Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202407079, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38757230

RESUMEN

In both the manufacturing and chemical industries, benzoquinone is a crucial chemical product. A perfect and economical method for making benzoquinone is the electrochemical oxidation of phenol, thanks to the traditional thermal catalytic oxidation of phenol process requires high cost, serious pollution and harsh reaction conditions. Here, a unique heterostructure electrocatalyst on nickel foam (NF) consisting of nickel sulfide and nickel oxide (Ni9S8-Ni15O16/NF) was produced, and this catalyst exhibited a low overpotential (1.35 V vs. RHE) and prominent selectivity (99%) for electrochemical phenol oxidation reaction (EOP). Ni9S8-Ni15O16/NF is beneficial for lowering the reaction energy barrier and boosting reactivity in the EOP process according to density functional theory (DFT) calculations. Additionally, an alkali/acid hybrid flow cell was successfully established by connecting Ni9S8-Ni15O16/NF and commercial RuIr/Ti in series to catalyze phenol oxidation in an alkaline medium and hydrogen evolution in an acid medium, respectively. A cell voltage of only 0.60 V was applied to produce a current density of 10 mA cm-2. Meanwhile, the system continued to operate at 0.90 V for 12 days, showing remarkable long-term stability. The unique configuration of the acid-base hybrid flow cell electrolyzer provides valuable guidance for the efficient and environmentally friendly electrooxidation of phenol to benzoquinone.

2.
J Colloid Interface Sci ; 670: 191-203, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761572

RESUMEN

Transition metal chalcogenides (TMCs) hold great potential for sodium-ion batteries (SIBs) owing to their multielectron conversion reactions, yet face challenges of poor intrinsic conductivity, sluggish diffusion kinetics, severe phase transitions, and structural collapse during cycling. Herein, a self-templating strategy is proposed for the synthesis of a class of metal cobalt-doped NiSe nanoparticles confined within three-dimensional (3D) N-doped macroporous carbon matrix nanohybrids (Co-NiSe/NMC). The cation defect engineering within the developed Co-NiSe and 3D N-doped carbon plays a crucial role in enhancing intrinsic conductivity, reinforcing structural stability, and reducing the barrier to sodium ion diffusion, which are verified by a series of electrochemical kinetic analyses and density functional theory calculations. Significantly, such cation defect engineering not only reduces overpotential but also accelerates conversion reaction kinetics, ensuring both exceptional high-rate capability and extended durability. Consequently, the optimally engineered Co-NiSe/NMC demonstrates a remarkable rate performance, delivering 390 mAh g-1 at 10 A g-1. Moreover, it exhibits an unprecedented lifespan, maintaining a remarkable capacity of 403 mAh g-1 after 1400 cycles and 318 mAh g-1 after 4000 cycles, even at high rates of 1.0 and 2.0 A g-1, respectively. This work marks a substantial advancement in achieving both high performance and prolonged cycle life in sodium-ion batteries.

3.
Nanomicro Lett ; 16(1): 195, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743205

RESUMEN

A lightweight flexible thermally stable composite is fabricated by combining silica nanofiber membranes (SNM) with MXene@c-MWCNT hybrid film. The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination; the MXene@c-MWCNTx:y films are prepared by vacuum filtration technology. In particular, the SNM and MXene@c-MWCNT6:4 as one unit layer (SMC1) are bonded together with 5 wt% polyvinyl alcohol (PVA) solution, which exhibits low thermal conductivity (0.066 W m-1 K-1) and good electromagnetic interference (EMI) shielding performance (average EMI SET, 37.8 dB). With the increase in functional unit layer, the overall thermal insulation performance of the whole composite film (SMCx) remains stable, and EMI shielding performance is greatly improved, especially for SMC3 with three unit layers, the average EMI SET is as high as 55.4 dB. In addition, the organic combination of rigid SNM and tough MXene@c-MWCNT6:4 makes SMCx exhibit good mechanical tensile strength. Importantly, SMCx exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment. Therefore, this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future.

