Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Genome ; 16(4): e20375, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37641460

RESUMEN

In addition to the challenge of meeting global demand for food production, there are increasing concerns about food safety and the need to protect consumer health from the negative effects of foodborne allergies. Certain bio-molecules (usually proteins) present in food can act as allergens that trigger unusual immunological reactions, with potentially life-threatening consequences. The relentless working lifestyles of the modern era often incorporate poor eating habits that include readymade prepackaged and processed foods, which contain additives such as peanuts, tree nuts, wheat, and soy-based products, rather than traditional home cooking. Of the predominant allergenic foods (soybean, wheat, fish, peanut, shellfish, tree nuts, eggs, and milk), peanuts (Arachis hypogaea) are the best characterized source of allergens, followed by tree nuts (Juglans regia, Prunus amygdalus, Corylus avellana, Carya illinoinensis, Anacardium occidentale, Pistacia vera, Bertholletia excels), wheat (Triticum aestivum), soybeans (Glycine max), and kidney beans (Phaseolus vulgaris). The prevalence of food allergies has risen significantly in recent years including chance of accidental exposure to such foods. In contrast, the standards of detection, diagnosis, and cure have not kept pace and unfortunately are often suboptimal. In this review, we mainly focus on the prevalence of allergies associated with peanut, tree nuts, wheat, soybean, and kidney bean, highlighting their physiological properties and functions as well as considering research directions for tailoring allergen gene expression. In particular, we discuss how recent advances in molecular breeding, genetic engineering, and genome editing can be used to develop potential low allergen food crops that protect consumer health.


Asunto(s)
Hipersensibilidad a los Alimentos , Animales , Nueces , Arachis , Alérgenos , Glycine max , Productos Agrícolas
2.
Plants (Basel) ; 11(19)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36235420

RESUMEN

Rapid industrialization, urbanization, and mine tailings runoff are the main sources of heavy metal contamination of agricultural land, which has become one of the major constraints to crop growth and productivity. Finding appropriate solutions to protect plants and agricultural land from heavy metal pollution/harmful effects is important for sustainable development. Phytoremediation and plant growth-promoting rhizobacteria (PGPR) are promising methods for this purpose, which both heavily rely on an appropriate understanding of the anatomical structure of plants. Specialized anatomical features, such as those of epidermis and endodermis and changes in the root vascular tissue, are often associated with heavy metal tolerance in legumes. This review emphasizes the uptake and transport of heavy metals by legume plants that can be used to enhance soil detoxification by phytoremediation processes. Moreover, the review also focuses on the role of rhizospheric organisms in the facilitation of heavy metal uptake, the various mechanisms of enhancing the availability of heavy metals in the rhizosphere, the genetic diversity, and the microbial genera involved in these processes. The information presented here can be exploited for improving the growth and productivity of legume plants in metal-prone soils.

3.
Front Plant Sci ; 13: 966339, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092444

RESUMEN

Anthracnose, caused by the fungus Colletotrichum lindemuthianum, is one of the devastating disease affecting common bean production and productivity worldwide. Several quantitative trait loci (QTLs) for anthracnose resistance have been identified. In order to make use of these QTLs in common bean breeding programs, a detailed meta-QTL (MQTL) analysis has been conducted. For the MQTL analysis, 92 QTLs related to anthracnose disease reported in 18 different earlier studies involving 16 mapping populations were compiled and projected on to the consensus map. This meta-analysis led to the identification of 11 MQTLs (each involving QTLs from at least two different studies) on 06 bean chromosomes and 10 QTL hotspots each involving multiple QTLs from an individual study on 07 chromosomes. The confidence interval (CI) of the identified MQTLs was found 3.51 times lower than the CI of initial QTLs. Marker-trait associations (MTAs) reported in published genome-wide association studies (GWAS) were used to validate nine of the 11 identified MQTLs, with MQTL4.1 overlapping with as many as 40 MTAs. Functional annotation of the 11 MQTL regions revealed 1,251 genes including several R genes (such as those encoding for NBS-LRR domain-containing proteins, protein kinases, etc.) and other defense related genes. The MQTLs, QTL hotspots and the potential candidate genes identified during the present study will prove useful in common bean marker-assisted breeding programs and in basic studies involving fine mapping and cloning of genomic regions associated with anthracnose resistance in common beans.

