Therefore, this study sought to determine whether targeting IdeS to FcγRIIA, a low-affinity IgG receptor on the surface of platelets, neutrophils, and monocytes, would be a viable strategy to decrease the pathogenesis of antiplatelet IgG and reduce treatment-related complications of nontargeted IdeS. We generated a recombinant protein conjugate by site-specifically linking the C-terminus of a single-chain variable fragment from an FcγRIIA antibody, clone IV.3, to the N-terminus of IdeS (scIV.3-IdeS). Platelets treated with scIV.3-IdeS had reduced binding of antiplatelet IgG from patients with ITP and decreased platelet phagocytosis in vitro, with no decrease in normal IgG. Treatment of mice expressing human FcγRIIA with scIV.3-IdeS reduced thrombocytopenia in a model of ITP and significantly improved the half-life of transfused platelets expressing human FcγRIIA. Together, these data suggest that scIV.3-IdeS can selectively remove pathogenic antiplatelet IgG and may be a potential treatment for patients with ITP and severe bleeding.


Asunto(s)
Púrpura Trombocitopénica Idiopática , Trombocitopenia , Animales , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/uso terapéutico , Plaquetas/metabolismo , Humanos , Inmunoglobulina G , Ratones , Púrpura Trombocitopénica Idiopática/tratamiento farmacológico , Streptococcus pyogenes/metabolismo , Trombocitopenia/tratamiento farmacológico
15.
J Pediatr Surg ; 57(6): 1056-1061, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35304022

RESUMEN

INTRODUCTION: Extracorporeal membrane oxygenation (ECMO) profoundly impacts inflammatory and coagulation pathways, and strict monitoring is essential to guide therapeutic anticoagulation. Thromboelastography (TEG) offers a global evaluation of whole blood hemostatic system components and may be a valuable measurement of hemostatic function in these patients. There is a paucity of data correlating TEG parameters with standard measures of coagulation in heparinized pediatric patients. METHODS: Children on ECMO during a 10-year period were retrospectively reviewed. Standard measures of coagulation were matched to TEGs drawn within 30 min of each other. RESULTS: Out of 296 unique patients with 331 ECMO runs, 74.3% (n = 246) had at least one set of matched laboratory samples for a total of 2502 matched samples. The aPTT correlated with R-time (p<0.001). Platelets and fibrinogen correlated with α-angle (p<0.001). Fibrinogen (p<0.001) and platelets (p<0.001) were each associated with maximum amplitude (MA). 158 (47.7%) patients had at least one bleeding complication, and 100 (30.2%) had at least one thrombotic complication. Interestingly, a decreasing MA was associated with increased thrombotic complications (p<0.001). DISCUSSION: TEG correlated well with traditional measures of hemostasis in pediatric ECMO patients. However, there was not a clear benefit of the TEG over these other measures LEVEL OF EVIDENCE: III.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Hemostáticos , Trombosis , Niño , Oxigenación por Membrana Extracorpórea/efectos adversos , Fibrinógeno , Humanos , Estudios Retrospectivos , Tromboelastografía
16.
Blood ; 139(9): 1302-1311, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-34958662

RESUMEN

Fibrinogen plays a pathologic role in multiple diseases. It contributes to thrombosis and modifies inflammatory and immune responses, supported by studies in mice expressing fibrinogen variants with altered function or with a germline fibrinogen deficiency. However, therapeutic strategies to safely and effectively tailor plasma fibrinogen concentration are lacking. Here, we developed a strategy to tune fibrinogen expression by administering lipid nanoparticle (LNP)-encapsulated small interfering RNA (siRNA) targeting the fibrinogen α chain (siFga). Three distinct LNP-siFga reagents reduced both hepatic Fga messenger RNA and fibrinogen levels in platelets and plasma, with plasma levels decreased to 42%, 16%, and 4% of normal within 1 week of administration. Using the most potent siFga, circulating fibrinogen was controllably decreased to 32%, 14%, and 5% of baseline with 0.5, 1.0, and 2.0 mg/kg doses, respectively. Whole blood from mice treated with siFga formed clots with significantly decreased clot strength ex vivo, but siFga treatment did not compromise hemostasis following saphenous vein puncture or tail transection. In an endotoxemia model, siFga suppressed the acute phase response and decreased plasma fibrinogen, D-dimer, and proinflammatory cytokine levels. In a sterile peritonitis model, siFga restored normal macrophage migration in plasminogen-deficient mice. Finally, treatment of mice with siFga decreased the metastatic potential of tumor cells in a manner comparable to that observed in fibrinogen-deficient mice. The results indicate that siFga causes robust and controllable depletion of fibrinogen and provides the proof-of-concept that this strategy can modulate the pleiotropic effects of fibrinogen in relevant disease models.


