Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 13(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38534320

RESUMEN

The ubiquitous second messenger 3',5'-cyclic adenosine monophosphate (cAMP) regulates cardiac excitation-contraction coupling (ECC) by signaling in discrete subcellular microdomains. Phosphodiesterase subfamilies 4B and 4D are critically involved in the regulation of cAMP signaling in mammalian cardiomyocytes. Alterations of PDE4 activity in human hearts has been shown to result in arrhythmias and heart failure. Here, we sought to systematically investigate specific roles of PDE4B and PDE4D in the regulation of cAMP dynamics in three distinct subcellular microdomains, one of them located at the caveolin-rich plasma membrane which harbors the L-type calcium channels (LTCCs), as well as at two sarco/endoplasmic reticulum (SR) microdomains centered around SR Ca2+-ATPase (SERCA2a) and cardiac ryanodine receptor type 2 (RyR2). Transgenic mice expressing Förster Resonance Energy Transfer (FRET)-based cAMP-specific biosensors targeted to caveolin-rich plasma membrane, SERCA2a and RyR2 microdomains were crossed to PDE4B-KO and PDE4D-KO mice. Direct analysis of the specific effects of both PDE4 subfamilies on local cAMP dynamics was performed using FRET imaging. Our data demonstrate that all three microdomains are differentially regulated by these PDE4 subfamilies. Whereas both are involved in cAMP regulation at the caveolin-rich plasma membrane, there are clearly two distinct cAMP microdomains at the SR formed around RyR2 and SERCA2a, which are preferentially controlled by PDE4B and PDE4D, respectively. This correlates with local cAMP-dependent protein kinase (PKA) substrate phosphorylation and arrhythmia susceptibility. Immunoprecipitation assays confirmed that PDE4B is associated with RyR2 along with PDE4D. Stimulated Emission Depletion (STED) microscopy of immunostained cardiomyocytes suggested possible co-localization of PDE4B with both sarcolemmal and RyR2 microdomains. In conclusion, our functional approach could show that both PDE4B and PDE4D can differentially regulate cardiac cAMP microdomains associated with calcium homeostasis. PDE4B controls cAMP dynamics in both caveolin-rich plasma membrane and RyR2 vicinity. Interestingly, PDE4B is the major regulator of the RyR2 microdomain, as opposed to SERCA2a vicinity, which is predominantly under PDE4D control, suggesting a more complex regulatory pattern than previously thought, with multiple PDEs acting at the same location.


Asunto(s)
Calcio , Canal Liberador de Calcio Receptor de Rianodina , Ratones , Humanos , Animales , Calcio/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , AMP Cíclico/metabolismo , Miocitos Cardíacos/metabolismo , Ratones Transgénicos , Caveolinas/metabolismo , Mamíferos/metabolismo
2.
Sci Transl Med ; 15(701): eabq7839, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37343080

RESUMEN

Ca2+/calmodulin-dependent protein kinase II (CaMKII) hyperactivity causes cardiac arrhythmias, a major source of morbidity and mortality worldwide. Despite proven benefits of CaMKII inhibition in numerous preclinical models of heart disease, translation of CaMKII antagonists into humans has been stymied by low potency, toxicity, and an enduring concern for adverse effects on cognition due to an established role of CaMKII in learning and memory. To address these challenges, we asked whether any clinically approved drugs, developed for other purposes, were potent CaMKII inhibitors. For this, we engineered an improved fluorescent reporter, CaMKAR (CaMKII activity reporter), which features superior sensitivity, kinetics, and tractability for high-throughput screening. Using this tool, we carried out a drug repurposing screen (4475 compounds in clinical use) in human cells expressing constitutively active CaMKII. This yielded five previously unrecognized CaMKII inhibitors with clinically relevant potency: ruxolitinib, baricitinib, silmitasertib, crenolanib, and abemaciclib. We found that ruxolitinib, an orally bioavailable and U.S. Food and Drug Administration-approved medication, inhibited CaMKII in cultured cardiomyocytes and in mice. Ruxolitinib abolished arrhythmogenesis in mouse and patient-derived models of CaMKII-driven arrhythmias. A 10-min pretreatment in vivo was sufficient to prevent catecholaminergic polymorphic ventricular tachycardia, a congenital source of pediatric cardiac arrest, and rescue atrial fibrillation, the most common clinical arrhythmia. At cardioprotective doses, ruxolitinib-treated mice did not show any adverse effects in established cognitive assays. Our results support further clinical investigation of ruxolitinib as a potential treatment for cardiac indications.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Cardiopatías , Animales , Niño , Humanos , Ratones , Arritmias Cardíacas , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiopatías/metabolismo , Miocitos Cardíacos/metabolismo , Pirazoles/farmacología
3.
Nat Commun ; 13(1): 7109, 2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36402762