4.
J Genet ; 1012022.
Artículo en Inglés | MEDLINE | ID: mdl-35129127

RESUMEN

Memecylon (Melastomaceae) is a large genus of the Old-World predominantly woody species. Many species of Memecylon are used for timber, ornamental and medicinal purposes. The objective of the present study was to undertake a phylogenetic analysis of Indian Memecylon based on nuclear ribosomal DNA internal transcribed spacer (nrDNA-ITS) and rbcL sequence data. Sampling included 26 species and one variety (20 endemics) representing 67% of the total Indian species. Molecular phylogeny data for analysed species revealed that the Indian Memecylon is monophyletic. Monophyly is strongly supported in the ITS, rbcL and ITS + rbcL combined analyses. Memecylon species are grouped in a major clade with strong support in ITS sequence data and moderate support in combined ITS + rbcL analyses.


Asunto(s)
Melastomataceae , Núcleo Celular/genética , ADN de Cloroplastos/genética , ADN de Plantas/genética , ADN Ribosómico/genética , ADN Espaciador Ribosómico/genética , Melastomataceae/genética , Filogenia , Análisis de Secuencia de ADN
5.
iScience ; 24(8): 102846, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34381971

RESUMEN

The recent years have witnessed the emergence of high-throughput phenotyping techniques. In particular, these techniques can characterize a comprehensive landscape of physiological traits of plants responding to dynamic changes in the environment. These innovations, along with the next-generation genomic technologies, have brought plant science into the big-data era. However, a general framework that links multifaceted physiological traits to DNA variants is still lacking. Here, we developed a general framework that integrates functional physiological phenotyping (FPP) with functional mapping (FM). This integration, implemented with high-dimensional statistical reasoning, can aid in our understanding of how genotype is translated toward phenotype. As a demonstration of method, we implemented the transpiration and soil-plant-atmosphere measurements of a tomato introgression line population into the FPP-FM framework, facilitating the identification of quantitative trait loci (QTLs) that mediate the spatiotemporal change of transpiration rate and the test of how these QTLs control, through their interaction networks, phenotypic plasticity under drought stress.

6.
J Fungi (Basel) ; 7(6)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073230

RESUMEN

Pre-harvest aflatoxin contamination (PAC) in groundnut is a serious quality concern globally, and drought stress before harvest further exacerbate its intensity, leading to the deterioration of produce quality. Understanding the host-pathogen interaction and identifying the candidate genes responsible for resistance to PAC will provide insights into the defense mechanism of the groundnut. In this context, about 971.63 million reads have been generated from 16 RNA samples under controlled and Aspergillus flavus infected conditions, from one susceptible and seven resistant genotypes. The RNA-seq analysis identified 45,336 genome-wide transcripts under control and infected conditions. This study identified 57 transcription factor (TF) families with major contributions from 6570 genes coding for bHLH (719), MYB-related (479), NAC (437), FAR1 family protein (320), and a few other families. In the host (groundnut), defense-related genes such as senescence-associated proteins, resveratrol synthase, seed linoleate, pathogenesis-related proteins, peroxidases, glutathione-S-transferases, chalcone synthase, ABA-responsive gene, and chitinases were found to be differentially expressed among resistant genotypes as compared to susceptible genotypes. This study also indicated the vital role of ABA-responsive ABR17, which co-regulates the genes of ABA responsive elements during drought stress, while providing resistance against A. flavus infection. It belongs to the PR-10 class and is also present in several plant-pathogen interactions.