4.
Biotechnol Biofuels Bioprod ; 17(1): 38, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454489

RESUMEN

BACKGROUND: Glycerol, as a by-product, mainly derives from the conversion of many crops to biodiesel, ethanol, and fatty ester. Its bioconversion to 1,3-propanediol (1,3-PDO) is an environmentally friendly method. Continuous fermentation has many striking merits over fed-batch and batch fermentation, such as high product concentration with easy feeding operation, long-term high productivity without frequent seed culture, and energy-intensive sterilization. However, it is usually difficult to harvest high product concentrations. RESULTS: In this study, a three-stage continuous fermentation was firstly designed to produce 1,3-PDO from crude glycerol by Clostridium butyricum, in which the first stage fermentation was responsible for providing the excellent cells in a robust growth state, the second stage focused on promoting 1,3-PDO production, and the third stage aimed to further boost the 1,3-PDO concentration and reduce the residual glycerol concentration as much as possible. Through the three-stage continuous fermentation, 80.05 g/L 1,3-PDO as the maximum concentration was produced while maintaining residual glycerol of 5.87 g/L, achieving a yield of 0.48 g/g and a productivity of 3.67 g/(L·h). Based on the 14 sets of experimental data from the first stage, a kinetic model was developed to describe the intricate relationships among the concentrations of 1,3-PDO, substrate, biomass, and butyrate. Subsequently, this kinetic model was used to optimize and predict the highest 1,3-PDO productivity of 11.26 g/(L·h) in the first stage fermentation, while the glycerol feeding concentration and dilution rate were determined to be 92 g/L and 0.341 h-1, separately. Additionally, to achieve a target 1,3-PDO production of 80 g/L without the third stage fermentation, the predicted minimum volume ratio of the second fermenter to the first one was 11.9. The kinetics-based two-stage continuous fermentation was experimentally verified well with the predicted results. CONCLUSION: A novel three-stage continuous fermentation and a kinetic model were reported. Then a simpler two-stage continuous fermentation was developed based on the optimization of the kinetic model. This kinetics-based development of two-stage continuous fermentation could achieve high-level production of 1,3-PDO. Meanwhile, it provides a reference for other bio-chemicals production by applying kinetics to optimize multi-stage continuous fermentation.

5.
Nat Commun ; 15(1): 2343, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491008

RESUMEN

The intermitochondrial cement (IMC) and chromatoid body (CB) are posited as central sites for piRNA activity in mice, with MIWI initially assembling in the IMC for piRNA processing before translocating to the CB for functional deployment. The regulatory mechanism underpinning MIWI translocation, however, has remained elusive. We unveil that piRNA loading is the trigger for MIWI translocation from the IMC to CB. Mechanistically, piRNA loading facilitates MIWI release from the IMC by weakening its ties with the mitochondria-anchored TDRKH. This, in turn, enables arginine methylation of MIWI, augmenting its binding affinity for TDRD6 and ensuring its integration within the CB. Notably, loss of piRNA-loading ability causes MIWI entrapment in the IMC and its destabilization in male germ cells, leading to defective spermatogenesis and male infertility in mice. Collectively, our findings establish the critical role of piRNA loading in MIWI translocation during spermatogenesis, offering new insights into piRNA biology in mammals.


Asunto(s)
Proteínas Argonautas , Gránulos de Ribonucleoproteína de Células Germinales , ARN de Interacción con Piwi , Animales , Masculino , Ratones , Proteínas Argonautas/metabolismo , Células Germinativas/metabolismo , Mamíferos/genética , Mitocondrias/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Espermatogénesis/genética , Testículo/metabolismo
6.
Biotechnol Prog ; 40(1): e3411, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37985220

RESUMEN

To study the relationship between the yield of 1,3-propanediol (1,3-PDO) and the flux change of the Clostridium butyricum metabolic pathway, an optimized calculation method based on dynamic flux balance analysis was used by combining genome-scale flux balance analysis with a kinetic model. A more comprehensive and extensive metabolic pathway was obtained by optimization calculations. The primary extended branches include: the dihydroxyacetone node, which enters the pentose phosphate pathway; the α-oxoglutarate node, which has synthetic metabolic pathways for glutamic acid and amino acids; and the serine and homocysteine nodes, which produce cystathionine before homocysteine enters the methionine cycle pathway. According to the expanded metabolic network, the flux distribution of key nodes in the metabolic pathway and the relationship between the flux distribution ratio of nodes and the yield of 1,3-PDO were analyzed. At the dihydroxyacetone node, the flux of dihydroxyacetone converted to dihydroxyacetone phosphate was positively correlated with the yield of 1,3-PDO. As an important intermediate product, the flux change in the metabolic pathway of α-oxoglutarate reacting with amino acids to produce glutamic acid is positively correlated with the yield. When pyruvate was used as the central node to convert into lactic acid and α-oxoglutarate, the proportion of branch flux was negatively correlated with the yield of 1,3-PDO. These studies provide a theoretical basis for the optimization and further study of the metabolic pathway of C. butyricum.


Asunto(s)
Clostridium butyricum , Clostridium butyricum/metabolismo , Fermentación , Dihidroxiacetona , Ácidos Cetoglutáricos/metabolismo , Glicerol/metabolismo , Glicoles de Propileno , Propilenglicol/metabolismo , Homocisteína/metabolismo , Glutamatos/metabolismo
7.
Sheng Wu Gong Cheng Xue Bao ; 39(7): 2579-2599, 2023 Jul 25.
Artículo en Chino | MEDLINE | ID: mdl-37584116

RESUMEN

Color is an important indicator for evaluating the ornamental traits of horticultural plants, and plant pigments is a key factor affecting the color phenotype of plants. Plant pigments and their metabolites play important roles in color formation of ornamental organs, regulation of plant growth and development, and response to adversity stress. It has therefore became a hot topic in the field of plant research. Virus-induced gene silencing (VIGS) is a vital genomics tool that specifically reduces host endogenous gene expression utilizing plant homology-dependent defense mechanisms. In addition, VIGS enables characterization of gene function by rapidly inducing the gene-silencing phenotypes in plants. It provides an efficient and feasible alternative for verifying gene function in plant species lacking genetic transformation systems. This paper reviews the current status of the application of VIGS technology in the biosynthesis, degradation and regulatory mechanisms of plant pigments. Moreover, this review discusses the potential and future prospects of VIGS technology in exploring the regulatory mechanisms of plant pigments, with the aim to further our understandings of the metabolic processes and regulatory mechanisms of different plant pigments as well as improving plant color traits.


Asunto(s)
Virus de Plantas , Virus de Plantas/genética , Plantas/genética , Silenciador del Gen , Desarrollo de la Planta , Regulación de la Expresión Génica de las Plantas , Vectores Genéticos
8.
Brief Bioinform ; 24(3)2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37183449

RESUMEN

Undoubtedly, single-cell RNA sequencing (scRNA-seq) has changed the research landscape by providing insights into heterogeneous, complex and rare cell populations. Given that more such data sets will become available in the near future, their accurate assessment with compatible and robust models for cell type annotation is a prerequisite. Considering this, herein, we developed scAnno (scRNA-seq data annotation), an automated annotation tool for scRNA-seq data sets primarily based on the single-cell cluster levels, using a joint deconvolution strategy and logistic regression. We explicitly constructed a reference profile for human (30 cell types and 50 human tissues) and a reference profile for mouse (26 cell types and 50 mouse tissues) to support this novel methodology (scAnno). scAnno offers a possibility to obtain genes with high expression and specificity in a given cell type as cell type-specific genes (marker genes) by combining co-expression genes with seed genes as a core. Of importance, scAnno can accurately identify cell type-specific genes based on cell type reference expression profiles without any prior information. Particularly, in the peripheral blood mononuclear cell data set, the marker genes identified by scAnno showed cell type-specific expression, and the majority of marker genes matched exactly with those included in the CellMarker database. Besides validating the flexibility and interpretability of scAnno in identifying marker genes, we also proved its superiority in cell type annotation over other cell type annotation tools (SingleR, scPred, CHETAH and scmap-cluster) through internal validation of data sets (average annotation accuracy: 99.05%) and cross-platform data sets (average annotation accuracy: 95.56%). Taken together, we established the first novel methodology that utilizes a deconvolution strategy for automated cell typing and is capable of being a significant application in broader scRNA-seq analysis. scAnno is available at https://github.com/liuhong-jia/scAnno.