Asunto(s)
Afibrinogenemia/metabolismo , Fibrina/biosíntesis , Fibrinógeno/biosíntesis , Técnicas de Silenciamiento del Gen , Liposomas/farmacología , ARN Interferente Pequeño , Afibrinogenemia/genética , Animales , Plaquetas/metabolismo , Modelos Animales de Enfermedad , Femenino , Fibrina/genética , Fibrinógeno/genética , Humanos , Masculino , Ratones , Nanopartículas , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología
17.
Sci Rep ; 11(1): 14264, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34253819

RESUMEN

Protease-activated receptor 1 (PAR1) is widely expressed in humans and mice, and is activated by a variety of proteases, including thrombin. Recently, we showed that PAR1 contributes to the innate immune response to viral infection. Mice with a global deficiency of PAR1 expressed lower levels of CXCL10 and had increased Coxsackievirus B3 (CVB3)-induced myocarditis compared with control mice. In this study, we determined the effect of cell type-specific deletion of PAR1 in cardiac myocytes (CMs) and cardiac fibroblasts (CFs) on CVB3-induced myocarditis. Mice lacking PAR1 in either CMs or CFs exhibited increased CVB3 genomes, inflammatory infiltrates, macrophages and inflammatory mediators in the heart and increased CVB3-induced myocarditis compared with wild-type controls. Interestingly, PAR1 enhanced poly I:C induction of CXCL10 in rat CFs but not in rat neonatal CMs. Importantly, activation of PAR1 reduced CVB3 replication in murine embryonic fibroblasts and murine embryonic cardiac myocytes. In addition, we showed that PAR1 reduced autophagy in murine embryonic fibroblasts and rat H9c2 cells, which may explain how PAR1 reduces CVB3 replication. These data suggest that PAR1 on CFs protects against CVB3-induced myocarditis by enhancing the anti-viral response whereas PAR1 on both CMs and fibroblasts inhibits viral replication.


Asunto(s)
Quimiocina CXCL10/metabolismo , Infecciones por Coxsackievirus/virología , Enterovirus Humano B/metabolismo , Fibroblastos/metabolismo , Miocarditis/metabolismo , Miocitos Cardíacos/metabolismo , Receptores Proteinasa-Activados/metabolismo , Animales , Autofagia , Línea Celular , Eliminación de Gen , Humanos , Inmunidad Innata , Inflamación , Mediadores de Inflamación , Macrófagos/inmunología , Masculino , Ratones , Miocardio/inmunología , Ratas , Trombina/metabolismo , Replicación Viral
18.
J Thromb Haemost ; 19(10): 2480-2494, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34192410

RESUMEN

BACKGROUND: We previously showed that fibrinogen is a major determinant of the growth of a murine model of colorectal cancer (CRC). OBJECTIVE: Our aim was to define the mechanisms coupling fibrin(ogen) to CRC growth. RESULTS: CRC tumors transplanted into the dorsal subcutis of Fib- mice were less proliferative and demonstrated increased senescence relative to those grown in Fib+ mice. RNA-seq analyses of Fib+ and Fib- tumors revealed 213 differentially regulated genes. One gene highly upregulated in tumors from Fib- mice was stratifin, encoding 14-3-3σ, a master regulator of proliferation/senescence. In a separate cohort, we observed significantly increased protein levels of 14-3-3σ and its upstream and downstream targets (i.e., p53 and p21) in tumors from Fib- mice. In vitro analyses demonstrated increased tumor cell proliferation in a fibrin printed three-dimensional environment compared with controls, suggesting that fibrin(ogen) in the tumor microenvironment promotes tumor growth in this context via a tumor cell intrinsic mechanism. In vivo analyses showed diminished activation of focal adhesion kinase (FAK), a key negative regulator of p53, in Fib- tumors. Furthermore, nuclear magnetic resonance-based metabolomics demonstrated significantly reduced metabolic activity in tumors from Fib- relative to Fib+ mice. Together, these findings suggest that fibrin(ogen)-mediated engagement of colon cancer cells activates FAK, which inhibits p53 and its downstream targets including 14-3-3σ and p21, thereby promoting cellular proliferation and preventing senescence. CONCLUSIONS: These studies suggest that fibrin(ogen) is an important component of the colon cancer microenvironment and may be exploited as a potential therapeutic target.