RESUMEN

Carvedilol is among the most effective ß-blockers for improving survival after myocardial infarction. Yet the mechanisms by which carvedilol achieves this superior clinical profile are still unclear. Beyond blockade of ß1-adrenoceptors, arrestin-biased signalling via ß2-adrenoceptors is a molecular mechanism proposed to explain the survival benefits. Here, we offer an alternative mechanism to rationalize carvedilol's cellular signalling. Using primary and immortalized cells genome-edited by CRISPR/Cas9 to lack either G proteins or arrestins; and combining biological, biochemical, and signalling assays with molecular dynamics simulations, we demonstrate that G proteins drive all detectable carvedilol signalling through ß2ARs. Because a clear understanding of how drugs act is imperative to data interpretation in basic and clinical research, to the stratification of clinical trials or to the monitoring of drug effects on the target pathway, the mechanistic insight gained here provides a foundation for the rational development of signalling prototypes that target the ß-adrenoceptor system.


Asunto(s)
Antagonistas Adrenérgicos beta , Infarto del Miocardio , Humanos , Carvedilol/farmacología , Antagonistas Adrenérgicos beta/farmacología , Receptores Adrenérgicos beta 2/genética , Infarto del Miocardio/tratamiento farmacológico
4.
Cells ; 10(3)2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33802377

RESUMEN

3',5'-Cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger which plays critical roles in cardiac function and disease. In adult mouse ventricular myocytes (AMVMs), several distinct functionally relevant microdomains with tightly compartmentalized cAMP signaling have been described. At least two types of microdomains reside in AMVM plasma membrane which are associated with caveolin-rich raft and non-raft sarcolemma, each with distinct cAMP dynamics and their differential regulation by receptors and cAMP degrading enzymes phosphodiesterases (PDEs). However, it is still unclear how cardiac disease such as hypertrophy leading to heart failure affects cAMP signals specifically in the non-raft membrane microdomains. To answer this question, we generated a novel transgenic mouse line expressing a highly sensitive Förster resonance energy transfer (FRET)-based biosensor E1-CAAX targeted to non-lipid raft membrane microdomains of AMVMs and subjected these mice to pressure overload induced cardiac hypertrophy. We could detect specific changes in PDE3-dependent compartmentation of ß-adrenergic receptor induced cAMP in non-raft membrane microdomains which were clearly different from those occurring in caveolin-rich sarcolemma. This indicates differential regulation and distinct responses of these membrane microdomains to cardiac remodeling.


Asunto(s)
Cardiomegalia/genética , AMP Cíclico/metabolismo , Microdominios de Membrana/metabolismo , Animales , Femenino , Humanos , Ratones
5.
Cells ; 8(12)2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31795419