7.
Funct Integr Genomics ; 21(3-4): 313-330, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34013486

RESUMEN

Beyond the most crucial roles of RNA molecules as a messenger, ribosomal, and transfer RNAs, the regulatory role of many non-coding RNAs (ncRNAs) in plant biology has been recognized. ncRNAs act as riboregulators by recognizing specific nucleic acid targets through homologous sequence interactions to regulate plant growth, development, and stress responses. Regulatory ncRNAs, ranging from small to long ncRNAs (lncRNAs), exert their control over a vast array of biological processes. Based on the mode of biogenesis and their function, ncRNAs evolved into different forms that include microRNAs (miRNAs), small interfering RNAs (siRNAs), miRNA variants (isomiRs), lncRNAs, circular RNAs (circRNAs), and derived ncRNAs. This article explains the different classes of ncRNAs and their role in plant development and stress responses. Furthermore, the applications of regulatory ncRNAs in crop improvement, targeting agriculturally important traits, have been discussed.


Asunto(s)
Plantas , ARN no Traducido , MicroARNs/genética , Plantas/genética , ARN Largo no Codificante , ARN Interferente Pequeño , ARN no Traducido/genética
8.
Theor Appl Genet ; 134(3): 755-776, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33433637

RESUMEN

Pea (Pisum sativum L.), a cool-season legume crop grown in more than 85 countries, is the second most important grain legume and one of the major green vegetables in the world. While pea was historically studied as the genetic model leading to the discovery of the laws of genetics, pea research has lagged behind that of other major legumes in the genomics era, due to its large and complex genome. The evolving climate change and growing population have posed grand challenges to the objective of feeding the world, making it essential to invest research efforts to develop multi-omics resources and advanced breeding tools to support fast and continuous development of improved pea varieties. Recently, the pea researchers have achieved key milestones in omics and molecular breeding. The present review provides an overview of the recent important progress including the development of genetic resource databases, high-throughput genotyping assays, reference genome, genes/QTLs responsible for important traits, transcriptomic, proteomic, and phenomic atlases of various tissues under different conditions. These multi-faceted resources have enabled the successful implementation of various markers for monitoring early-generation populations as in marker-assisted backcrossing breeding programs. The emerging new breeding approaches such as CRISPR, speed breeding, and genomic selection are starting to change the paradigm of pea breeding. Collectively, the rich omics resources and omics-enable breeding approaches will enhance genetic gain in pea breeding and accelerate the release of novel pea varieties to meet the elevating demands on productivity and quality.


Asunto(s)
Genoma de Planta , Genómica/métodos , Pisum sativum/crecimiento & desarrollo , Fitomejoramiento , Proteómica/métodos , Sitios de Carácter Cuantitativo , Transcriptoma , Pisum sativum/genética , Pisum sativum/metabolismo
9.
Theor Appl Genet ; 133(5): 1679-1702, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32328677

RESUMEN

KEY MESSAGE: Groundnut has entered now in post-genome era enriched with optimum genomic and genetic resources to facilitate faster trait dissection, gene discovery and accelerated genetic improvement for developing climate-smart varieties. Cultivated groundnut or peanut (Arachis hypogaea), an allopolyploid oilseed crop with a large and complex genome, is one of the most nutritious food. This crop is grown in more than 100 countries, and the low productivity has remained the biggest challenge in the semiarid tropics. Recently, the groundnut research community has witnessed fast progress and achieved several key milestones in genomics research including genome sequence assemblies of wild diploid progenitors, wild tetraploid and both the subspecies of cultivated tetraploids, resequencing of diverse germplasm lines, genome-wide transcriptome atlas and cost-effective high and low-density genotyping assays. These genomic resources have enabled high-resolution trait mapping by using germplasm diversity panels and multi-parent genetic populations leading to precise gene discovery and diagnostic marker development. Furthermore, development and deployment of diagnostic markers have facilitated screening early generation populations as well as marker-assisted backcrossing breeding leading to development and commercialization of some molecular breeding products in groundnut. Several new genomics applications/technologies such as genomic selection, speed breeding, mid-density genotyping assay and genome editing are in pipeline. The integration of these new technologies hold great promise for developing climate-smart, high yielding and more nutritious groundnut varieties in the post-genome era.


Asunto(s)
Fabaceae/crecimiento & desarrollo , Fabaceae/genética , Genoma de Planta , Genómica/métodos , Fitomejoramiento/normas , Plantas Modificadas Genéticamente/genética , Sitios de Carácter Cuantitativo , Genética de Población , Fenotipo , Plantas Modificadas Genéticamente/crecimiento & desarrollo
10.
Front Genet ; 10: 1177, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31827488

RESUMEN

Peanut allergy is one of the serious health concern and affects more than 1% of the world's population mainly in Americas, Australia, and Europe. Peanut allergy is sometimes life-threatening and adversely affect the life quality of allergic individuals and their families. Consumption of hypoallergen peanuts is the best solution, however, not much effort has been made in this direction for identifying or developing hypoallergen peanut varieties. A highly diverse peanut germplasm panel was phenotyped using a recently developed monoclonal antibody-based ELISA protocol to quantify five major allergens. Results revealed a wide phenotypic variation for all the five allergens studied i.e., Ara h 1 (4-36,833 µg/g), Ara h 2 (41-77,041 µg/g), Ara h 3 (22-106,765 µg/g), Ara h 6 (829-103,892 µg/g), and Ara h 8 (0.01-70.12 µg/g). The hypoallergen peanut genotypes with low levels of allergen proteins for Ara h 1 (4 µg/g), Ara h 2 (41 µg/g), Ara h 3 (22 µg/g), Ara h 6 (829 µg/g), and Ara h 8 (0.01 µg/g) have paved the way for their use in breeding and genomics studies. In addition, these hypoallergen peanut genotypes are available for use in cultivation and industry, thus opened up new vistas for fighting against peanut allergy problem across the world.

11.
Front Nutr ; 6: 122, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31544105

RESUMEN

A major limitation for the utilization of sorghum forage is the production of the cyanogenic glycoside dhurrin in its leaves and stem that may cause the death of cattle feeding on it at the pre-flowering stage. Therefore, we attempted to develop transgenic sorghum plants with reduced levels of hydrogen cyanide (HCN) by antisense mediated down-regulation of the expression of cytochrome P450 CYP79A1, the key enzyme of the dhurrin biosynthesis pathway. CYP79A1 cDNA was isolated and cloned in antisense orientation, driven by rice Act1 promoter. Shoot meristem explants of sorghum cultivar CSV 15 were transformed by the particle bombardment method and 27 transgenics showing the integration of transgene were developed. The biochemical assay for HCN in the transgenic sorghum plants confirmed significantly reduced HCN levels in transgenic plants and their progenies. The HCN content in the transgenics varied from 5.1 to 149.8 µg/g compared to 192.08 µg/g in the non-transformed control on dry weight basis. Progenies with reduced HCN content were advanced after each generation till T3. In T3 generation, progenies of two promising events were tested which produced highly reduced levels of HCN (mean of 62.9 and 76.2 µg/g, against the control mean of 221.4 µg/g). The reduction in the HCN levels of transgenics confirmed the usefulness of this approach for reducing HCN levels in forage sorghum plants. The study effectively demonstrated that the antisense CYP79A1 gene deployment was effective in producing sorghum plants with lower HCN content which are safer for cattle to feed on.

