Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
1.
Sci Rep ; 14(1): 8451, 2024 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605136

RESUMEN

Protein synthesis is a highly energy-consuming process that is downregulated in response to many environmental stresses or adverse conditions. Studies in the yeast Saccharomyces cerevisiae have shown that bulk translation is inhibited during adaptation to iron deficiency, which is consistent with its requirement for ribosome biogenesis and recycling. Although iron deficiency anemia is the most common human nutritional disorder, how iron modulates translation in mammals is poorly understood. Studies during erythropoiesis have shown that iron bioavailability is coordinated with globin synthesis via bulk translation regulation. However, little is known about the control of translation during iron limitation in other tissues. Here, we investigated how iron depletion affects protein synthesis in human osteosarcoma U-2 OS cells. By adding an extracellular iron chelator, we observed that iron deficiency limits cell proliferation, induces autophagy, and decreases the global rate of protein synthesis. Analysis of specific molecular markers indicates that the inhibition of bulk translation upon iron limitation occurs through the eukaryotic initiation factor eIF2α and mechanistic target of rapamycin (mTOR) pathways. In contrast to other environmental and nutritional stresses, iron depletion does not trigger the assembly of messenger ribonucleoprotein stress granules, which typically form upon polysome disassembly.


Asunto(s)
Deficiencias de Hierro , Hierro , Animales , Humanos , Hierro/metabolismo , Fosforilación , Biosíntesis de Proteínas , Saccharomyces cerevisiae/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Mamíferos/metabolismo
2.
Mol Cell ; 84(8): 1403-1405, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38640893

RESUMEN

In a recent article in Cell, Zhou et al. investigate the origins, composition, and biological consequences of UV-induced stress granules. They find that UV-induced stress granules are triggered by the formation of RNA-protein crosslinks, uniquely contain DHX9 as a marker, form during mitosis independently of translation repression, and are enriched in intron-containing RNAs and splicing factors. Moreover, UV-induced granules contain double-stranded RNA (dsRNA) and trigger a dsRNA response. This work identifies a mechanism for resolving UV-damaged RNA and broadens the types of cytosolic "stress granules" that form.


Asunto(s)
Gránulos de Estrés , Mitosis , ARN Bicatenario/genética , ARN Bicatenario/metabolismo
3.
J Cell Biol ; 223(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38536035

RESUMEN

Stress granules and P-bodies are ribonucleoprotein (RNP) granules that accumulate during the stress response due to the condensation of untranslating mRNPs. Stress granules form in part by intermolecular RNA-RNA interactions and can be limited by components of the RNA chaperone network, which inhibits RNA-driven aggregation. Herein, we demonstrate that the DEAD-box helicase DDX6, a P-body component, can also limit the formation of stress granules, independent of the formation of P-bodies. In an ATPase, RNA-binding dependent manner, DDX6 limits the partitioning of itself and other RNPs into stress granules. When P-bodies are limited, proteins that normally partition between stress granules and P-bodies show increased accumulation within stress granules. Moreover, we show that loss of DDX6, 4E-T, and DCP1A increases P-body docking with stress granules, which depends on CNOT1 and PAT1B. Taken together, these observations identify a new role for DDX6 in limiting stress granules and demonstrate that P-body components can influence stress granule composition and docking with P-bodies.


Asunto(s)
ARN Helicasas DEAD-box , Cuerpos de Procesamiento , Gránulos de Estrés , Adenosina Trifosfatasas , Cuerpos de Procesamiento/química , Cuerpos de Procesamiento/metabolismo , ARN , Gránulos de Estrés/química , Gránulos de Estrés/metabolismo , Humanos , Línea Celular Tumoral , ARN Helicasas DEAD-box/metabolismo
4.
Virol J ; 21(1): 38, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321453

RESUMEN

During viral infection there is dynamic interplay between the virus and the host to regulate gene expression. In many cases, the host induces the expression of antiviral genes to combat infection, while the virus uses "host shut-off" systems to better compete for cellular resources and to limit the induction of the host antiviral response. Viral mechanisms for host shut-off involve targeting translation, altering host RNA processing, and/or inducing the degradation of host mRNAs. In this review, we discuss the diverse mechanisms viruses use to degrade host mRNAs. In addition, the widespread degradation of host mRNAs can have common consequences including the accumulation of RNA binding proteins in the nucleus, which leads to altered RNA processing, mRNA export, and changes to transcription.


