Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 23(17): 8339-8347, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37625158

RESUMEN

We demonstrate an electrically reconfigurable two-input logic-in-memory (LIM) using a dual-gate-type organic antiambipolar transistor (DG-OAAT). The attractive feature of this device is that a phthalocyanine-cored star-shaped polystyrene is used as a nano-floating gate, which enables the electrical switching of individual logic circuits and stores the circuit information by the nonvolatile memory effect. First, the DG-OAAT exhibited Λ-shaped transfer curves with hysteresis by sweeping the bottom-gate voltage. Programming and erasing operations enabled the reversible shift of the Λ-shaped transfer curves. Furthermore, the top-gate voltage effectively tuned the peak voltages of the transfer curves. Consequently, the combination of dual-gate and memory effects achieved electrically reconfigurable two-input LIM operations. Individual logic circuits (e.g., OR/NAND, XOR/NOR, and AND/XOR) were reconfigured by the corresponding programming and erasing operations without any variations in the input signals. Our device concept has the potential to fulfill an epoch-making organic integration circuit with a simple device configuration.

2.
Nano Lett ; 23(1): 319-325, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36580275

RESUMEN

Logic-in-memory (LIM) has emerged as an energy-efficient computing technology, as it integrates logic and memory operations in a single device architecture. Herein, a concept of ternary LIM is established. First, a p-type 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) transistor is combined with an n-type PhC2H4-benzo[de]isoquinolino[1,8-gh]quinolone diimide (PhC2-BQQDI) transistor to obtain a binary memory inverter, in which a zinc phthalocyanine-cored polystyrene (ZnPc-PS4) layer serves as a floating gate. The contrasting photoresponse of the transistors toward visible and ultraviolet light and the efficient hole-trapping ability of ZnPc-PS4 enable us to achieve an optically controllable memory operation with a high memory window of 18 V. Then, a ternary memory inverter is developed using an anti-ambipolar transistor to achieve a three-level data processing and storage system for more advanced LIM applications. Finally, low-voltage operation of the devices is achieved by employing a high-k dielectric layer, which highlights the potential of the developed LIM units for next-generation low-power electronics.


Asunto(s)
Electrónica , Indoles , Poliestirenos , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...