RESUMEN

Förster resonance energy transfer (FRET) is increasingly used for non-invasive measurement of fluorescently tagged molecules in live cells. In this study, we have developed a freely available software tool MultiFRET, which, together with the use of a motorised microscope stage, allows multiple single cells to be studied in one experiment. MultiFRET is a Java plugin for Micro-Manager software, which provides real-time calculations of ratio-metric signals during acquisition and can simultaneously record from multiple cells in the same experiment. It can also make other custom-determined live calculations that can be easily exported to Excel at the end of the experiment. It is flexible and can work with multiple spectral acquisition channels. We validated this software by comparing the output of MultiFRET to that of a previously established and well-documented method for live ratio-metric FRET experiments and found no significant difference between the data produced with the use of the new MultiFRET and other methods. In this validation, we used several cAMP FRET sensors and cell models: i) isolated adult cardiomyocytes from transgenic mice expressing the cytosolic epac1-camps and targeted pmEpac1 and Epac1-PLN sensors, ii) isolated neonatal mouse cardiomyocytes transfected with the AKAP79-CUTie sensor, and iii) human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) transfected with the Epac-SH74 sensor. The MultiFRET plugin is an open source freely available package that can be used in a wide area of live cell imaging when live ratio-metric calculations are required.


Asunto(s)
AMP Cíclico/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Miocitos Cardíacos/metabolismo , Programas Informáticos , Algoritmos , Animales , Biomarcadores , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Reproducibilidad de los Resultados
6.
Br J Pharmacol ; 175(10): 1669-1690, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29473948

RESUMEN

BACKGROUND AND PURPOSE: Antiarrhythmic ß-blockers are used in patients at risk of myocardial ischaemia, but the survival benefit and mechanisms are unclear. We hypothesized that ß-blockers do not prevent ventricular fibrillation (VF) but instead inhibit the ability of catecholamines to facilitate ischaemia-induced VF, limiting the scope of their usefulness. EXPERIMENTAL APPROACH: ECGs were analysed from ischaemic Langendorff-perfused rat hearts perfused with adrenoceptor antagonists and/or exogenous catecholamines (CATs: 313 nM noradrenaline + 75 nM adrenaline) in a blinded and randomized study. Ischaemic zone (IZ) size was deliberately made small or large. KEY RESULTS: In rat hearts with large IZs, ischaemia-induced VF incidence was high in controls. Atenolol, butoxamine and trimazosin did not affect VF at concentrations with ß1 -, ß2 - or α1 - adrenoceptor specificity and selectivity (confirmed in separate rat aortae myography experiments). In hearts with small IZs and low baseline incidence of ischaemia-induced VF, CATs, delivered to the uninvolved zone (UZ), increased ischaemia-induced VF incidence. This effect was not mimicked by atrial pacing, hence, not due to sinus tachycardia. However, the CATs-facilitated increase in ischaemia-induced VF was inhibited by atenolol and butoxamine (but not trimazosin), indicative of ß1 - and ß2 - but not α1 -adrenoceptor involvement (confirmed by immunoblot analysis of downstream phosphoproteins). CATs did not facilitate VF in low-flow globally ischaemic hearts, which have no UZ. CONCLUSIONS AND IMPLICATIONS: Catecholamines facilitated ischaemia-induced VF when risk was low, acting via ß1 - and ß2 - adrenoceptors located in the UZ. There was no scope for facilitation when VF risk was high (large IZ), which may explain why ß-blockers have equivocal effectiveness in humans.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 1/farmacología , Agonistas de Receptores Adrenérgicos beta 2/farmacología , Catecolaminas/antagonistas & inhibidores , Corazón/efectos de los fármacos , Isquemia/metabolismo , Fibrilación Ventricular/tratamiento farmacológico , Animales , Catecolaminas/farmacología , Masculino , Ratas , Ratas Wistar , Fibrilación Ventricular/metabolismo
7.
J Cardiovasc Dev Dis ; 5(1)2018 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-29367582

RESUMEN

Cyclic nucleotides 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) are important second messengers that regulate cardiovascular function and disease by acting in discrete subcellular microdomains. Signaling compartmentation at these locations is often regulated by phosphodiesterases (PDEs). Some PDEs are also involved in the cross-talk between the two second messengers. The purpose of this review is to summarize and highlight recent findings about the role of PDE2 and PDE3 in cardiomyocyte cyclic nucleotide compartmentation and visualization of this process using live cell imaging techniques.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...