Asunto(s)
Algoritmos , Programas Informáticos , Animales , Ratones , Humanos , Perfilación de la Expresión Génica/métodos , Leucocitos Mononucleares , Análisis de la Célula Individual/métodos , ARN/genética , Análisis de Secuencia de ARN/métodos
9.
Chemosphere ; 325: 138327, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36889471

RESUMEN

Flares are commonly used in municipal solid waste landfills, and the pollution from flare exhaust is usually underestimated. This study aimed to reveal the odorants, hazardous pollutants, and greenhouse gas emission characteristics of the flare exhaust. Odorants, hazardous pollutants, and greenhouse gases emitted from air-assisted flares and a diffusion flare were analyzed, the priority monitoring pollutants were identified, and the combustion and odorant removal efficiencies of the flares were estimated. The concentrations of most odorants and the sum of odor activity values decreased significantly after combustion, but the odor concentration could still exceed 2,000. The odorants in the flare exhaust were dominated by oxygenated volatile organic compounds (OVOCs), while the major odor contributors were OVOCs and sulfur compounds. Hazardous pollutants, including carcinogens, acute toxic pollutants, endocrine disrupting chemicals, and ozone precursors with the total ozone formation potential up to 75 ppmv, as well as greenhouse gases (methane and nitrous oxide with maximum concentrations of 4,000 and 1.9 ppmv, respectively) were emitted from the flares. Additionally, secondary pollutants, such as acetaldehyde and benzene, were formed during combustion. The combustion performance of the flares varied with landfill gas composition and flare design. The combustion and pollutant removal efficiencies could be lower than 90%, especially for the diffusion flare. Acetaldehyde, benzene, toluene, p-cymene, limonene, hydrogen sulfide, and methane could be priority monitoring pollutants for flare emissions in landfills. Flares are useful for odor and greenhouse gas control in landfills, but they are also potential sources of odor, hazardous pollutants, and greenhouse gases.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Gases de Efecto Invernadero , Ozono , Eliminación de Residuos , Residuos Sólidos , Contaminantes Atmosféricos/análisis , Benceno/análisis , Emisiones de Vehículos , Acetaldehído , Instalaciones de Eliminación de Residuos , Metano/análisis , Odorantes/análisis
10.
Science ; 377(6607): eabj6647, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35951695

RESUMEN

Postmeiotic spermatids use a unique strategy to coordinate gene expression with morphological transformation, in which transcription and translation take place at separate developmental stages, but how mRNAs stored as translationally inert messenger ribonucleoproteins in developing spermatids become activated remains largely unknown. Here, we report that the RNA binding protein FXR1, a member of the fragile X-related (FXR) family, is highly expressed in late spermatids and undergoes liquid-liquid phase separation (LLPS) to merge messenger ribonucleoprotein granules with the translation machinery to convert stored mRNAs into a translationally activated state. Germline-specific Fxr1 ablation in mice impaired the translation of target mRNAs and caused defective spermatid development and male infertility, and a phase separation-deficient FXR1L351P mutation in Fxr1 knock-in mice produced the same developmental defect. These findings uncover a mechanism for translational reprogramming with LLPS as a key driver in spermiogenesis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Biosíntesis de Proteínas , ARN Mensajero Almacenado , Proteínas de Unión al ARN , Espermátides , Espermatogénesis , Animales , Infertilidad Masculina/genética , Masculino , Ratones , ARN Mensajero Almacenado/genética , ARN Mensajero Almacenado/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Espermátides/crecimiento & desarrollo , Espermátides/metabolismo , Espermatogénesis/genética
12.
BMC Genomics ; 23(1): 334, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35488201