12.
Front Nutr ; 6: 68, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31231654

RESUMEN

Peanut allergy is an important health concern among many individuals. As there is no effective treatment to peanut allergy, continuous monitoring of peanut-based products, and their sources is essential. Precise detection of peanut allergens is key for identification and development of improved peanut varieties with minimum or no allergens in addition to estimating the levels in peanut-based products available in food chain. The antibody based ELISA protocol along with sample preparation was standardized for Ara h 1, Ara h 2, Ara h 3, Ara h 6, and Ara h 8 to estimate their quantities in peanut seeds. Three different dilutions were optimized to precisely quantify target allergen proteins in peanut seeds such as Ara h 1 (1/1,000, 1/2,000, and 1/4,000), Ara h 2 and Ara h 3 (1/5,000, 1/10,000, and 1/20,000), Ara h 6 (1/40,000, 1/80,000, and 1/1,60,000), and Ara h 8 (1/10, 1/20, and 1/40). These dilutions were finalized for each allergen based on the accuracy of detection by achieving <20% coefficient of variation in three technical replicates. This protocol captured wide variation of allergen proteins in selected peanut genotypes for Ara h 1 (77-46,106 µg/g), Ara h 2 (265-5,426 µg/g), Ara h 3 (382-12,676 µg/g), Ara h 6 (949-43,375 µg/g), and Ara h 8 (0.385-6 µg/g). The assay is sensitive and reliable in precise detection of five major peanut allergens in seeds. Deployment of such protocol allows screening of large scale germplasm and breeding lines while developing peanut varieties with minimum allergenicity to ensure food safety.

13.
Toxins (Basel) ; 11(6)2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31163657

RESUMEN

Aflatoxin is considered a "hidden poison" due to its slow and adverse effect on various biological pathways in humans, particularly among children, in whom it leads to delayed development, stunted growth, liver damage, and liver cancer. Unfortunately, the unpredictable behavior of the fungus as well as climatic conditions pose serious challenges in precise phenotyping, genetic prediction and genetic improvement, leaving the complete onus of preventing aflatoxin contamination in crops on post-harvest management. Equipping popular crop varieties with genetic resistance to aflatoxin is key to effective lowering of infection in farmer's fields. A combination of genetic resistance for in vitro seed colonization (IVSC), pre-harvest aflatoxin contamination (PAC) and aflatoxin production together with pre- and post-harvest management may provide a sustainable solution to aflatoxin contamination. In this context, modern "omics" approaches, including next-generation genomics technologies, can provide improved and decisive information and genetic solutions. Preventing contamination will not only drastically boost the consumption and trade of the crops and products across nations/regions, but more importantly, stave off deleterious health problems among consumers across the globe.


Asunto(s)
Aflatoxinas/análisis , Arachis/microbiología , Aspergillus , Resistencia a la Enfermedad/genética , Contaminación de Alimentos/prevención & control , Aflatoxinas/toxicidad , Agricultura/métodos , Animales , Arachis/genética , Interacciones Huésped-Patógeno , Humanos , Enfermedades de las Plantas/genética
14.
J Genet ; 97(5): 1225-1239, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30555072

RESUMEN

Jasminum L. (Oleaceae) consists of ∼200 species that are distributed in tropical, subtropical and temperate regions of the world. In India, this genus is represented by ca 47 species of which 16 are endemic. Based on the nuclear (internal-transcribed spacer (ITS) region of nrDNA and chloroplast markers (matK, trnL-F and trnH-psbA), phylogenetic relationships in 22 species including one variety of Jasminum in India have been assessed. Maximum likelihood and Bayesian analyses from individual markers, as well as from combined dataset, reveal that the group is monophyletic if Menodora spp. are excluded from the analyses. Our analyses recovered three strongly supported clades. Ancestral character state reconstruction of taxonomically useful characters (leaf forms, leaf arrangement and flower colour) which were used to demarcate sections within the genus reveals homoplasy. Our study suggests that after split from the last common ancestor, there have been at least four reversals to unifoliolate condition. Pinnately compound leaf form evolved at least twice and trifoliolate condition evolved one time only. Alternate leaf form evolved at least twice, once inclade 1 and once in clade 3 and all the time from ancestors having opposite leaf forms. Flower colour evolution clearly depicts that clade 1 is yellow-flowered and clades 2 and 3 have admixture of white and yellow-flowered Jasminum species. Our study suggests that yellow-flowered condition evolved from the white-flowered ancestor. The present study is first to estimate the evolutionary history of Indian Jasmines.


Asunto(s)
Cloroplastos/genética , ADN de Plantas/genética , Evolución Molecular , Jasminum/clasificación , Jasminum/genética , Filogenia , Teorema de Bayes , ADN Espaciador Ribosómico/genética , Flores/genética , Jasminum/anatomía & histología , Análisis de Secuencia de ADN
15.
Am J Bot ; 105(10): 1662-1671, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30299543

RESUMEN

PREMISE OF THE STUDY: The domestication history of melon is still unclear. An African or Asian origin has been suggested, but its closest wild relative was recently revealed to be an Australian species. The complicated taxonomic history of melon has resulted in additional confusion, with a high number of misidentified germplasm collections currently used by breeders and in genomics research. METHODS: Using seven DNA regions sequenced for 90% of the genus and the major cultivar groups, we sort out described names and infer evolutionary origins and domestication centers. KEY RESULTS: We found that modern melon cultivars go back to two lineages, which diverged ca. 2 million years ago. One is restricted to Asia (Cucumis melo subsp. melo), and the second, here described as C. melo subsp. meloides, is restricted to Africa. The Asian lineage has given rise to the widely commercialized cultivar groups and their market types, while the African lineage gave rise to cultivars still grown in the Sudanian region. We show that C. trigonus, an overlooked perennial and drought-tolerant species from India is among the closest living relatives of C. melo. CONCLUSIONS: Melon was domesticated at least twice: in Africa and Asia. The African lineage and the Indian C. trigonus are exciting new resources for breeding of melons tolerant to climate change.


Asunto(s)
Cucumis melo/genética , Domesticación , Evolución Molecular , África , Asia , Cucumis melo/clasificación , India , Análisis de Secuencia de ADN
16.
PLoS One ; 13(2): e0192226, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29447200

RESUMEN

Two new species of Fabaceae-Papilionoideae are described and illustrated. Crotalaria suffruticosa from Karul Ghat region of Maharashtra is morphologically close to C. albida and C. epunctata. C. multibracteata from Panhala region of Maharashtra resembles C. vestita. C. suffruticosa differs from C. albida and C. epunctata in its habit, leaf, inflorescence, callosity, keel type, stigma, style morphology and number of seeds/pod. To test if the new species differ from their morphologically most similar species, we measured various traits and performed a Principal Component Analysis (PCA). This analysis shows that the new species differs from similar species in gross morphology for several diagnostic traits and showed correlations between the variables or distance among groups and estimated the contribution of each character. Phylogenetic analyses were also conducted based on nuclear (ITS) and plastid (matK) markers. The analyses revealed nucleotide differences between the new species and their close allies attributing to their distinctiveness. A map and key including all species of Crotalaria from Maharashtra state are provided. Conservation status of the two new species have also been assessed.


Asunto(s)
Crotalaria/clasificación , India , Filogenia , Análisis de Componente Principal , Especificidad de la Especie
17.
Front Plant Sci ; 8: 1302, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28824660

RESUMEN

Post-genomics era has witnessed the development of cutting-edge technologies that have offered cost-efficient and high-throughput ways for molecular characterization of the function of a cell or organism. Large-scale metabolite profiling assays have allowed researchers to access the global data sets of metabolites and the corresponding metabolic pathways in an unprecedented way. Recent efforts in metabolomics have been directed to improve the quality along with a major focus on yield related traits. Importantly, an integration of metabolomics with other approaches such as quantitative genetics, transcriptomics and genetic modification has established its immense relevance to plant improvement. An effective combination of these modern approaches guides researchers to pinpoint the functional gene(s) and the characterization of massive metabolites, in order to prioritize the candidate genes for downstream analyses and ultimately, offering trait specific markers to improve commercially important traits. This in turn will improve the ability of a plant breeder by allowing him to make more informed decisions. Given this, the present review captures the significant leads gained in the past decade in the field of plant metabolomics accompanied by a brief discussion on the current contribution and the future scope of metabolomics to accelerate plant improvement.