Asunto(s)
Virosis , Virus , Humanos , Regulación de la Expresión Génica , ARN Mensajero/genética , Virus/genética , Antivirales , Replicación Viral
5.
J Cell Biol ; 223(3)2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38284934

RESUMEN

Stress granule formation is triggered by the release of mRNAs from polysomes and is promoted by the action of the RNA-binding proteins G3BP1/2. Stress granules have been implicated in several disease states, including cancer and neurodegeneration. Consequently, compounds that limit stress granule formation or promote their dissolution have potential as both experimental tools and novel therapeutics. Herein, we describe two small molecules, G3BP inhibitor a and b (G3Ia and G3Ib), designed to bind to a specific pocket in G3BP1/2 that is targeted by viral inhibitors of G3BP1/2 function. In addition to disrupting the co-condensation of RNA, G3BP1, and caprin 1 in vitro, these compounds inhibit stress granule formation in cells treated prior to or concurrent with stress and dissolve pre-existing stress granules. These effects are consistent across multiple cell types and a variety of initiating stressors. Thus, these compounds represent powerful tools to probe the biology of stress granules and hold promise for therapeutic interventions designed to modulate stress granule formation.


Asunto(s)
ADN Helicasas , ARN Helicasas , Gránulos de Estrés , ADN Helicasas/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , ARN Helicasas/genética , Proteínas con Motivos de Reconocimiento de ARN/genética
6.
Sci Adv ; 10(5): eadk8152, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38295168

RESUMEN

G3BP1 is an RNA binding protein that condenses untranslating messenger RNAs into stress granules (SGs). G3BP1 is inactivated by multiple viruses and is thought to antagonize viral replication by SG-enhanced antiviral signaling. Here, we show that neither G3BP1 nor SGs generally alter the activation of innate immune pathways. Instead, we show that the RNAs encoded by West Nile virus, Zika virus, and severe acute respiratory syndrome coronavirus 2 are prone to G3BP1-dependent RNA condensation, which is enhanced by limiting translation initiation and correlates with the disruption of viral replication organelles and viral RNA replication. We show that these viruses counteract condensation of their RNA genomes by inhibiting the RNA condensing function of G3BP proteins, hijacking the RNA decondensing activity of eIF4A, and/or maintaining efficient translation. These findings argue that RNA condensation can function as an intrinsic antiviral mechanism, which explains why many viruses inactivate G3BP proteins and suggests that SGs may have arisen as a vestige of this antiviral mechanism.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , ADN Helicasas , ARN Helicasas , Proteínas de Unión a Poli-ADP-Ribosa , ARN Viral , Proteínas con Motivos de Reconocimiento de ARN , Antivirales
7.
mBio ; : e0171223, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37943059

RESUMEN

The COVID-19 pandemic demonstrated the poor ability of body temperature to reliably identify SARS-CoV-2-infected individuals, an observation that has been made before in the context of other infectious diseases. While acute infection does not always cause fever, it does reliably drive host transcriptional responses as the body responds at the site of infection. These transcriptional changes can occur both in cells that are directly harboring replicating pathogens and in cells elsewhere that receive a molecular signal that infection is occurring. Here, we identify a core set of approximately 70 human genes that are together upregulated in cultured human cells infected by a broad array of viral, bacterial, and fungal pathogens. We have named these "core response" genes. In theory, transcripts from these genes could serve as biomarkers of infection in the human body, in a way that is agnostic to the specific pathogen causing infection. As such, we perform human studies to show that these infection-induced human transcripts can be measured in the saliva of people harboring different types of infections. The number of these transcripts in saliva can correctly classify infection status (whether a person harbors an infection) 91% of the time. Furthermore, in the case of SARS-CoV-2 specifically, the number of core response transcripts in saliva correctly identifies infectious individuals even when enrollees, themselves, are asymptomatic and do not know they are infected.IMPORTANCEThere are a variety of clinical and laboratory criteria available to clinicians in controlled healthcare settings to help them identify whether an infectious disease is present. However, in situations such as a new epidemic caused by an unknown infectious agent, in health screening contexts performed within communities and outside of healthcare facilities or in battlefield or potential biowarfare situations, this gets more difficult. Pathogen-agnostic methods for rapid screening and triage of large numbers of people for infection status are needed, in particular methods that might work on an easily accessible biospecimen like saliva. Here, we identify a small, core set of approximately 70 human genes whose transcripts serve as saliva-based biomarkers of infection in the human body, in a way that is agnostic to the specific pathogen causing infection.