RESUMEN

BACKGROUND: Osmanthus fragrans is an evergreen plant with high ornamental and economic values. However, they are easily injured by salt stress, which severely limits their use in high salinity areas. The trihelix transcription factor (TF) family, as one of the earliest discovered TF families in plants, plays an essential part in responses to different abiotic stresses, and it has potential functions in improving the salt-tolerance capability of O. fragrans. RESULTS: In this study, 56 trihelix genes (OfGTs) were first identified in O. fragrans and then divided into five subfamilies in accordance with a phylogenetic tree analysis. The OfGTs were found to be located randomly on the 20 O. fragrans chromosomes, and an analysis of gene replication events indicated that the OfGT gene family underwent strong purification selection during the evolutionary process. The analysis of conserved motifs and gene structures implied that the OfGT members in the same subfamily have similar conserved motifs and gene structures. A promoter cis-elements analysis showed that all the OfGT genes contained multiple abiotic and hormonal stress-related cis-elements. The RNA-seq data suggested that the OfGTs have specific expression patterns in different tissues, and some were induced by salt stress. The qRT-PCR analysis of 12 selected OfGTs confirmed that OfGT1/3/21/33/42/45/46/52 were induced, with OfGT3/42/46 being the most highly expressed. In addition, OfGT42/OfGT46 had a co-expression pattern under salt-stress conditions. OfGT3/42/46 were mainly localized in the nuclei and exhibited no transcriptional activities based on the analysis of the subcellular localization and transcriptional activity assay. Furthermore, the expression levels of most of the selected OfGTs were induced by multiple abiotic and hormonal stresses, and the expression patterns of some OfGTs were also highly correlated with gibberellic acid and methyl jasmonate levels. Remarkably, the transient transformation results showed lower MDA content and increased expression of ROS-related genes NbAPX in transgenic plants, which implying OfGT3/42/46 may improve the salt tolerance of tobacco. CONCLUSIONS: The results implied that the OfGT genes were related to abiotic and hormonal stress responses in O. fragrans, and that the OfGT3/42/46 genes in particular might play crucial roles in responses to salt stress. This study made a comprehensive summary of the OfGT gene family, including functions and co-expression patterns in response to salt and other stresses, as well as an evolutionary perspective. Consequently, it lays a foundation for further functional characterizations of these genes.


Asunto(s)
Regulación de la Expresión Génica , Factores de Transcripción , Filogenia , Estrés Salino/genética , Tolerancia a la Sal/genética , Factores de Transcripción/genética
13.
Nanomicro Lett ; 14(1): 118, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35488958

RESUMEN

With the innovation of microelectronics technology, the heat dissipation problem inside the device will face a severe test. In this work, cellulose aerogel (CA) with highly enhanced thermal conductivity (TC) in vertical planes was successfully obtained by constructing a vertically aligned silicon carbide nanowires (SiC NWs)/boron nitride (BN) network via the ice template-assisted strategy. The unique network structure of SiC NWs connected to BN ensures that the TC of the composite in the vertical direction reaches 2.21 W m-1 K-1 at a low hybrid filler loading of 16.69 wt%, which was increased by 890% compared to pure epoxy (EP). In addition, relying on unique porous network structure of CA, EP-based composite also showed higher TC than other comparative samples in the horizontal direction. Meanwhile, the composite exhibits good electrically insulating with a volume electrical resistivity about 2.35 × 1011 Ω cm and displays excellent electromagnetic wave absorption performance with a minimum reflection loss of - 21.5 dB and a wide effective absorption bandwidth (< - 10 dB) from 8.8 to 11.6 GHz. Therefore, this work provides a new strategy for manufacturing polymer-based composites with excellent multifunctional performances in microelectronic packaging applications.