18.
J Genet ; 96(2): 353-363, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28674236

RESUMEN

Alysicarpus Necker ex Desvaux (Fabaceae, Desmodieae) consists of ~30 species that are distributed in tropical and subtropical regions of theworld. In India, the genus is represented by ca. 18 species, ofwhich seven are endemic. Sequences of the nuclear Internal transcribed spacer from38 accessions representing 16 Indian specieswere subjected to phylogenetic analyses. The ITS sequence data strongly support the monophyly of the genus Alysicarpus. Analyses revealed four major well-supported clades within Alysicarpus. Ancestral state reconstructions were done for two morphological characters, namely calyx length in relation to pod (macrocalyx and microcalyx) and pod surface ornamentation (transversely rugose and nonrugose). The present study is the first report on molecular systematics of Indian Alysicarpus.


Asunto(s)
Clasificación , ADN Ribosómico/genética , Evolución Molecular , Fabaceae/genética , Núcleo Celular/genética , ADN de Plantas , ADN Espaciador Ribosómico/genética , Fabaceae/clasificación , India , Filogenia
19.
PhytoKeys ; (68): 117-124, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27698578

RESUMEN

A new species, Alysicarpus poklianus Gholami & Pandey from Sinhgarh, Maharashtra, India is described. It is morphologically most similar to Alysicarpus hamosus but differs in having ovate leaves, rounded-ovate bracts, larger size of calyx, pods comprising 5-7 longer than broad joints with easily separable septa. In this study, a comprehensive description, and identification key of Alysicarpus poklianus are provided.

20.
PLoS One ; 11(7): e0159050, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27434060

RESUMEN

Pittosporum eriocarpum Royle, a medicinally important taxon, is endemic to Uttarakhand region of Himalaya. It has become endangered due to over-collection and the loss of habitats. As raising plants through seeds in this plant is problematic, a reliable protocol for micropropagation using nodal explants has been developed. High shoot regeneration (95%) occurred in MS medium augmented with BA 0.4mg/l in combination IBA 0.6mg/l. In vitro regenerated shoots were rooted in MS medium supplemented with three auxins, of which 0.6 mg/l indole butyric acid proved to be the best for rooting (90%) with maximum number of roots per shoot. Thereafter, rooted plants were hardened and nearly 73% of rooted shoots were successfully acclimatized and established in the field. Start codon targeted (SCoT), inter simple sequence repeats (ISSR) and random amplified polymorphic DNA (RAPD) markers were used to validate the genetic homogeneity amongst nine in vitro raised plantlets with mother plant. DNA fingerprints of in vitro regenerated plantlets displayed monomorphic bands similar to mother plant, indicating homogeneity among the micropropagated plants with donor mother plant. The similarity values were calculated based on SCoT, ISSR and RAPD profiles which ranged from 0.89 to 1.00, 0.91 to 1.00 and 0.95 to 1.00 respectively. The dendrograms generated through Unweighted Pair Group Method with arithmetic mean (UPGMA) analysis revealed 97% similarity amongst micropropagated plants with donor mother plant, thus confirming genetic homogeneity of micropropagated clones. This is the first report on micropropagation and genetic homogeneity assessment of P. eriocarpum. The protocol would be useful for the conservation and large scale production of P. eriocarpum to meet the demand for medicinal formulations and also for the re-introduction of in vitro grown plants in the suitable natural habitats to restore the populations.


Asunto(s)
Especies en Peligro de Extinción , Plantas Medicinales/genética , Técnica del ADN Polimorfo Amplificado Aleatorio/métodos , Rosales/genética , Codón Iniciador/genética , Dermatoglifia del ADN , Ácidos Indolacéticos/metabolismo , Repeticiones de Microsatélite/genética , Semillas/genética , Semillas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...