9.
Cell ; 186(22): 4737-4756, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37890457

RESUMEN

Ribonucleoprotein (RNP) granules are diverse membrane-less organelles that form through multivalent RNA-RNA, RNA-protein, and protein-protein interactions between RNPs. RNP granules are implicated in many aspects of RNA physiology, but in most cases their functions are poorly understood. RNP granules can be described through four key principles. First, RNP granules often arise because of the large size, high localized concentrations, and multivalent interactions of RNPs. Second, cells regulate RNP granule formation by multiple mechanisms including posttranslational modifications, protein chaperones, and RNA chaperones. Third, RNP granules impact cell physiology in multiple manners. Finally, dysregulation of RNP granules contributes to human diseases. Outstanding issues in the field remain, including determining the scale and molecular mechanisms of RNP granule function and how granule dysfunction contributes to human disease.


Asunto(s)
Estructuras del Núcleo Celular , Gránulos Citoplasmáticos , Ribonucleoproteínas , Humanos , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/patología , Gránulos de Ribonucleoproteínas Citoplasmáticas , Procesamiento Proteico-Postraduccional , Ribonucleoproteínas/metabolismo , ARN/metabolismo , Nucléolo Celular/metabolismo , Estructuras del Núcleo Celular/metabolismo , Estructuras del Núcleo Celular/patología , Animales
10.
J Biol Chem ; 299(9): 105139, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37544646

RESUMEN

The levels of non-coding RNAs (ncRNAs) are regulated by transcription, RNA processing, and RNA degradation pathways. One mechanism for the degradation of ncRNAs involves the addition of oligo(A) tails by non-canonical poly(A) polymerases, which then recruit processive sequence-independent 3' to 5' exonucleases for RNA degradation. This pathway of decay is also regulated by three 3' to 5' exoribonucleases, USB1, PARN, and TOE1, which remove oligo(A) tails and thereby can protect ncRNAs from decay in a manner analogous to the deubiquitination of proteins. Loss-of-function mutations in these genes lead to premature degradation of some ncRNAs and lead to specific human diseases such as Poikiloderma with Neutropenia (PN) for USB1, Dyskeratosis Congenita (DC) for PARN and Pontocerebellar Hypoplasia type 7 (PCH7) for TOE1. Herein, we review the biochemical properties of USB1, PARN, and TOE1, how they modulate ncRNA levels, and their roles in human diseases.


Asunto(s)
Exorribonucleasas , ARN no Traducido , Humanos , Disqueratosis Congénita/fisiopatología , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Neutropenia/fisiopatología , Estabilidad del ARN/genética , ARN no Traducido/genética , Mutación con Pérdida de Función
11.
bioRxiv ; 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37425931

RESUMEN

Stress granule formation is triggered by the release of mRNAs from polysomes and is promoted by the action of the paralogs G3BP1 and G3BP2. G3BP1/2 proteins bind mRNAs and thereby promote the condensation of mRNPs into stress granules. Stress granules have been implicated in several disease states, including cancer and neurodegeneration. Consequently, compounds that limit stress granule formation or promote their dissolution have potential as both experimental tools and novel therapeutics. Herein, we describe two small molecules, referred to as G3BP inhibitor a and b (G3Ia and G3Ib), designed to bind to a specific pocket in G3BP1/2 that is known to be targeted by viral inhibitors of G3BP1/2 function. In addition to disrupting co-condensation of RNA, G3BP1, and caprin 1 in vitro, these compounds inhibit stress granule formation in cells treated prior to or concurrent with stress, and dissolve pre-existing stress granules when added to cells after stress granule formation. These effects are consistent across multiple cell types and a variety of initiating stressors. Thus, these compounds represent ideal tools to probe the biology of stress granules and hold promise for therapeutic interventions designed to modulate stress granule formation.