14.
Langmuir ; 38(7): 2276-2286, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35138855

RESUMEN

Developing a photoactive material by combining the characteristics of a wide light response range and effective separation of photogenerated electron-hole pairs remains a huge challenge for the construction of a photoelectrochemical (PEC) sensing platform. Herein, a gold nanoparticle (AuNP)/MoS2/TiO2 composite was prepared through the facile hydrothermal method coupled with an in situ photoreduction technology. Benefiting from both the compositional and structure merits, the composite not only extends the absorption range to visible light but also enhances the photoelectric conversion efficiency by transferring photogenerated electrons into the conduction band of semiconductors from the plasmonic AuNP. Meanwhile, the thiolated aptamers were attached to the surface of AuNP/MoS2/TiO2 composites through the Au-S bonding to construct a visible light driven PEC aptasensor for ultrasensitive detection chloramphenicol (CAP). In the presence of CAP, the aptamers anchored on the surface of the photoactive materials could specifically recognize CAP and interact with it to form a bioaffinity complex with a steric hindrance effect, resulting in the rapid decrease of photocurrent responses. Based on this photocurrent suppression strategy, the constructed PEC aptasensing platform exhibited a high sensitivity with a wide linear range from 5 pM to 100 nM and a low detection limit of 0.5 pM.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Aptámeros de Nucleótidos/química , Cloranfenicol , Técnicas Electroquímicas/métodos , Oro/química , Luz , Límite de Detección , Nanopartículas del Metal/química , Molibdeno/química , Titanio
15.
Biotechnol Prog ; 38(1): e3225, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34775686

RESUMEN

In utilizing glycerol to produce 1,3-propanediol by microbial fermentation, the problems of low utilization rate and poor production performance need to be addressed. Based on the analysis of a mathematical model for 1,3-propanediol production from glycerol by Klebsiella pneumoniae, this study theoretically investigated the effects of the dilution rate and the initial glycerol concentration in a two-stage fermentation process and the feasibility of applying the feedback control methods. First, the optimal operation conditions of initial glycerol concentration and dilution rate were obtained. Through the use of feedback control theory, a control strategy for dilution rate was designed and optimized to shorten the settling time (time required for fermentation to reach stability) from 60.92 to 36.68 h for the first reactor, and from 53.66 to 22.68 h for the second reactor. In addition, the yield of 1,3-propanediol in both two reactors reached up to 0.5 g·g-1 . The simulation results indicated that the feedback control strategy for dilution rate increased the product concentration, reduced the residual glycerol in the fermentation broth, and greatly improved the performance of the fermentation. A feeding strategy of automatic control for dilution rate has been established and will be applied as an effective guiding scheme in automatic continuous fermentations for production of 1,3-propanediol.


Asunto(s)
Glicerol , Glicoles de Propileno , Retroalimentación , Fermentación , Klebsiella pneumoniae , Modelos Teóricos
16.
ACS Appl Mater Interfaces ; 13(50): 60478-60488, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34894671

RESUMEN

Stretchability and multifunctional heating abilities are highly desired for wearable electromagnetic interference (EMI) shielding fabrics to tackle the growing electromagnetic pollution for special crowd, such as pregnant women. Herein, we fabricated stretchable MXene-coated thermoplastic polyurethane (TPU) fabrics by simple uniaxial prestretching and spraying methods. The obtained unique wrinkled structure endowed the film with effective strain-invariant electrical conductivity and EMI shielding properties. Specifically, the prepared stretchable film with an extremely low MXene loading (0.417 mg cm-2) exhibited a stable EMI shielding effectiveness of approximately 30 dB under 50% tensile strain and durability during stretching and bending cycles. More importantly, owing to the high electrical conductivity and localized surface plasmon resonance (LSPR) effect of the MXene layer, the stretchable fabrics exhibited excellent Joule heating (up to 104 °C at a voltage of 5 V) and superior photothermal conversion abilities. Moreover, the unique wrinkled MXene-coating layer not only endows the fabrics with stretchable heat abilities but also enhances the photothermal conversion performance by increasing the light absorption area and travel path. We believe that this study offers a novel strategy for the versatile design of stretchable and multifunctional wearable shielding fabrics.