Asunto(s)
Adenocarcinoma , Neoplasias Colorrectales , Fibrinógeno , Quinasa 1 de Adhesión Focal , Adenocarcinoma/genética , Animales , Neoplasias Colorrectales/genética , Hemostáticos , Ratones , Microambiente Tumoral
19.
Blood Adv ; 5(1): 250-261, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33570643

RESUMEN

Fanconi anemia (FA) is a complex genetic disorder associated with progressive marrow failure and a strong predisposition to malignancy. FA is associated with metabolic disturbances such as short stature, insulin resistance, thyroid dysfunction, abnormal body mass index (BMI), and dyslipidemia. We studied tryptophan metabolism in FA by examining tryptophan and its metabolites before and during the stress of hematopoietic stem cell transplant (HSCT). Tryptophan is an essential amino acid that can be converted to serotonin and kynurenine. We report here that serotonin levels are markedly elevated 14 days after HSCT in individuals with FA, in contrast to individuals without FA. Kynurenine levels are significantly reduced in individuals with FA compared with individuals without FA, before and after HSCT. Most peripheral serotonin is made in the bowel. However, serotonin levels in stool decreased in individuals with FA after transplant, similar to individuals without FA. Instead, we detected serotonin production in the skin in individuals with FA, whereas none was seen in individuals without FA. As expected, serotonin and transforming growth factor ß (TGF-ß) levels were closely correlated with platelet count before and after HSCT in persons without FA. In FA, neither baseline serotonin nor TGF-B correlated with baseline platelet count (host-derived platelets), only TGF-B correlated 14 days after transplant (blood bank-derived platelets). BMI was negatively correlated with serotonin in individuals with FA, suggesting that hyperserotonemia may contribute to growth failure in FA. Serotonin is a potential therapeutic target, and currently available drugs might be beneficial in restoring metabolic balance in individuals with FA.


Asunto(s)
Anemia de Fanconi , Médula Ósea , Anemia de Fanconi/terapia , Humanos , Factor de Crecimiento Transformador beta , Triptófano
20.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443167

RESUMEN

The blood-clotting protein fibrinogen has been implicated in host defense following Staphylococcus aureus infection, but precise mechanisms of host protection and pathogen clearance remain undefined. Peritonitis caused by staphylococci species is a complication for patients with cirrhosis, indwelling catheters, or undergoing peritoneal dialysis. Here, we sought to characterize possible mechanisms of fibrin(ogen)-mediated antimicrobial responses. Wild-type (WT) (Fib+) mice rapidly cleared S. aureus following intraperitoneal infection with elimination of ∼99% of an initial inoculum within 15 min. In contrast, fibrinogen-deficient (Fib-) mice failed to clear the microbe. The genotype-dependent disparity in early clearance resulted in a significant difference in host mortality whereby Fib+ mice uniformly survived whereas Fib- mice exhibited high mortality rates within 24 h. Fibrin(ogen)-mediated bacterial clearance was dependent on (pro)thrombin procoagulant function, supporting a suspected role for fibrin polymerization in this mechanism. Unexpectedly, the primary host initiator of coagulation, tissue factor, was found to be dispensable for this antimicrobial activity. Rather, the bacteria-derived prothrombin activator vWbp was identified as the source of the thrombin-generating potential underlying fibrin(ogen)-dependent bacterial clearance. Mice failed to eliminate S. aureus deficient in vWbp, but clearance of these same microbes in WT mice was restored if active thrombin was administered to the peritoneal cavity. These studies establish that the thrombin/fibrinogen axis is fundamental to host antimicrobial defense, offer a possible explanation for the clinical observation that coagulase-negative staphylococci are a highly prominent infectious agent in peritonitis, and suggest caution against anticoagulants in individuals susceptible to peritoneal infections.


Asunto(s)
Fibrinógeno/metabolismo , Peritonitis/metabolismo , Protrombina/metabolismo , Animales , Antibacterianos/metabolismo , Antiinfecciosos/metabolismo , Coagulación Sanguínea , Coagulasa/metabolismo , Femenino , Fibrina/metabolismo , Fibrinógeno/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidad , Tromboplastina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...