12.
RNA Biol ; 20(1): 444-456, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-37415298

RESUMEN

Nsp1 is a SARS-CoV-2 host shutoff factor that both represses cellular translation and promotes host RNA decay. However, it is unclear how these two activities are connected and interact with normal translation processes. Here, we performed mutational analyses of Nsp1, and these revealed that both the N and C terminal domains of Nsp1 are important for translational repression. Furthermore, we demonstrate that specific residues in the N terminal domain are required for cellular RNA degradation but not bulk translation shutoff of host mRNAs, thereby separating RNA degradation from translation repression. We also present evidence that Nsp1 mediated RNA degradation requires engagement of the ribosome with mRNA. First, we observe that cytosolic lncRNAs, which are not translated, escape Nsp1 mediated degradation. Second, inhibition of translation elongation with emetine does not prevent Nsp1 mediated degradation, while blocking translation initiation before 48S ribosome loading reduces mRNA degradation. Taken together, we suggest that Nsp1 represses translation and promotes mRNA degradation only after ribosome engagement with the mRNA. This raises the possibility that Nsp1 may trigger RNA degradation through pathways that recognize stalled ribosomes.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/metabolismo , COVID-19/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Estabilidad del ARN
13.
J Breath Res ; 17(3)2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37016829

RESUMEN

Rapid testing is essential to fighting pandemics such as coronavirus disease 2019 (COVID-19), the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Exhaled human breath contains multiple volatile molecules providing powerful potential for non-invasive diagnosis of diverse medical conditions. We investigated breath detection of SARS-CoV-2 infection using cavity-enhanced direct frequency comb spectroscopy (CE-DFCS), a state-of-the-art laser spectroscopic technique capable of a real-time massive collection of broadband molecular absorption features at ro-vibrational quantum state resolution and at parts-per-trillion volume detection sensitivity. Using a total of 170 individual breath samples (83 positive and 87 negative with SARS-CoV-2 based on reverse transcription polymerase chain reaction tests), we report excellent discrimination capability for SARS-CoV-2 infection with an area under the receiver-operating-characteristics curve of 0.849(4). Our results support the development of CE-DFCS as an alternative, rapid, non-invasive test for COVID-19 and highlight its remarkable potential for optical diagnoses of diverse biological conditions and disease states.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Pruebas Respiratorias , Análisis Espectral , Rayos Láser , Sensibilidad y Especificidad
14.
Science ; 379(6635): 901-907, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36862787

RESUMEN

Mutations in the 3' to 5' RNA exonuclease USB1 cause hematopoietic failure in poikiloderma with neutropenia (PN). Although USB1 is known to regulate U6 small nuclear RNA maturation, the molecular mechanism underlying PN remains undetermined, as pre-mRNA splicing is unaffected in patients. We generated human embryonic stem cells harboring the PN-associated mutation c.531_delA in USB1 and show that this mutation impairs human hematopoiesis. Dysregulated microRNA (miRNA) levels in USB1 mutants during blood development contribute to hematopoietic failure, because of a failure to remove 3'-end adenylated tails added by PAPD5/7. Modulation of miRNA 3'-end adenylation through genetic or chemical inhibition of PAPD5/7 rescues hematopoiesis in USB1 mutants. This work shows that USB1 acts as a miRNA deadenylase and suggests PAPD5/7 inhibition as a potential therapy for PN.


Asunto(s)
Hematopoyesis , MicroARNs , Neutropenia , Hidrolasas Diéster Fosfóricas , Humanos , Hematopoyesis/genética , Células Madre Embrionarias Humanas , MicroARNs/genética , MicroARNs/metabolismo , Neutropenia/genética , Neutropenia/terapia , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Mutación
15.
Neuroscientist ; : 10738584231154551, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36892034

RESUMEN

The tau protein is a key contributor to multiple neurodegenerative diseases. The pathology of tau is thought to be related to tau's propensity to form self-templating fibrillar structures that allow tau fibers to propagate in the brain by prion-like mechanisms. Unresolved issues with respect to tau pathology are how the normal function of tau and its misregulation contribute to disease, how cofactors and cellular organelles influence the initiation and propagation of tau fibers, and determining the mechanism of tau toxicity. Herein, we review the connection between tau and degenerative diseases, the basis for tau fibrilization, and how that process interacts with cellular molecules and organelles. One emerging theme is that tau interacts with RNA and RNA-binding proteins, normally and in pathologic aggregates, which may provide insight into alterations in RNA regulation observed in disease.

16.
Sci Rep ; 13(1): 5244, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002320

RESUMEN

Poly(A)-specific ribonuclease (PARN) is a 3'-exoribonuclease that removes poly(A) tails from the 3' end of RNAs. PARN is known to deadenylate some ncRNAs, including hTR, Y RNAs, and some miRNAs and thereby enhance their stability by limiting the access of 3' to 5' exonucleases recruited by oligo(A) tails. Several PARN-regulated miRNAs target p53 mRNA, and PARN knockdown leads to an increase of p53 protein levels in human cells. Thus, PARN inhibitors might be used to induce p53 levels in some human tumors and act as a therapeutic strategy to treat cancers caused by repressed p53 protein. Herein, we used computational-based molecular docking and high-throughput screening (HTS) to identify small molecule inhibitors of PARN. Validation with in vitro and cell-based assays, identified 4 compounds, including 3 novel compounds and pyrimidopyrimidin-2-one GNF-7, previously shown to be a Bcr-Abl inhibitor, as PARN inhibitors. These inhibitors can be used as tool compounds and as lead compounds for the development of improved PARN inhibitors.