17.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 38(5): 1010-1017, 2021 Oct 25.
Artículo en Chino | MEDLINE | ID: mdl-34713670

RESUMEN

The emergence of single-cell sequencing technology enables people to observe cells with unprecedented precision. However, it is difficult to capture the information on all cells and genes in one single-cell RNA sequencing (scRNA-seq) experiment. Single-cell data of a single modality cannot explain cell state and system changes in detail. The integrative analysis of single-cell data aims to address these two types of problems. Integrating multiple scRNA-seq data can collect complete cell types and provide a powerful boost for the construction of cell atlases. Integrating single-cell multimodal data can be used to study the causal relationship and gene regulation mechanism across modalities. The development and application of data integration methods helps fully explore the richness and relevance of single-cell data and discover meaningful biological changes. Based on this, this article reviews the basic principles, methods and applications of multiple scRNA-seq data integration and single-cell multimodal data integration. Moreover, the advantages and disadvantages of existing methods are discussed. Finally, the future development is prospected.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de la Célula Individual , Secuencia de Bases , Regulación de la Expresión Génica , Humanos , Análisis de Secuencia de ARN
18.
Rev Sci Instrum ; 92(8): 083003, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34470430

RESUMEN

We propose a method to improve relative laser power stability using a passive photosensitive sunglass lens, which is a commercially available off-the-shelf product. We present a theoretical analysis and identify factors that affect the optimal working state of the lens. A relative laser power stability of 3.3 × 10-5 at 1 s is experimentally achieved, which is more than three times that of 1.2 × 10-4 at 1 s, acquired without power stabilization. This method does not require any active driving device, thereby significantly reducing the complexity and cost of the system, making it suitable for broad applications.

19.
ACS Appl Mater Interfaces ; 13(27): 32286-32294, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34185492

RESUMEN

With the increasing demand for thermal management materials in the highly integrated electronics area, building efficient heat-transfer networks to obtain advanced thermally conductive composites is of great significance. In the present work, highly thermally conductive poly(vinyl alcohol) (PVA)/boron nitride nanoplatelets@silver nanowires (BNNS@AgNW) composites were fabricated via the combination of the electrospinning and the spraying technique, followed by a hot-pressing method. BNNS are oriented along the in-plane direction, while AgNWs with a high aspect ratio can help to construct a thermal conductive network effectively by bridging BNNS in the composites. The PVA/BNNS@AgNW composites showed high in-plane thermal conductivity (TC) of 10.9 W/(m·K) at 33 wt % total fillers addition. Meanwhile, the composite shows excellent thermal dispassion capability when it is taken as a thermal interface material of a working light-emitting diode (LED) chip, which is certified by capturing the surface temperature of the LED chip. In addition, the out-of-plane electrical conductivity of the composites is below 10-12 S/cm. The composites with outstanding thermal conductive and electrical insulating properties hold promise for application in electrical packaging and thermal management.

20.
ACS Appl Mater Interfaces ; 13(22): 26278-26287, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34047540

RESUMEN

We report for the first time using zinc hydroxyfluoride (ZnOHF) for efficient NO2 gas detection. The prepared ZnOHF had a unique flower-like architecture self-assembled by nanorods with a diameter of 150 nm and length of 2-3 µm. The sensing performance toward NO2 detection indicated that the prepared ZnOHF exhibited high response (82.71), short response/recovery time (13 s/35 s) to 10 ppm of NO2, and excellent selectivity at 200 °C, greatly outperforming the ZnO raw material. ZnOHF could work in a wide detection window ranging from 100 ppb to 50 ppm, implying its practical application prospects in both industry and daily life. The excellent sensing behavior of ZnOHF originated mainly from the negligible oxygen ions adsorbed on the material surface, which was caused by the higher work function of ZnOHF. Therefore, almost all conduction band electrons can be used in the NO2 gas sensing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...