Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 14(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34885516

RESUMEN

In this paper, we have examined the influence of electroplated gold thickness on the thermal and electro-optical properties of mid-IR AlInAs/InGaAs, InP QCLs. The experimental results show a significant reduction of the temperature of QCL active region (AR) with increasing gold layer thickness. For QCLs with 5.0 µm gold thickness, we observed a 50% reduction of the active region temperature. An improvement of key electro-optical parameters, that is, threshold current density and maximum emitted power for structures with thick gold, was observed. The results of micro-Raman characterization show that the electroplated gold layer introduces only moderate compressive strain in top InP cladding, which is well below the critical value for the creation of misfit dislocations.

2.
Materials (Basel) ; 13(14)2020 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-32664660

RESUMEN

The precise determination of carrier concentration in doped semiconductor materials and nanostructures is of high importance. Many parameters of an operational device are dependent on the proper carrier concentration or its distribution in both the active area as well as in the passive parts as the waveguide claddings. Determining those in a nondestructive manner is, on the one hand, demanded for the fabrication process efficiency, but on the other, challenging experimentally, especially for complex multilayer systems. Here, we present the results of carrier concentration determination in In0.53Ga0.47As layers, designed to be a material forming quantum cascade laser active areas, using a direct and contactless method utilizing the Berreman effect, and employing Fourier-transform infrared (FTIR) spectroscopy. The results allowed us to precisely determine the free carrier concentration versus changes in the nominal doping level and provide feedback regarding the technological process by indicating the temperature adjustment of the dopant source.

3.
Materials (Basel) ; 12(10)2019 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-31108890

RESUMEN

We investigate molecular beam epitaxy (MBE) growth conditions of micrometers-thick In0.52Al0.48As designed for waveguide of InGaAs/InAlAs/InP quantum cascade lasers. The effects of growth temperature and V/III ratio on the surface morphology and defect structure were studied. The growth conditions which were developed for the growth of cascaded In0.53Ga0.47As/In0.52Al0.48As active region, e.g., growth temperature of Tg = 520 °C and V/III ratio of 12, turned out to be not optimum for the growth of thick In0.52Al0.48As waveguide layers. It has been observed that, after exceeding ~1 µm thickness, the quality of In0.52Al0.48As layers deteriorates. The in-situ optical reflectometry showed increasing surface roughness caused by defect forming, which was further confirmed by high resolution X-ray reciprocal space mapping, optical microscopy and atomic force microscopy. The presented optimization of growth conditions of In0.52Al0.48As waveguide layer led to the growth of defect free material, with good optical quality. This has been achieved by decreasing the growth temperature to Tg = 480 °C with appropriate increasing V/III ratio. At the same time, the growth conditions of the cascade active region of the laser were left unchanged. The lasers grown using new recipes have shown lower threshold currents and improved slope efficiency. We relate this performance improvement to reduction of the electron scattering on the interface roughness and decreased waveguide absorption losses.

4.
Nanoscale ; 9(44): 17571-17575, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29112212

RESUMEN

Secondary ion mass spectrometry is applied to the depth profiling of the superlattice active region of lattice matched (∼9.2 µm) Al0.48In0.52As/In0.53Ga0.47As/InP quantum cascade lasers. The developed measurement procedure is capable of characterizing the quality of each individual layer in the superlattice region, including layers as thin as 0.7 nm. The oxygen level for AlInAs and InGaAs layers is in the range of 1-3 × 1017 atms per cm3 and below the detection limit (∼1 × 1016 atms per cm3), respectively. Oxygen is not uniformly distributed in the AlInAs layers - more oxygen is embedded into the structure during the very first stage of the growth of the AlInAs layer and thus the corresponding interface is 1.83 ± 0.31 times more contaminated than the other. The procedure can also be operated in 3D imaging mode which proves to be invaluable for failure analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...