Asunto(s)
MicroARNs , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Simulación del Acoplamiento Molecular , Ensayos Analíticos de Alto Rendimiento , Exorribonucleasas/metabolismo , ARN Mensajero/metabolismo
17.
Proc Natl Acad Sci U S A ; 120(14): e2214064120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36972455

RESUMEN

Many biomolecular condensates appear to form through liquid-liquid phase separation (LLPS). Individual condensate components can often undergo LLPS in vitro, capturing some features of the native structures. However, natural condensates contain dozens of components with different concentrations, dynamics, and contributions to compartment formation. Most biochemical reconstitutions of condensates have not benefited from quantitative knowledge of these cellular features nor attempted to capture natural complexity. Here, we build on prior quantitative cellular studies to reconstitute yeast RNA processing bodies (P bodies) from purified components. Individually, five of the seven highly concentrated P-body proteins form homotypic condensates at cellular protein and salt concentrations, using both structured domains and intrinsically disordered regions. Combining the seven proteins together at their cellular concentrations with RNA yields phase-separated droplets with partition coefficients and dynamics of most proteins in reasonable agreement with cellular values. RNA delays the maturation of proteins within and promotes the reversibility of, P bodies. Our ability to quantitatively recapitulate the composition and dynamics of a condensate from its most concentrated components suggests that simple interactions between these components carry much of the information that defines the physical properties of the cellular structure.


Asunto(s)
Cuerpos de Procesamiento , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , ARN/genética
18.
Proc Natl Acad Sci U S A ; 120(3): e2217759120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36626563

RESUMEN

Tau aggregates are a hallmark of multiple neurodegenerative diseases and can contain RNAs and RNA-binding proteins, including serine/arginine repetitive matrix protein 2 (SRRM2) and pinin (PNN). However, how these nuclear proteins mislocalize and their influence on the prion-like propagation of tau aggregates is unknown. We demonstrate that polyserine repeats in SRRM2 and PNN are necessary and sufficient for recruitment to tau aggregates. Moreover, we show tau aggregates preferentially grow in association with endogenous cytoplasmic assemblies-mitotic interchromatin granules and cytoplasmic speckles (CSs)-which contain SRRM2 and PNN. Polyserine overexpression in cells nucleates assemblies that are sites of tau aggregate growth. Further, modulating the levels of polyserine-containing proteins results in a corresponding change in tau aggregation. These findings define a specific protein motif, and cellular condensates, that promote tau aggregate propagation. As CSs form in induced pluripotent stem cell (iPSC) derived neurons under inflammatory or hyperosmolar stress, they may affect tau aggregate propagation in neurodegenerative disease.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Tauopatías , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatías/metabolismo , Péptidos , Enfermedad de Alzheimer/metabolismo
19.
EMBO J ; 42(7): e111870, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36178199

RESUMEN

The presence of foreign nucleic acids in the cytosol is a marker of infection. Cells have sensors, also known as pattern recognition receptors (PRRs), in the cytosol that detect foreign nucleic acid and initiate an innate immune response. Recent studies have reported the condensation of multiple PRRs including PKR, NLRP6, and cGAS, with their nucleic acid activators into discrete nucleoprotein assemblies. Nucleic acid-protein condensates form due to multivalent interactions and can create high local concentrations of components. The formation of PRR-containing condensates may alter the magnitude or timing of PRR activation. In addition, unique condensates form following RNase L activation or during paracrine signaling from virally infected cells that may play roles in antiviral defense. These observations suggest that condensate formation may be a conserved mechanism that cells use to regulate activation of the innate immune response and open an avenue for further investigation into the composition and function of these condensates. Here we review the nucleic acid-protein granules that are implicated in the innate immune response, discuss general consequences of condensate formation and signal transduction, as well as what outstanding questions remain.


Asunto(s)
Ácidos Nucleicos , Inmunidad Innata , Receptores de Reconocimiento de Patrones , Transducción de Señal , Citosol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...