Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Prog Neurobiol ; 226: 102449, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37011806

RESUMEN

Alterations in upper motor neuron excitability are one of the earliest phenomena clinically detected in ALS, and in 97 % of cases, the RNA/DNA binding protein, TDP-43, is mislocalised in upper and lower motor neurons. While these are two major pathological hallmarks in disease, our understanding of where disease pathology begins, and how it spreads through the corticomotor system, is incomplete. This project used a model where mislocalised TDP-43 was expressed in the motor cortex, to determine if localised cortical pathology could result in widespread corticomotor system degeneration. Mislocalised TDP-43 caused layer V excitatory neurons in the motor cortex to become hyperexcitable after 20 days of expression. Following cortical hyperexcitability, a spread of pathogenic changes through the corticomotor system was observed. By 30 days expression, there was a significant decrease in lower motor neuron number in the lumbar spinal cord. However, cell loss occurred selectively, with a significant loss in lumbar regions 1-3, and not lumbar regions 4-6. This regional vulnerability was associated with alterations in pre-synaptic excitatory and inhibitory proteins. Excitatory inputs (VGluT2) were increased in all lumbar regions, while inhibitory inputs (GAD65/67) were increased in lumbar regions 4-6 only. This data indicates that mislocalised TDP-43 in upper motor neurons can cause lower motor neuron degeneration. Furthermore, cortical pathology increased excitatory inputs to the spinal cord, to which local circuitry compensated with an upregulation of inhibition. These findings reveal how TDP-43 mediated pathology may spread through corticofugal tracts in ALS and identify a potential pathway for therapeutic intervention.


Asunto(s)
Esclerosis Amiotrófica Lateral , Ratones , Animales , Esclerosis Amiotrófica Lateral/genética , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Médula Espinal/metabolismo , Proteínas de Unión al ADN/metabolismo
2.
Neurobiol Dis ; 172: 105821, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35863521

RESUMEN

The mechanisms underlying the loss of motor neuron axon integrity in amyotrophic lateral sclerosis (ALS) are unclear. SARM1 has been identified as a genetic risk variant in sporadic ALS, and the SARM1 protein is a key mediator of axon degeneration. To investigate the role of SARM1 in ALS-associated axon degeneration, we knocked out Sarm1 (Sarm1KO) in mSOD1G93ATg (mSOD1) mice. Animals were monitored for ALS disease onset and severity, with motor function assessed at pre-symptomatic and late-stage disease and lumbar spinal cord and sciatic nerve harvested for immunohistochemistry at endpoint (20 weeks). Serum was collected monthly to assess protein concentrations of biomarkers linked to axon degeneration (neurofilament light (NFL) and tau), and astrogliosis (glial fibrillary acidic protein (GFAP)), using single molecule array (Simoa®) technology. Overall, loss of Sarm1 in mSOD1 mice did not slow or delay symptom onset, failed to improve functional declines, and failed to protect motor neurons. Serum NFL levels in mSOD1 mice increased between 8 -12 and 16-20 weeks of age, with the later increase significantly reduced by loss of SARM1. Similarly, loss of SARM1 significantly reduced an increase in serum GFAP between 16 and 20 weeks of age in mSOD1 mice, indicating protection of both global axon degeneration and astrogliosis. In the spinal cord, Sarm1 deletion protected against loss of excitatory VGluT2-positive puncta and attenuated astrogliosis in mSOD1 mice. In the sciatic nerve, absence of SARM1 in mSOD1 mice restored the average area of phosphorylated neurofilament reactivity towards WT levels. Together these data suggest that Sarm1KO in mSOD1 mice is not sufficient to ameliorate functional decline or motor neuron loss but does alter serum biomarker levels and provide protection to axons and glutamatergic synapses. This indicates that treatments targeting SARM1 could warrant further investigation in ALS, potentially as part of a combination therapy.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Biomarcadores/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Gliosis/metabolismo , Ratones , Ratones Transgénicos , Médula Espinal/metabolismo , Superóxido Dismutasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA